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Overview  One of the most important applications of the derivative is its use as a tool for 
finding the optimal (best) solutions to problems. Optimization problems abound in math-
ematics, physical science and engineering, business and economics, and biology and 
medicine. For example, what are the height and diameter of the cylinder of largest volume 
that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-
lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-
duction costs and sales revenue, how many items should a manufacturer produce to maxi-
mize profit? How much does the trachea (windpipe) contract to expel air at the maximum 
speed during a cough? What is the branching angle at which blood vessels minimize the 
energy loss due to friction as blood flows through the branches?

In this chapter we use derivatives to find extreme values of functions, to determine 
and analyze the shapes of graphs, and to solve equations numerically. We also introduce 
the idea of recovering a function from its derivative. The key to many of these applications 
is the Mean Value Theorem, which paves the way to integral calculus.

4.1 E xtreme Values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of 
a function from its derivative. Once we can do this, we can solve a variety of optimization 
problems (see Section 4.6). The domains of the functions we consider are intervals or 
unions of separate intervals.

Applications of 
Derivatives

4

Definitions  Let ƒ be a function with domain D. Then ƒ has an absolute 
maximum value on D at a point c if

ƒ(x) … ƒ(c)  for all x in D

and an absolute minimum value on D at c if

ƒ(x) Ú ƒ(c)  for all x in D.

Maximum and minimum values are called extreme values of the function ƒ. Absolute 
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval 3-p>2, p>24  the function ƒ(x) = cos x takes on 
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On 
the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of -1 (Figure 4.1).

Functions with the same defining rule or formula can have different extrema (maximum 
or minimum values), depending on the domain. We see this in the following example.

Figure 4.1  Absolute extrema 
for the sine and cosine functions on 
3-p>2, p>24 . These values can depend 
on the domain of a function.
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224	 Chapter 4: Applications of Derivatives

Example  1    The absolute extrema of the following functions on their domains can 
be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the 
domains vary. Notice that a function might not have a maximum or minimum if the 
domain is unbounded or fails to contain an endpoint.

The proof of the Extreme Value Theorem requires a detailed knowledge of the real 
number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval 3a, b4 . 
As we observed for the function y = cos x, it is possible that an absolute minimum (or 
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the 
function be continuous, are key ingredients. Without them, the conclusion of the theorem 

Figure 4.2  Graphs for Example 1.

x
2

(b) abs max and min

 y = x2

D = [0, 2]

y

x
2

(c) abs max only

 y = x2

D = (0, 2]

y

x
2

(d) no max or min

 y = x2

D = (0, 2)

y

x
2

(a) abs min only

 y = x2

D = (−∞, ∞)
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Function rule	 Domain D	 Absolute extrema on D

(a)  y = x2	 (-q, q)	 No absolute maximum

		  Absolute minimum of 0 at x = 0

(b)  y = x2	 30, 24 	 Absolute maximum of 4 at x = 2

		  Absolute minimum of 0 at x = 0

(c)  y = x2	 (0, 24 	 Absolute maximum of 4 at x = 2

		  No absolute minimum

(d)  y = x2	 (0, 2)	 No absolute extrema

theorem  1—The Extreme Value Theorem  If ƒ is continuous on a closed 
interval 3a, b4 , then ƒ attains both an absolute maximum value M and an abso-
lute minimum value m in 3a, b4 . That is, there are numbers x1 and x2 in 3a, b4  
with ƒ(x1) = m, ƒ(x2) = M, and m … ƒ(x) … M  for every other x in 3a, b4 .

Some of the functions in Example 1 did not have a maximum or a minimum value. 
The following theorem asserts that a function which is continuous over (or on) a finite 
closed interval 3a, b4  has an absolute maximum and an absolute minimum value on the 
interval. We look for these extreme values when we graph a function.

Historical Biography

Daniel Bernoulli
(1700–1789)
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	 4.1  Extreme Values of Functions	 225

need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. The exponential function y = ex over (-q, q) 
shows that neither extreme value need exist on an infinite interval. Figure 4.4 shows that 
the continuity requirement cannot be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its 
domain 3a, b4 . The function’s absolute minimum occurs at a even though at e the func-
tion’s value is smaller than at any other point nearby. The curve rises to the left and falls to 
the right around c, making ƒ(c) a maximum locally. The function attains its absolute 
maximum at d. We now define what we mean by local extrema.

If the domain of ƒ is the closed interval 3a, b4 , then ƒ has a local maximum at the endpoint 
x = a, if ƒ(x) … ƒ(a) for all x in some half-open interval 3a, a + d), d 7 0. Likewise, ƒ 
has a local maximum at an interior point x = c if ƒ(x) … ƒ(c) for all x in some open inter-
val (c - d, c + d), d 7 0, and a local maximum at the endpoint x = b if ƒ(x) … ƒ(b) for 
all x in some half-open interval (b - d, b4 , d 7 0. The inequalities are reversed for local 
minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can 
have infinitely many local extrema, even over a finite interval. One example is the function 
ƒ(x) = sin (1>x) on the interval (0, 14 . (We graphed this function in Figure 2.40.)

Definitions  A function ƒ has a local maximum value at a point c within its 
domain D if ƒ(x) … ƒ(c) for all x∊D lying in some open interval containing c.

A function ƒ has a local minimum value at a point c within its domain D if 
ƒ(x) Ú ƒ(c) for all x∊D lying in some open interval containing c.

Figure 4.4  Even a single point of dis-
continuity can keep a function from having 
either a maximum or minimum value on a 
closed interval. The function

y = e x, 0 … x 6 1

0, x = 1

is continuous at every point of 30, 14   
except x = 1, yet its graph over 30, 14  
does not have a highest point.
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Figure 4.3  Some possibilities for a continuous function’s maximum and  
minimum on a closed interval 3a, b4 .
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226	 Chapter 4: Applications of Derivatives

An absolute maximum is also a local maximum. Being the largest value overall, it is 
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will 
automatically include the absolute maximum if there is one. Similarly, a list of all local 
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a 
function’s extrema.

Figure 4.5  How to identify types of maxima and minima for a function with domain 
a … x … b.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y = f (x)

THEOREM 2—The First Derivative Theorem for Local Extreme Values  If 
ƒ has a local maximum or minimum value at an interior point c of its domain, 
and if ƒ′ is defined at c, then

ƒ′(c) = 0.

