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Modern system dynamics is based upon a matrix representation of the dynamic equations
governing the system behavior. A basic understanding of elementary matrix algebra is
essential for the analysis of state-space formulated systems. A full discussion of linear algebra
is beyond the scope of this note and only a brief summary is presented here. The reader is
referred to a text on linear algebra, such as Strang (1980), for a detailed explanation and
expansion of the material summarized here.

1 Definition

A matrix is a two dimensional array of numbers or expressions arranged in a set of rows and
columns. An m × n matrix A has m rows and n columns and is written

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 (1)

where the element aij, located in the ith row and the jth column, is a scalar quantity; a
numerical constant, or a single valued expression. If m = n, that is there are the same
number of rows as columns, the matrix is square, otherwise it is a rectangular matrix.

A matrix having either a single row (m = 1) or a single column (n = 1) is defined to be
a vector because it is often used to define the coordinates of a point in a multi-dimensional
space. (In this note the convention has been adopted of representing a vector by a lower case
“bold-face” letter such as x, and a general matrix by a “bold-face” upper case letter such as
A.) A vector having a single row, for example

x =
[

x11 x12 · · · x1n

]
(2)

is defined to be a row vector, while a vector having a single column is defined to be a column
vector

y =




y11

y21
...

ym1


 . (3)
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Two special matrices are the square identity matrix, I, which is defined to have all of its
elements equal to zero except those on the main diagonal (where i = j) which have a value
of one:

I =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 , (4)

and the null matrix 0, which has the value of zero for all of its elements:

0 =



0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 , (5)

2 Elementary Matrix Arithmetic

2.0.1 Matrix Addition

The operation of addition of two matrices is only defined when both matrices have the same
dimensions. If A and B are both (m × n), then the sum

C = A+B (6)

is also (m × n) and is defined to have each element the sum of the corresponding elements
of A and B, thus

cij = aij + bij. (7)

Matrix addition is both associative, that is

A+ (B+C) = (A+B) +C, (8)

and commutative
A+B = B+A. (9)

The subtraction of two matrices is similarly defined; if A and B have the same dimensions,
then the difference

C = A−B (10)

implies that the elements of C are

cij = aij − bij. (11)

2.0.2 Multiplication of a Matrix by a Scalar Quantity

If A is a matrix and k is a scalar quantity, the product B = kA is defined to be the matrix
of the same dimensions as A whose elements are simply all scaled by the constant k,

bij = k × aij. (12)
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2.0.3 Matrix Multiplication

Two matrices may be multiplied together only if they meet conditions on their dimensions
that allow them to conform. Let A have dimensions m × n, and B be n × p, that is A has
the same number as columns as the number of rows in B, then the product

C = AB (13)

is defined to be an m × p matrix with elements

cij =
n∑

k=1

aikbkj. (14)

The element in position ij is the sum of the products of elements in the ith row of the first
matrix (A) and the corresponding elements in the jth column of the second matrix (B).
Notice that the product AB is not defined unless the above condition is satisfied, that is the
number of columns of the first matrix must equal the number of rows in the second.

Matrix multiplication is associative, that is

A (BC) = (AB)C, (15)

but is not commutative in general
AB �= BA, (16)

in fact unless the two matrices are square, reversing the order in the product will cause
the matrices to be nonconformal. The order of the terms in the product is therefore very
important. In the product C = AB, A is said to pre-multiply B, while B is said to post-
multiply A.

It is interesting to note in passing that unlike the scalar case, the fact that AB = 0 does
not imply that either A = 0 or that B = 0.

3 Representing Systems of Equations in Matrix Form

3.0.4 Linear Algebraic Equations

The rules given above for matrix arithmetic allow a set of linear algebraic equations to be
written compactly in matrix form. Consider a set of n independent linear equations in the
variables xi for i = 1, . . . , n

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
. . .

...
...

an1x1 + an2x2 + · · · + annxn = bn

(17)
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and write the coefficients aij in a square matrix A of dimension n

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 ,

the unknowns xij in a column vector x of length N

x =




x11

x21
...

xn1


 ,

and the constants on the right-hand side in a column vector

b =




b1

b2
...
bn


 ,

then equations may be written as the product


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann







x1

x2
...

xn


 =




b1

b2
...
bn


 (18)

which may be written compactly as
Ax = b. (19)

3.0.5 State Equations

The modeling procedures described in this note generate a set of first-order linear differential
equations

d
dt

x1 = a11x1 + a12x2 + · · · + a1nxn + b11u1 + · · · b1mum
d
dt

x2 = a21x1 + a22x2 + · · · + a2nxn + b21u1 + · · · b2mum
...

