

Inverse Trigonometric Functions

I. Four Facts About Functions and Their Inverse Functions:

- 1. A function must be one-to-one (any horizontal line intersects it at most once) in order to have an inverse function.
- 2. The graph of an inverse function is the reflection of the original function about the line y = x.
- 3. If (x, y) is a point on the graph of the original function, then (y, x) is a point on the graph of the inverse function.
- 4. The domain and range of a function and it's inverse are interchanged.

II. Illustration of the Four Facts for the Cosine Function:

<u>Background</u>: The regular cosine function for $-\infty < x < \infty$, is <u>**not**</u> one-to-one since some horizontal lines intersect the graph many times. (See how the horizontal line y=1 intersects the portion of the cosine function graphed below in 3 places.) Therefore more than one x value is associated with a single value. The *inverse relationship* would <u>**not**</u> be a function as it would not pass the vertical line test.

FACT #1: A function must be one-to-one (any horizontal line intersects it at most once) in order to have an inverse function.

The **restricted cosine function**, $y = \cos x$ on the interval $0 \le x \le \pi$ is one-to-one and **does** have an inverse function called $\arccos x$ or $\cos^{-1} x$. See the graphs of the restricted cosine function and its inverse function below:

FACT #2: The graph of an inverse function is the reflection of the original function about the line y = x.

Note the symmetry of graphs of $\cos x$ and $\arccos x$ about the line y = x.

FACT #3: If (x, y) is a point on the graph of the original function, then (y, x) is a point on the graph of the inverse function.

$$\left(\frac{\pi}{3}, \frac{1}{2}\right)$$
 is a point on the graph of $y = \cos x$ \longrightarrow $\cos \frac{\pi}{3} = \frac{1}{2}$

$$\left(\frac{1}{2}, \frac{\pi}{3}\right)$$
 is a point on the graph of $y = \arccos x$ \Rightarrow $\arccos \frac{1}{2} = \frac{\pi}{3}$

In general, if $\arccos x = y$, then $x = \cos y$. ($\cos^{-1} x = y$ implies $\cos y = x$)

FACT #4: The domain and range of a function and it's inverse are interchanged.

	$\cos x$	arccos x
Domain	$0 \le x \le \pi$ (restricted domain)	$-1 \le x \le 1$
Range	$-1 \le y \le 1$	$0 \le y \le \pi$ (restricted range)

Example: Evaluate $\arccos\left(-\frac{\sqrt{3}}{2}\right)$.

<u>Solution</u>: The question being asked is "What angle has a cosine value of $-\frac{\sqrt{3}}{2}$?"

Usually there are an infinite number of solutions because cosine is periodic and equals this value twice each and every period. However, for the $\arccos x$ function we are looking for the answer in the **restricted range**. From the above work, we know the range of $\arccos x$ is $0 \le y \le \pi$. So the question being asked is more precisely,

"What angle between 0 and π has a cosine value of $-\frac{\sqrt{3}}{2}$?" Since cosine is negative for angles in the 2nd quadrant and the reference angle is $\frac{\pi}{6}$, the final answer is $\frac{5\pi}{6}$.

Other Inverse Trigonometric Functions: III.

Each trigonometric function has a restricted domain for which an inverse function is defined. The restricted domains are determined so the trig functions are one-to-one.

Trig function	Restricted domain	Inverse trig function	Principle value range
$y = \sin x$	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$y = \arcsin x$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos x$	$0 \le x \le \pi$	$y = \arccos x$	$0 \le y \le \pi$
$y = \tan x$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$	$y = \arctan x$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Graphs:

$$y = \sin x$$
:

 $y = \arcsin x = \sin^{-1} x$:

 $y = \cos x$:

 $y = \arccos x = \cos^{-1} x$:

 $y = \tan x$:

 $y = \arctan x = \tan^{-1} x$:

Example #1: Evaluate $y = \arcsin\left(-\frac{1}{2}\right)$.

HINT: Find the angle whose sine value equals $-\frac{1}{2}$. The answer must be in the principle range of $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Answer: $-\frac{\pi}{6}$

Example #2: Evaluate $y = \arccos\left(-\frac{1}{2}\right)$.

HINT: Find the angle whose cosine value equals $-\frac{1}{2}$. The answer must be in the principle range of $0 \le y \le \pi$.

Answer: $\frac{2\pi}{3}$

Example #3: Evaluate $y = \arctan(-1)$.

HINT: Find the angle whose tangent value equals -1. The answer must be in the principle range of $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Answer: $-\frac{\pi}{4}$

**<u>Alternate notation</u> for the above examples: Evaluate $\sin^{-1}\left(-\frac{1}{2}\right)$, $\cos^{-1}\left(-\frac{1}{2}\right)$, $\tan^{-1}(-1)$.

Example #4:

Calculator Example

If the length of two legs of a right triangle are 7 and 10, find the measure of the larger acute angle.

Solution:

Acute angle B is larger than angle A since the side opposite B (side b = 10) is larger than the side opposite A (side a = 7).

$$\tan B = \frac{opp}{adj} = \frac{10}{7}$$

$$B = \arctan\left(\frac{10}{7}\right) = \tan^{-1}\left(\frac{10}{7}\right)$$

$$B = 55^{\circ}$$
 or $55\left(\frac{\pi}{180}\right) = \frac{11\pi}{36}$ radians

PROBLEMS:

1. Evaluate:

b)
$$\arccos\left(\frac{\sqrt{2}}{2}\right)$$
 c) $\cos^{-1}(-1)$ d) $\cos^{-1}(1)$

c)
$$\cos^{-1}(-1)$$

f)
$$\arcsin(-\frac{\sqrt{3}}{2})$$
 g) $\arctan(\sqrt{3})$ h) $\tan^{-1}(-\sqrt{3})$

g)
$$\arctan(\sqrt{3})$$

h)
$$tan^{-1}(-\sqrt{3})$$

2. Find the measure of the acute angles in a right triangle with a hypotenuse of length 10 and a side of length 7.

ANSWERS:

1. a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$ c) π d) o e) o f) $-\frac{\pi}{3}$ g) $\frac{\pi}{3}$ h) $-\frac{\pi}{3}$

2. $\sin^{-1}\left(\frac{7}{10}\right) = \arcsin\left(\frac{7}{10}\right) = 44.4^{\circ}$. The other angle $90^{\circ} - 44.4^{\circ} = 45.6^{\circ}$.

Alternate solution: $\cos^{-1}\left(\frac{7}{10}\right) = \arccos\left(\frac{7}{10}\right) = 45.6^{\circ}$. The other angle $90^{\circ} - 45.6^{\circ} = 44.4^{\circ}$.