Proof    To prove that ƒ′(c) is zero at a local extremum, we show first that ƒ′(c) cannot 
be positive and second that ƒ′(c) cannot be negative. The only number that is neither posi-
tive nor negative is zero, so that is what ƒ′(c) must be.

To begin, suppose that ƒ has a local maximum value at x = c (Figure 4.6) so that 
ƒ(x) - ƒ(c) … 0 for all values of x near enough to c. Since c is an interior point of ƒ’s 
domain, ƒ′(c) is defined by the two-sided limit

lim
xSc

 
ƒ(x) - ƒ(c)

x - c .

This means that the right-hand and left-hand limits both exist at x = c and equal ƒ′(c). 
When we examine these limits separately, we find that

	 ƒ′(c) = lim
xSc+

 
ƒ(x) - ƒ(c)

x - c … 0.    Because (x - c) 7 0 and ƒ(x) … ƒ(c)	 (1)

Similarly,

	 ƒ′(c) = lim
xSc-

 
ƒ(x) - ƒ(c)

x - c Ú 0.    Because (x - c) 6 0 and ƒ(x) … ƒ(c)	 (2)

Together, Equations (1) and (2) imply ƒ′(c) = 0.
This proves the theorem for local maximum values. To prove it for local minimum 

values, we simply use ƒ(x) Ú ƒ(c), which reverses the inequalities in Equations (1)  
and (2).�

Figure 4.6  A curve with a local 
maximum value. The slope at c, simultane-
ously the limit of nonpositive numbers and 
nonnegative numbers, is zero.

x
c x

Local maximum value

x

Secant slopes ≥ 0
(never negative)
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(never positive)

y = f (x)
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Theorem 2 says that a function’s first derivative is always zero at an interior point 
where the function has a local extreme value and the derivative is defined. If we recall that 
all the domains we consider are intervals or unions of separate intervals, the only places 
where a function ƒ can possibly have an extreme value (local or global) are

1.	 interior points where ƒ′ = 0,	 At x = c and x = e in Fig. 4.5

2.	 interior points where ƒ′ is undefined,	 At x = d  in Fig. 4.5 

3.	 endpoints of the domain of ƒ.	 At x = a and x = b in Fig. 4.5

The following definition helps us to summarize these results.

Example  2    Find the absolute maximum and minimum values of ƒ(x) = x2 on 
3-2, 14 .

Solution  The function is differentiable over its entire domain, so the only critical point 
is where ƒ′(x) = 2x = 0, namely x = 0. We need to check the function’s values at x = 0 
and at the endpoints x = -2 and x = 1:

Critical point value:	 ƒ(0) = 0

Endpoint values:	 ƒ(-2) = 4

	 ƒ(1) = 1.

The function has an absolute maximum value of 4 at x = -2 and an absolute minimum 
value of 0 at x = 0.�

Example  3    Find the absolute maximum and minimum values of ƒ(x) =
10x (2 - ln x) on the interval 31, e24 .

How to Find the Absolute Extrema of a Continuous Function ƒ on a Finite 
Closed Interval
1.	 Evaluate ƒ at all critical points and endpoints.

2.	 Take the largest and smallest of these values.

Definition  An interior point of the domain of a function ƒ where ƒ′ is zero 
or undefined is a critical point of ƒ.

Thus the only domain points where a function can assume extreme values are critical 
points and endpoints. However, be careful not to misinterpret what is being said here. A 
function may have a critical point at x = c without having a local extreme value there. For 
instance, both of the functions y = x3 and y = x1>3 have critical points at the origin, but 
neither function has a local extreme value at the origin. Instead, each function has a point 
of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.

Most problems that ask for extreme values call for finding the absolute extrema of a 
continuous function on a closed and finite interval. Theorem 1 assures us that such values 
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often 
we can simply list these points and calculate the corresponding function values to find 
what the largest and smallest values are, and where they are located. Of course, if the 
interval is not closed or not finite (such as a 6 x 6 b or a 6 x 6 q), we have seen that 
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it 
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

−1

x

y

1−1

1

0

(a)

y = x3

−1

x

y

1−1

1

0

(b)

y = x1�3

Figure 4.7  Critical points without 
extreme values. (a) y′ = 3x2 is 0 at x = 0, 
but y = x3 has no extremum there.  
(b) y′ = (1>3)x-2>3 is undefined at x = 0, 
but y = x1>3 has no extremum there.
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228	 Chapter 4: Applications of Derivatives

Solution  Figure 4.8 suggests that ƒ has its absolute maximum value near x = 3 and its 
absolute minimum value of 0 at x = e2. Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and 
smallest of the resulting values.

The first derivative is

ƒ′(x) = 10(2 - ln x) - 10xa1xb = 10(1 - ln x).

The only critical point in the domain 31, e24  is the point x = e, where ln x = 1. The val-
ues of ƒ at this one critical point and at the endpoints are

Critical point value:   ƒ(e) = 10e

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

We can see from this list that the function’s absolute maximum value is 10e ≈ 27.2; it 
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at 
the right endpoint x = e2.�

Example  4    Find the absolute maximum and minimum values of ƒ(x) = x2>3 on the 
interval 3-2, 34 .

Solution  We evaluate the function at the critical points and endpoints and take the larg-
est and smallest of the resulting values.

The first derivative

ƒ′(x) = 2
3 x-1>3 = 2

323 x

has no zeros but is undefined at the interior point x = 0. The values of ƒ at this one critical 
point and at the endpoints are

Critical point value:	  ƒ(0) = 0

Endpoint values:	  ƒ(-2) = (-2)2>3 = 23 4

	  ƒ(3) = (3)2>3 = 23 9.

We can see from this list that the function’s absolute maximum value is 23 9 ≈ 2.08, and 
it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs at 
the interior point x = 0 where the graph has a cusp (Figure 4.9).�

Figure 4.8  The extreme values of 
ƒ(x) = 10x(2 - ln x) on 31, e24  occur at 
x = e and x = e2 (Example 3).
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y = x2�3,  −2 ≤ x ≤ 3

Figure 4.9  The extreme values of 
ƒ(x) = x2>3 on 3-2, 34  occur at x = 0 
and x = 3 (Example 4).

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has 
any absolute extreme values on 3a, b4 . Then explain how your 
answer is consistent with .Theorem 1

	 1.	 		 2.	

x

y

0 a c1 bc2

y = h(x)

x

y

0 a c b

y = f (x)

	 3.	 		 4.	

x

y

0 a bc

y = f (x)

x

y

0 a bc

y = h(x)

Exercises  4.1
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In Exercises 15–20, sketch the graph of each function and determine 
whether the function has any absolute extreme values on its domain. 
Explain how your answer is consistent with Theorem 1.