...
...

. . .
...

...
. . .

...
d
dt

xn = an1x1 + an2x2 + · · · + annxn + bn1u1 + · · · bnmum

(20)

If the derivative of a matrix is defined to be a matrix consisting of the derivatives of the
elements of the original matrix, the above equations may be written

d

dt




x1

x2
...

xn


 =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann







x1

x2
...

xn


 +




b11 · · · b1m

b21 · · · b2m
...

. . .
...

bn1 · · · bnm







u1
...

um


 (21)
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or in the standard matrix form
ẋ = Ax+Bu (22)

where

ẋ =
d

dt
x (23)

4 Functions of a Matrix

4.1 The Transpose of a Matrix

The transpose of an m×n matrixA, writtenAT , is the n×m matrix formed by interchanging
the rows and columns of A. For example, if

A =

[
a11 a12 a13

a21 a22 a23

]
(24)

then in terms of the elements of the above matrix, the transpose is

AT =




a11 a21

a12 a22

a13 a23


 . (25)

Notice that the transpose of a row vector produces a column vector, and similarly the
transpose of a column vector produces a row vector. The transpose of the product of two
matrices is the reversed product of the transpose of the two individual matrices,

(AB)T = BTAT . (26)

The rules of matrix multiplication show that the product of a vector and its transpose is
the sum of the squares of all of the elements

x(xT ) =
n∑

i=1

(xi)
2. (27)

4.2 The Determinant

The determinant of an n × n square matrix, written detA is an important scalar quantity
that is a function of the elements of the matrix. When written using the elements of the
matrix, the determinant is enclosed between vertical bars, for example

detA =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ . (28)

The determinant of a matrix of size n × n is defined recursively in terms of lower order
determinants ((n − 1) × (n − 1)) as follows. The minor of an element aij, written Mij, is
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another determinant of order (n − 1) that is formed by deleting the ith row and the jth
column from the original determinant. In the above example,

M23 =

∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣ . (29)

The cofactor αij of an element aij in a determinant is simply its minor Mij multiplied by
either +1 or −1, depending upon its position, that is

cof aij = αij

= (−1)i+jMij. (30)

In the case of the (3× 3) example above

α23 = (−1)5M23 = −
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣ . (31)

At the limit, the determinant of a 1 × 1 matrix (a scalar) is the value of the scalar itself.
The determinant of a high order matrix is found by expanding in terms of the elements of
any selected row or column and the cofactors of those elements. If the expansion is done by
selecting the ith row, the determinant is defined as a sum of order (n − 1) determinants as

detA =
n∑

j=1

aijαij, (32)

that is the sum of products of the elements of the row and their cofactors. Similarly, the
expansion in terms of the elements of the jth column of the determinant is

detA =
n∑

i=1

aijαij. (33)

If a (2× 2) determinant is expanded by the top row, the result is

detA =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11α11 + a12α12 = a11a22 − a12a21 (34)

If A is a (3× 3) matrix, and the expansion is done by the first column, then

detA =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ − a21

∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣ + a31

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
= a11(a22a33 − a32a23)− a21(a12a33 − a32a13) + a31(a12a23 − a22a13) (35)
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4.3 The Matrix Inverse

Matrix division is not defined. For a square matrix, multiplication by an inverse may be
thought of as an analogous operation to the process of multiplication of a scalar quantity by
its reciprocal. For a square n × n matrix A, define its inverse, written A−1, as that matrix
(if it exists) that pre- or post-multiplies A to give the identity matrix I,

A−1A = I (36)

AA−1 = I.

The importance of the inverse matrix can be seen from the solution of a set of algebraic
linear equations such as

Ax = b. (37)

If the inverse A−1 exists then pre-multiplying both sides gives

A−1Ax = A−1b (38)

Ix = A−1b (39)

and since pre-multiplying a column vector of length n by the nth order identity matrix I
does not affect its value, this process gives an explicit solution to the set of equations

x = A−1b. (40)

The inverse of a square matrix does not always exist. If the inverse exists, the matrix is
defined to be non-singular, if it does not exist the matrix is singular.