15.	 ƒ(x) = 0 x 0 , -1 6 x 6 2

16.	 y = 6
x2 + 2

, -1 6 x 6 1

17.	 g(x) = e-x,    0 … x 6 1

x - 1, 1 … x … 2

18.	 h(x) = •
1
x ,   -1 … x 6 02x, 0 … x … 4

19.	 y = 3 sin x, 0 6 x 6 2p

20.	 ƒ(x) = •
x + 1, -1 … x 6 0

cos x,      0 6 x … p
2

Absolute Extrema on Finite Closed Intervals
In Exercises 21–40, find the absolute maximum and minimum values 
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and 
include their coordinates.

21.	 ƒ(x) = 2
3

 x - 5, -2 … x … 3

22.	 ƒ(x) = -x - 4, -4 … x … 1

23.	 ƒ(x) = x2 - 1, -1 … x … 2

24.	 ƒ(x) = 4 - x3, -2 … x … 1

25.	 F(x) = -  
1
x2 , 0.5 … x … 2

26.	 F(x) = -  
1
x , -2 … x … -1

27.	 h(x) = 23 x, -1 … x … 8

28.	 h(x) = -3x2>3, -1 … x … 1

29.	 g(x) = 24 - x2 , -2 … x … 1

30.	 g(x) = -25 - x2 , -25 … x … 0

31.	 ƒ(u) = sin u, -  
p

2
… u … 5p

6

32.	 ƒ(u) = tan u, -  
p

3
… u … p

4

33.	 g(x) = csc x, 
p

3
… x … 2p

3

34.	 g(x) = sec x, -  
p

3
… x … p

6
35.	 ƒ(t) = 2 - 0 t 0 , -1 … t … 3

36.	 ƒ(t) = 0 t - 5 0 , 4 … t … 7

37.	 g(x) = xe-x, -1 … x … 1

38.	 h(x) = ln (x + 1), 0 … x … 3

39.	 ƒ(x) = 1
x + ln x, 0.5 … x … 4

40.	 g(x) = e-x2
, -2 … x … 1

	 5.	 		 6.	

In Exercises 7–10, find the absolute extreme values and where they 
occur.

	 7.	 		 8.	

	 9.	 		 10.	

In Exercises 11–14, match the table with a graph.

11.	 		 12.	

13.	 		 14.	

x

y

0 a c b

y = g(x)

x

y

0 a c b

y = g(x)

1−1

1

−1

y

x

2

2

−2 0

y

x

0 2

5

x

y

2
(1, 2)

−3 2
−1

x

y

x	 ƒ′(x)

a	 0
b	 0
c	 5

x	 ƒ′(x)

a	    0
b	    0
c	 -5

x	 ƒ′(x)

a	 does not exist
b	    0
c	 -2

x	 ƒ′(x)

a	 does not exist
b	 does not exist
c	 -1.7

a b c a b c

a b c a b c

(a) (b)

(c) (d)
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230	 Chapter 4: Applications of Derivatives

Theory and Examples
79.	 A minimum with no derivative  The function ƒ(x) = 0 x 0  has 

an absolute minimum value at x = 0 even though ƒ is not differ-
entiable at x = 0. Is this consistent with Theorem 2? Give rea-
sons for your answer.

80.	 Even functions  If an even function ƒ(x) has a local maximum 
value at x = c, can anything be said about the value of ƒ at 
x = -c? Give reasons for your answer.

81.	 Odd functions  If an odd function g(x) has a local minimum 
value at x = c, can anything be said about the value of g at 
x = -c? Give reasons for your answer.

82.	 No critical points or endpoints exist  We know how to find the 
extreme values of a continuous function ƒ(x) by investigating its 
values at critical points and endpoints. But what if there are no criti-
cal points or endpoints? What happens then? Do such functions 
really exist? Give reasons for your answers.

83.	 The function

V(x) = x(10 - 2x)(16 - 2x),  0 6 x 6 5,

		  models the volume of a box.

	a.	 Find the extreme values of V.

	b.	 Interpret any values found in part (a) in terms of the volume 
of the box.

84.	 Cubic functions  Consider the cubic function

ƒ(x) = ax3 + bx2 + cx + d.

	a.	 Show that ƒ can have 0, 1, or 2 critical points. Give examples 
and graphs to support your argument.

	b.	 How many local extreme values can ƒ have?

85.	 Maximum height of a vertically moving body  The height of a 
body moving vertically is given by

s = -  
1
2

 gt2 + y0 t + s0,  g 7 0,

		  with s in meters and t in seconds. Find the body’s maximum height.

86.	 Peak alternating current  Suppose that at any given time t (in 
seconds) the current i (in amperes) in an alternating current cir-
cuit is i = 2 cos t + 2 sin t. What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values 
of the function on the interval and say where they occur.

87.	 ƒ(x) = 0 x - 2 0 + 0 x + 3 0 , -5 … x … 5

88.	 g(x) = 0 x - 1 0 - 0 x - 5 0 , -2 … x … 7

89.	 h(x) = 0 x + 2 0 - 0 x - 3 0 , -q 6 x 6 q
90.	 k(x) = 0 x + 1 0 + 0 x - 3 0 , -q 6 x 6 q

Computer Explorations
In Exercises 91–98, you will use a CAS to help find the absolute 
extrema of the given function over the specified closed interval. Per-
form the following steps.

	a.	 Plot the function over the interval to see its general behavior there.

	b.	 Find the interior points where ƒ′ = 0. (In some exercises, you 
may have to use the numerical equation solver to approximate a 
solution.) You may want to plot ƒ′ as well.

	c.	 Find the interior points where ƒ′ does not exist.

T

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41.	 ƒ(x) = x4>3, -1 … x … 8

42.	 ƒ(x) = x5>3, -1 … x … 8

43.	 g(u) = u3>5, -32 … u … 1

44.	 h(u) = 3u2>3, -27 … u … 8

Finding Critical Points
In Exercises 45–52, determine all critical points for each function.

45.	 y = x2 - 6x + 7	 46.	 ƒ(x) = 6x2 - x3

47.	 ƒ(x) = x(4 - x)3	 48.	 g(x) = (x - 1)2(x - 3)2

49.	 y = x2 + 2
x 	 50.	 ƒ(x) = x2

x - 2

51.	 y = x2 - 322x	 52.	 g(x) = 22x - x2

Finding Extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the 
function over its natural domain, and where they occur.

	53.	 y = 2x2 - 8x + 9	 54.	 y = x3 - 2x + 4

	55.	 y = x3 + x2 - 8x + 5	 56.	 y = x3(x - 5)2

	57.	 y = 2x2 - 1	 58.	 y = x - 42x

	59.	 y = 123 1 - x2
	 60.	 y = 23 + 2x - x2

	61.	 y = x
x2 + 1

	 62.	 y = x + 1
x2 + 2x + 2

	63.	 y = ex + e-x	 64.	 y = ex - e-x

	65.	 y = x ln x	 66.	 y = x2 ln x

	67.	 y = cos-1 (x2)	 68.	 y = sin-1(ex)

Local Extrema and Critical Points
In Exercises 69–76, find the critical points, domain endpoints, and 
extreme values (absolute and local) for each function.

	69.	 y = x2>3(x + 2)	 70.	 y = x2>3(x2 - 4)

	71.	 y = x24 - x2	 72.	 y = x223 - x

	73.	 y = e4 - 2x,  x … 1

x + 1,   x 7 1
	 74.	 y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0

	75.	 y = e-x2 - 2x + 4,  x … 1

-x2 + 6x - 4,  x 7 1

	76.	 y = c -  
1
4

 x2 - 1
2

 x + 15
4

,  x … 1

x3 - 6x2 + 8x,      x 7 1

In Exercises 77 and 78, give reasons for your answers.

77.	 Let ƒ(x) = (x - 2)2>3.

	a.	 Does ƒ′(2) exist?

b.	 Show that the only local extreme value of ƒ occurs at x = 2.

 c.	 Does the result in part (b) contradict the Extreme Value  
Theorem?

d.	 Repeat parts (a) and (b) for ƒ(x) = (x - a)2>3, replacing 2  
by a.

78.	 Let ƒ(x) = 0 x3 - 9x 0 .
	a.	 Does ƒ′(0) exist?	 b.	 Does ƒ′(3) exist?

	c.	 Does ƒ′(-3) exist?	 d.	 Determine all extrema of ƒ.
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4.2 T he Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives 
over an interval, how are the functions related? We answer these and other questions in 
this chapter by applying the Mean Value Theorem. First we introduce a special case, 
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is 
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

94.	 ƒ(x) = 2 + 2x - 3x2>3, 3-1, 10>34
95.	 ƒ(x) = 2x + cos x, 30, 2p4
96.	 ƒ(x) = x3>4 - sin x + 1

2
, 30, 2p4

97.	 ƒ(x) = px2e-3x>2,   30, 54
98.	 ƒ(x) = ln (2x + x sin x),   31, 154

	d.	 Evaluate the function at all points found in parts (b) and (c) and at 
the endpoints of the interval.

	e.	 Find the function’s absolute extreme values on the interval and 
identify where they occur.

91.	 ƒ(x) = x4 - 8x2 + 4x + 2, 3-20>25, 64>254
92.	 ƒ(x) = -x4 + 4x3 - 4x + 1, 3-3>4, 34
93.	 ƒ(x) = x2>3(3 - x), 3-2, 24

THEOREM 3—Rolle’s Theorem  Suppose that y = ƒ(x) is continuous over 
the closed interval 3a, b4  and differentiable at every point of its interior (a, b). 
If ƒ(a) = ƒ(b), then there is at least one number c in (a, b) at which ƒ′(c) = 0.

Proof    Being continuous, ƒ assumes absolute maximum and minimum values on 
3a, b4  by Theorem 1. These can occur only

1.	 at interior points where ƒ′ is zero,

2.	 at interior points where ƒ′ does not exist,

3.	 at endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), 
leaving us with interior points where ƒ′ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 
ƒ′(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 
because ƒ(a) = ƒ(b) it must be the case that ƒ is a constant function with ƒ(x) = ƒ(a) = ƒ(b) 
for every x∊ 3a, b4 . Therefore ƒ′(x) = 0 and the point c can be taken anywhere in the 
interior (a, b).�

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 
when there is only one real solution of an equation ƒ(x) = 0, as we illustrate in the next 
example.

Example  1    Show that the equation

x3 + 3x + 1 = 0

has exactly one real solution.

Historical Biography

Michel Rolle
(1652–1719)

f ′(c3) = 0

f ′(c2) = 0
f ′(c1) = 0

f ′(c) = 0

y = f (x)

y = f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

Figure 4.10  Rolle’s Theorem says 
that a differentiable curve has at least one 
horizontal tangent between any two points 
where it crosses a horizontal line. It may 
have just one (a), or it may have more (b).
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Proof    We picture the graph of ƒ and draw a line through the points A(a, ƒ(a)) and 
B(b, ƒ(b)). (See Figure 4.14.) The secant line is the graph of the function

	 g(x) = ƒ(a) +
ƒ(b) - ƒ(a)

b - a
  (x - a)	 (2)

(point-slope equation). The vertical difference between the graphs of ƒ and g at x is

 h(x) = ƒ(x) - g(x)

	  = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)

b - a
  (x - a).	 (3)

Figure 4.15 shows the graphs of ƒ, g, and h together.

Solution  We define the continuous function

ƒ(x) = x3 + 3x + 1.

Since ƒ(-1) = -3 and ƒ(0) = 1, the Intermediate Value Theorem tells us that the graph 
of ƒ crosses the x-axis somewhere in the open interval (-1, 0). (See Figure 4.12.) Now, if 
there were even two points x = a and x = b where ƒ(x) was zero, Rolle’s Theorem 
would guarantee the existence of a point x = c in between them where ƒ′ was zero. How-
ever, the derivative

ƒ′(x) = 3x2 + 3

is never zero (because it is always positive).  Therefore, ƒ has no more than one zero.�

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted 
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there 
is a point where the tangent line is parallel to the secant joining A and B.

Figure 4.11  There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

a bx0a bx0a

(a) Discontinuous at an 
 endpoint of [a, b]

(b) Discontinuous at an 
 interior point of [a, b]

(c) Continuous on [a, b] but not
 differentiable at an interior
 point

b
x x x

y y y

y = f (x) y = f (x) y = f (x)

x

y

0 1

(1, 5)

1

(−1, −3)

−1

y = x3 + 3x + 1

Figure 4.12  The only real zero of the 
polynomial y = x3 + 3x + 1 is the one 
shown here where the curve crosses the 
x-axis between -1 and 0 (Example 1).

x

y

0 a

Tangent parallel to secant

c b

Slope

B

A

y = f (x)

Slope f ′(c)

f (b) − f (a)
b − a

Figure 4.13  Geometrically, the Mean 
Value Theorem says that somewhere 
between a and b the curve has at least one 
tangent parallel to the secant joining A and B.