The adjoint matrix, adjA, of a square matrix A is defined as the transpose of the matrix
of cofactors of the elements of A, that is

adjA =




α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αn1 αn2 · · · αnn




T

=




α11 α21 · · · αn1

α12 α22 · · · αn2
...

...
. . .

...
α1n α2n · · · αnn


 . (41)

The inverse of A is found from the determinant and the adjoint of A,

A−1 =
adjA

detA
. (42)

Notice that the condition for the inverse to exist, that is for A to be non-singular, is that
detA �= 0.

For a (2× 2) matrix

A−1 =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
. (43)

For higher order matrices the elements in the adjoint matrix must be found by expanding out
the cofactors of each element. For numerical matrices of order four and greater it is usually
expedient to use one of the many computer matrix manipulation packages to compute the
inverse.
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5 Eigenvalues and Eigenvectors

In the study of dynamic systems we are frequently confronted with a set of linear algebraic
equations of the form

λx = Ax (44)

where x is a column vector of length n, A is an n × n square matrix and λ is a scalar
quantity. The problem to be solved is to find the values of λ satisfying this equation, and
the corresponding vectors x. The values of λ are known as the eigenvalues of the matrix A,
and the corresponding vectors are the eigenvectors.

The above equation may be written as a set of homogeneous equations

λx−Ax = (λI−A)x = 0, (45)

where 0 is a null column vector, and

(λI−A) =




λ − a11 −a12 · · · −a1n

−a21 λ − a22 · · · −a2n
...

...
. . .

...
−am1 −am2 · · · λ − amn


 . (46)

A theorem of linear algebra states that for a set of homogeneous linear equations a nontrivial
set of solutions exists only if the coefficient matrix is singular, that is

det (λI−A) = 0. (47)

The determinant, det (λI−A), is known as the characteristic determinant of the matrix
A. Expansion of the determinant results in an nth order polynomial in λ, known as the
characteristic polynomial ofA. The n roots of the characteristic equation, formed by equating
the characteristic polynomial to zero, will define those values of λ that make the matrix
(λI−A) singular. These values are known as the eigenvalues of the matrix A.

For example, to find the eigenvalues of the matrix

A =

[
5 4
1 2

]
,

the characteristic equation is given by

det (λI−A) =

∣∣∣∣∣ λ − 5 −4
−1 λ − 2

∣∣∣∣∣ = λ2 − 7λ + 6 = 0

and has roots (and hence eigenvalues) λ1 = 6 and λ2 = 1. The eigenvectors corresponding
to each of these values may be found by substituting back into the original equations, for
example if λ = 6 the equations become

−x1 + 4x2 = 0

x1 − 4x2 = 0
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which has the non-unique solution x1 = 4x2. Any vector maintaining this ratio between its
two elements is therefore an eigenvector corresponding to the eigenvalue λ = 6. In general,
if x is an eigenvector of A then so is kx for any scalar value k.

6 Cramer’s Method

Cramer’s method is a convenient method for manually solving low-order non-homogeneous
sets of linear equations. If the equations are written in matrix form

Ax = b (48)

then the ith element of the vector x may be found directly from a ratio of determinants

xi =
detA(i)

detA
(49)

where A(i) is the matrix formed by replacing the ith column of A with the column vector
b. For example, solve

2x1 − x2 + 2x3 = 2
x1 + 10x2 − 3x3 = 5

−x1 + x2 + x3 = −3
.

Then

detA =

∣∣∣∣∣∣∣
2 −1 2
1 10 −3

−1 1 1

∣∣∣∣∣∣∣ = 46

and

x1 =
1

46

∣∣∣∣∣∣∣
2 −1 2
5 10 −3

−3 1 1

∣∣∣∣∣∣∣
= 2

x2 =
1

46

∣∣∣∣∣∣∣
2 2 2
1 5 −3

−1 −3 1

∣∣∣∣∣∣∣
= 0

x3 =
1

46

∣∣∣∣∣∣∣
2 −1 2
1 10 5

−1 1 −3

∣∣∣∣∣∣∣
= −1
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