THEOREM 4—The Mean Value Theorem  Suppose y = ƒ(x) is continuous 
over a closed interval 3a, b4  and differentiable on the interval’s interior (a, b). 
Then there is at least one point c in (a, b) at which

	
ƒ(b) - ƒ(a)

b - a
= ƒ′(c).	 (1)

Historical Biography

Joseph-Louis Lagrange
(1736–1813)
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The function h satisfies the hypotheses of Rolle’s Theorem on 3a, b4 . It is continuous 
on 3a, b4  and differentiable on (a, b) because both ƒ and g are. Also, h(a) = h(b) = 0 
because the graphs of ƒ and g both pass through A and B. Therefore h′(c) = 0 at some 
point c∊(a, b). This is the point we want for Equation (1) in the theorem.

To verify Equation (1), we differentiate both sides of Equation (3) with respect to x 
and then set x = c:

	  h′(x) = ƒ′(x) -
ƒ(b) - ƒ(a)

b - a
	 Derivative of Eq. (3) . . .

	  h′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
	 . . . with x = c

	  0 = ƒ′(c) -
ƒ(b) - ƒ(a)

b - a
	 h′(c) = 0

	  ƒ′(c) =
ƒ(b) - ƒ(a)

b - a
,	 Rearranged

which is what we set out to prove.�

The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at 
either a or b. One-sided continuity at a and b is enough (Figure 4.16).

Example  2    The function ƒ(x) = x2 (Figure 4.17) is continuous for 0 … x … 2 and 
differentiable for 0 6 x 6 2. Since ƒ(0) = 0 and ƒ(2) = 4, the Mean Value Theorem 
says that at some point c in the interval, the derivative ƒ′(x) = 2x must have the value 
(4 - 0)>(2 - 0) = 2. In this case we can identify c by solving the equation 2c = 2 to 
get c = 1. However, it is not always easy to find c algebraically, even though we know it 
always exists.�

A Physical Interpretation

We can think of the number (ƒ(b) - ƒ(a))>(b - a) as the average change in ƒ over 
3a, b4  and ƒ′(c) as an instantaneous change. Then the Mean Value Theorem says that at 
some interior point the instantaneous change must equal the average change over the 
entire interval.

Example  3    If a car accelerating from zero takes 8 sec to go 352 ft, its average  
velocity for the 8-sec interval is 352>8 = 44 ft>sec. The Mean Value Theorem says that at 
some point during the acceleration the speedometer must read exactly 30 mph (44 ft>sec) 
(Figure 4.18).�

x

y

1

(1, 1)

2

B(2, 4)

y = x2

A(0, 0)

1

2

3

4

Figure 4.17  As we find in Example 2,  
c = 1 is where the tangent is parallel to 
the secant line.

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s = f (t)

Figure 4.18  Distance versus elapsed 
time for the car in Example 3.

x

y

0 1−1

1
y = "1 − x2, −1 ≤ x ≤ 1

Figure 4.16  The function ƒ(x) =  21 - x2 satisfies the hypotheses (and 
conclusion) of the Mean Value Theorem 
on 3-1, 14  even though ƒ is not differen-
tiable at -1 and 1.

A(a, f (a))

B(b, f (b))
y = f (x)

x
ba

Figure 4.14  The graph of ƒ and the 
secant AB over the interval 3a, b4 .

x
ba x

B

A

h(x) = f (x) − g(x)

y = f (x)

y = g(x)

h(x)

Figure 4.15  The secant AB is the 
graph of the function g(x). The function 
h(x) = ƒ(x) - g(x) gives the vertical dis-
tance between the graphs of ƒ and g at x.
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234	 Chapter 4: Applications of Derivatives

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over 
an interval. The first corollary of the Mean Value Theorem provides the answer that only 
constant functions have zero derivatives.

Corollary 1  If ƒ′(x) = 0 at each point x of an open interval (a, b), then 
ƒ(x) = C for all x∊(a, b), where C is a constant.

Corollary 2  If ƒ′(x) = g′(x) at each point x in an open interval (a, b), then 
there exists a constant C such that ƒ(x) = g(x) + C for all x∊(a, b). That is, 
ƒ - g is a constant function on (a, b).

Proof    We want to show that ƒ has a constant value on the interval (a, b). We do so by 
showing that if x1 and x2 are any two points in (a, b) with x1 6 x2, then ƒ(x1) = ƒ(x2). 
Now ƒ satisfies the hypotheses of the Mean Value Theorem on 3x1, x24 : It is differentiable 
at every point of 3x1, x24  and hence continuous at every point as well. Therefore,

ƒ(x2) - ƒ(x1)
x2 - x1

= ƒ′(c)

at some point c between x1 and x2. Since ƒ′ = 0 throughout (a, b), this equation implies 
successively that

	
ƒ(x2) - ƒ(x1)

x2 - x1
= 0,  ƒ(x2) - ƒ(x1) = 0,  and  ƒ(x1) = ƒ(x2).�

At the beginning of this section, we also asked about the relationship between two 
functions that have identical derivatives over an interval. The next corollary tells us that 
their values on the interval have a constant difference.

Proof    At each point x∊(a, b) the derivative of the difference function h = ƒ - g is

h′(x) = ƒ′(x) - g′(x) = 0.

Thus, h(x) = C on (a, b) by Corollary 1. That is, ƒ(x) - g(x) = C on (a, b), so ƒ(x) =  
g(x) + C.�

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is, 
they remain true if the interval is (a, q), (-q, b), or (-q, q).

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It 
tells us, for instance, that since the derivative of ƒ(x) = x2 on (-q, q) is 2x, any other 
function with derivative 2x on (-q, q) must have the formula x2 + C for some value of 
C (Figure 4.19).

Example  4    Find the function ƒ(x) whose derivative is sin x and whose graph passes 
through the point (0, 2).

Solution  Since the derivative of g(x) = -cos x is g′(x) = sin x, we see that ƒ and  
g have the same derivative. Corollary 2 then says that ƒ(x) = -cos x + C for some  

x

y

0

−1

−2

1

2

y = x2 + C C = 2

C = 1

C = 0

C = −1

C = −2

Figure 4.19  From a geometric point 
of view, Corollary 2 of the Mean Value 
Theorem says that the graphs of functions 
with identical derivatives on an interval 
can differ only by a vertical shift there. 
The graphs of the functions with derivative 
2x are the parabolas y = x2 + C, shown 
here for selected values of C.
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constant C. Since the graph of ƒ passes through the point (0, 2), the value of C is deter-
mined from the condition that ƒ(0) = 2:

ƒ(0) = -cos (0) + C = 2,  so  C = 3.

The function is ƒ(x) = -cos x + 3.�

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving 
along a vertical line. Assume the object or body is falling freely from rest with accelera-
tion 9.8 m>sec2. We assume the position s(t) of the body is measured positive downward 
from the rest position (so the vertical coordinate line points downward, in the direction of 
the motion, with the rest position at 0).

We know that the velocity y(t) is some function whose derivative is 9.8. We also 
know that the derivative of g(t) = 9.8t is 9.8. By Corollary 2,

y(t) = 9.8t + C

for some constant C. Since the body falls from rest, y(0) = 0. Thus

9.8(0) + C = 0,  and  C = 0.

The velocity function must be y(t) = 9.8t. What about the position function s(t)?
We know that s(t) is some function whose derivative is 9.8t. We also know that the 

derivative of ƒ(t) = 4.9t2 is 9.8t. By Corollary 2,

s(t) = 4.9t2 + C

for some constant C. Since s(0) = 0,

4.9(0)2 + C = 0,  and  C = 0.

The position function is s(t) = 4.9t2 until the body hits the ground.
The ability to find functions from their rates of change is one of the very powerful 

tools of calculus. As we will see, it lies at the heart of the mathematical developments in 
Chapter 5.

Proofs of the Laws of Logarithms

The algebraic properties of logarithms were stated in Section 1.6. We can prove those 
properties by applying Corollary 2 of the Mean Value Theorem to each of them. The steps 
in the proofs are similar to those used in solving problems involving logarithms.

Proof that ln bx = ln b + ln x     The argument starts by observing that ln bx and ln x  
have the same derivative:

d
dx

 ln (bx) = b
bx

 = 1
x = d

dx
 ln x.

According to Corollary 2 of the Mean Value Theorem, then, the functions must differ by a 
constant, which means that

ln bx = ln x + C

for some C.
Since this last equation holds for all positive values of x, it must hold for x = 1. 

Hence,

 ln (b # 1) = ln 1 + C

 ln b = 0 + C     ln 1 = 0

 C = ln b.
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236	 Chapter 4: Applications of Derivatives

By substituting, we conclude

	 ln bx = ln b + ln x.�

Proof that ln x r = r ln x     We use the same-derivative argument again. For all posi-
tive values of x,

 
d
dx

 ln xr = 1
xr  

d
dx

  (xr)     Chain Rule

 = 1
xr rxr-1     Derivative Power Rule

 = r # 1x = d
dx

  (r ln x).

Since ln xr and r ln x have the same derivative,

ln xr = r ln x + C

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.�

You are asked to prove the Quotient Rule for logarithms,

ln abxb = ln b - ln x,

in Exercise 75. The Reciprocal Rule, ln (1>x) = - ln x, is a special case of the Quotient 
Rule, obtained by taking b = 1 and noting that ln 1 = 0.

Laws of Exponents

The laws of exponents for the natural exponential ex are consequences of the algebraic 
properties of ln x. They follow from the inverse relationship between these functions.

Laws of Exponents for ex

For all numbers x, x1, and x2, the natural exponential ex obeys the following 
laws:

1.  ex1 # ex2 = ex1+ x2		  2.  e-x = 1
ex

3.  ex1

ex2
= ex1- x2		  4.  (ex1)x2 = ex1x2 = (ex2)x1

Proof of Law 1  Let

	 y1 = ex1  and  y2 = ex2.	 (4)

Then

 x1 = ln y1 and x2 = ln y2    Take logs of both 
sides of Eqs. (4).

 x1 + x2 = ln y1 + ln y2

 = ln y1 y2     Product Rule for logarithms

 ex1+ x2 = eln y1 y2     Exponentiate.

 = y1 y2     eln u = u

 = ex1ex2. �

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercises 77 and 78).
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Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

ƒ(b) - ƒ(a)
b - a

= ƒ′(c)

in the conclusion of the Mean Value Theorem for the functions and 
intervals in Exercises 1–8.

	 1.	 ƒ(x) = x2 + 2x - 1, 30, 14
	 2.	 ƒ(x) = x2>3, 30, 14

	 3.	 ƒ(x) = x + 1
x ,  c 1

2
, 2 d

	 4.	 ƒ(x) = 2x - 1,  31, 34
	 5.	 ƒ(x) = sin-1 x, 3-1, 14
	 6.	 ƒ(x) = ln (x - 1), 32, 44
	 7.	 ƒ(x) = x3 - x2, 3-1, 24
	 8.	 g(x) = e x3, -2 … x … 0

x2,      0 6 x … 2

Which of the functions in Exercises 9–14 satisfy the hypotheses of the 
Mean Value Theorem on the given interval, and which do not? Give 
reasons for your answers.

	 9.	 ƒ(x) = x2>3, 3-1, 84
	10.	 ƒ(x) = x4>5, 30, 14
	11.	 ƒ(x) = 2x(1 - x), 30, 14

	12.	 ƒ(x) = •
sin x

x  ,  -p … x 6 0

0, x = 0

	13.	 ƒ(x) = e x2 - x, -2 … x … -1

2x2 - 3x - 3, -1 6 x … 0

	14.	 ƒ(x) = e2x - 3,           0 … x … 2

6x - x2 - 7, 2 6 x … 3

	15.	 The function

ƒ(x) = e x, 0 … x 6 1

0, x = 1

		  is zero at x = 0 and x = 1 and differentiable on (0, 1), but its 
derivative on (0, 1) is never zero. How can this be? Doesn’t 
Rolle’s Theorem say the derivative has to be zero somewhere in 
(0, 1)? Give reasons for your answer.

16.	 For what values of a, m, and b does the function

ƒ(x) = c 3, x = 0

-x2 + 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

		  satisfy the hypotheses of the Mean Value Theorem on the interval 
30, 24 ?

Roots (Zeros)
17.	 a.  �Plot the zeros of each polynomial on a line together with the 

zeros of its first derivative.

	 	   i)	 y = x2 - 4

	 	  ii)	 y = x2 + 8x + 15

	 	 iii)	 y = x3 - 3x2 + 4 = (x + 1)(x - 2)2

	 	 iv)	 y = x3 - 33x2 + 216x = x(x - 9)(x - 24)

	b.	 Use Rolle’s Theorem to prove that between every two zeros 
of xn + an-1x

n-1 + g + a1 x + a0 there lies a zero of

nxn-1 + (n - 1)an-1x
n-2 + g + a1.

18.	 Suppose that ƒ″ is continuous on 3a, b4  and that ƒ has three 
zeros in the interval. Show that ƒ″ has at least one zero in (a, b). 
Generalize this result.

19.	 Show that if ƒ″ 7 0 throughout an interval 3a, b4 , then ƒ′ has at 
most one zero in 3a, b4 . What if ƒ″ 6 0 throughout 3a, b4  instead?

20.	 Show that a cubic polynomial can have at most three real zeros. 

Show that the functions in Exercises 21–28 have exactly one zero in 
the given interval.

21.	 ƒ(x) = x4 + 3x + 1, 3-2, -14

22.	 ƒ(x) = x3 + 4
x2 + 7, (-q, 0)

23.	 g(t) = 2t + 21 + t - 4, (0, q)

24.	 g(t) = 1
1 - t

+ 21 + t - 3.1, (-1, 1)

25.	 r(u) = u + sin2 au
3
b - 8, (-q, q)

26.	 r(u) = 2u - cos2 u + 22, (-q, q)

27.	 r(u) = sec u - 1
u3 + 5, (0, p>2)

28.	 r(u) = tan u - cot u - u, (0, p>2)

Finding Functions from Derivatives
29.	 Suppose that ƒ(-1) = 3 and that ƒ′(x) = 0 for all x. Must 

ƒ(x) = 3 for all x? Give reasons for your answer.

30.	 Suppose that ƒ(0) = 5 and that ƒ′(x) = 2 for all x. Must ƒ(x) =  
2x + 5 for all x? Give reasons for your answer.

31.	 Suppose that ƒ′(x) = 2x for all x. Find ƒ(2) if

	a.	 ƒ(0) = 0    b.  ƒ(1) = 0    c.  ƒ(-2) = 3.

32.	 What can be said about functions whose derivatives are constant? 
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given  
derivative.

33.	 a.  y′ = x	 b.  y′ = x2	 c.  y′ = x3

34.	 	a.  y′ = 2x	 b.  y′ = 2x - 1	 c.  y′ = 3x2 + 2x - 1

35.	 	a.  y′ = -  
1
x2	 b.  y′ = 1 - 1

x2	 c.  y′ = 5 + 1
x2

Exercises  4.2
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Theory and Examples
57.	 The geometric mean of a and b  The geometric mean of  

two positive numbers a and b is the number 2ab. Show that  
the value of c in the conclusion of the Mean Value Theorem  
for ƒ(x) = 1>x on an interval of positive numbers 
3a, b4  is c = 2ab.

58.	 The arithmetic mean of a and b  The arithmetic mean of two 
numbers a and b is the number (a + b)>2. Show that the value of 
c in the conclusion of the Mean Value Theorem for ƒ(x) = x2 on 
any interval 3a, b4  is c = (a + b)>2.

59.	  Graph the function

ƒ(x) = sin x sin (x + 2) - sin2 (x + 1).

		  What does the graph do? Why does the function behave this way? 
Give reasons for your answers.

60.	 Rolle’s Theorem

	a.	 Construct a polynomial ƒ(x) that has zeros at x = -2, -1, 0, 
1, and 2.

	b.	 Graph ƒ and its derivative ƒ′ together. How is what you see 
related to Rolle’s Theorem?

	c.	 Do g(x) = sin x and its derivative g′ illustrate the same phe-
nomenon as ƒ and ƒ′?

61.	 Unique solution  Assume that ƒ is continuous on 3a, b4  and 
differentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have 
opposite signs and that ƒ′ ≠ 0 between a and b. Show that 
ƒ(x) = 0 exactly once between a and b.

62.	 Parallel tangents  Assume that ƒ and g are differentiable on 
3a, b4  and that ƒ(a) = g(a) and ƒ(b) = g(b). Show that there is 
at least one point between a and b where the tangents to the 
graphs of ƒ and g are parallel or the same line. Illustrate with a 
sketch.

63.	 Suppose that ƒ′(x) … 1 for 1 … x … 4. Show that ƒ(4) -  
ƒ(1) … 3.

64.	 Suppose that 0 6 ƒ′(x) 6 1>2 for all x-values. Show that ƒ(-1) 6  
ƒ(1) 6 2 + ƒ(-1).

65.	 Show that 0 cos x - 1 0 … 0 x 0  for all x-values. (Hint: Consider 
ƒ(t) = cos t on 30, x4 .)

66.	 Show that for any numbers a and b, the sine inequality 0 sin b -  
sin a 0 … 0 b - a 0  is true.

67.	 If the graphs of two differentiable functions ƒ(x) and g(x) start at 
the same point in the plane and the functions have the same rate 
of change at every point, do the graphs have to be identical? Give 
reasons for your answer.

68.	 If 0 ƒ(w) - ƒ(x) 0 … 0w - x 0  for all values w and x and ƒ is a dif-
ferentiable function, show that -1 … ƒ′(x) … 1 for all x-values.

69.	 Assume that ƒ is differentiable on a … x … b and that ƒ(b) 6 ƒ(a). 
Show that ƒ′ is negative at some point between a and b.

70.	 Let ƒ be a function defined on an interval 3a, b4 . What condi-
tions could you place on ƒ to guarantee that

min ƒ′ …
ƒ(b) - ƒ(a)

b - a
… max ƒ′,

		  where min ƒ′ and max ƒ′ refer to the minimum and maximum 
values of ƒ′ on 3a, b4 ? Give reasons for your answers.

T

36.	 a.  y′ = 1

22x
	 b.  y′ = 12x

	 c.  y′ = 4x - 12x

37.	 a.  y′ = sin 2t	 b.  y′ = cos 
t
2

	 c.  y′ = sin 2t + cos 
t
2

38.	 a.  y′ = sec2 u	 b.  y′ = 2u	 c.  y′ = 2u - sec2 u

In Exercises 39–42, find the function with the given derivative whose 
graph passes through the point P.

39.	 ƒ′(x) = 2x - 1, P(0, 0)

40.	 g′(x) = 1
x2 + 2x, P(-1, 1)

41.	 ƒ′(x) = e2x,  Pa0, 
3
2
b

42.	 r′(t) = sec t tan t - 1, P(0, 0)

Finding Position from Velocity or Acceleration
Exercises 43–46 give the velocity y = ds>dt and initial position of an 
object moving along a coordinate line. Find the object’s position at 
time t.

43.	 y = 9.8t + 5, s(0) = 10

44.	 y = 32t - 2, s(0.5) = 4

45.	 y = sin pt, s(0) = 0

46.	 y = 2
p cos 

2t
p , s(p2) = 1

Exercises 47–50 give the acceleration a = d2s>dt2, initial velocity, 
and initial position of an object moving on a coordinate line. Find the 
object’s position at time t.

47.	 a = et, y(0) = 20, s(0) = 5

48.	 a = 9.8, y(0) = -3, s(0) = 0

49.	 a = -4 sin 2t, y(0) = 2, s(0) = -3

50.	 a = 9
p2 cos 

3t
p , y(0) = 0, s(0) = -1

Applications
	51.	 Temperature change  It took 14 sec for a mercury thermometer 

to rise from -19°C to 100°C when it was taken from a freezer 
and placed in boiling water. Show that somewhere along the way 
the mercury was rising at the rate of 8.5°C>sec.

52.	 A trucker handed in a ticket at a toll booth showing that in 2 hours 
she had covered 159 mi on a toll road with speed limit 65 mph. 
The trucker was cited for speeding. Why?

53.	 Classical accounts tell us that a 170-oar trireme (ancient Greek or 
Roman warship) once covered 184 sea miles in 24 hours. Explain 
why at some point during this feat the trireme’s speed exceeded 
7.5 knots (sea or nautical miles per hour).

54.	 A marathoner ran the 26.2-mi New York City Marathon in 2.2 hours. 
Show that at least twice the marathoner was running at exactly 11 
mph, assuming the initial and final speeds are zero.

55.	 Show that at some instant during a 2-hour automobile trip the car’s 
speedometer reading will equal the average speed for the trip.

56.	 Free fall on the moon  On our moon, the acceleration of gravity 
is 1.6 m>sec2. If a rock is dropped into a crevasse, how fast will it 
be going just before it hits bottom 30 sec later?
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71.	 Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 + x4 cos x) for 0 … x … 0.1 and ƒ(0) = 1.

72.	 Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 - x4) for 0 … x … 0.1 and ƒ(0) = 2.

73.	 Let ƒ be differentiable at every value of x and suppose that 
ƒ(1) = 1, that ƒ′ 6 0 on (-q, 1), and that ƒ′ 7 0 on (1, q).

	a.	 Show that ƒ(x) Ú 1 for all x.

	b.	 Must ƒ′(1) = 0? Explain.

74.	 Let ƒ(x) = px2 + qx + r be a quadratic function defined on a 
closed interval 3a, b4 . Show that there is exactly one point c in (a, b) 
at which ƒ satisfies the conclusion of the Mean Value Theorem.

T

T

75.	 Use the same-derivative argument, as was done to prove the 
Product and Power Rules for logarithms, to prove the Quotient 
Rule property.

76.	 Use the same-derivative argument to prove the identities

	a.	 tan-1 x + cot-1 x = p
2

    b.  sec-1 x + csc-1 x = p
2

77.	 Starting with the equation ex1ex2 = ex1+x2, derived in the text, 
show that e-x = 1>ex for any real number x. Then show that 
ex1>ex2 = ex1-x2 for any numbers x1 and x2.

78.	 Show that (ex1)x2 = ex1 x2 = (ex2)x1 for any numbers x1 and x2.

4.3 M onotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases 
(rises from left to right) and where it decreases (falls from left to right) over an interval. This 
section gives a test to determine where it increases and where it decreases. We also show how 
to test the critical points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive 
derivatives are increasing functions and functions with negative derivatives are decreasing 
functions. A function that is increasing or decreasing on an interval is said to be mono-
tonic on the interval.

Corollary 3  Suppose that ƒ is continuous on 3a, b4  and differentiable on 
(a, b).

If ƒ′(x) 7 0 at each point x∊(a, b), then ƒ is increasing on 3a, b4 .
If ƒ′(x) 6 0 at each point x∊(a, b), then ƒ is decreasing on 3a, b4 .

Proof    Let x1 and x2 be any two points in 3a, b4  with x1 6 x2. The Mean Value Theo-
rem applied to ƒ on 3x1, x24  says that

ƒ(x2) - ƒ(x1) = ƒ′(c)(x2 - x1)

for some c between x1 and x2. The sign of the right-hand side of this equation is the same 
as the sign of ƒ ′(c) because x2 - x1 is positive. Therefore, ƒ(x2) 7 ƒ(x1) if ƒ′ is positive 
on (a, b) and ƒ(x2) 6 ƒ(x1) if ƒ′ is negative on (a, b).�

Corollary 3 tells us that ƒ(x) = 2x is increasing on the interval 30, b4  for any 
b 7 0 because ƒ′(x) = 1>2x is positive on (0, b). The derivative does not exist at x = 0, 
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so 
ƒ(x) = 2x is increasing on 30, q).

To find the intervals where a function ƒ is increasing or decreasing, we first find all of 
the critical points of ƒ. If a 6 b are two critical points for ƒ, and if the derivative ƒ′ is 
continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem 
applied to ƒ′, the derivative must be everywhere positive on (a, b), or everywhere negative 
there. One way we can determine the sign of ƒ′ on (a, b) is simply by evaluating the 
derivative at a single point c in (a, b). If ƒ′(c) 7 0, then ƒ′(x) 7 0 for all x in (a, b) so ƒ 
is increasing on 3a, b4  by Corollary 3; if ƒ′(c) 6 0, then ƒ is decreasing on 3a, b4 . The 
next example illustrates how we use this procedure.
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We used “strict” less-than inequalities to identify the intervals in the summary table 
for Example 1, since open intervals were specified. Corollary 3 says that we could use …
inequalities as well. That is, the function ƒ in the example is increasing on -q 6 x … -2, 
decreasing on -2 … x … 2, and increasing on 2 … x 6 q. We do not talk about whether 
a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, ƒ′ 6 0 immediately to the left 
and ƒ′ 7 0 immediately to the right. (If the point is an endpoint, there is only one side to 
consider.) Thus, the function is decreasing on the left of the minimum value and it is 
increasing on its right. Similarly, at the points where ƒ has a maximum value, ƒ′ 7 0 
immediately to the left and ƒ′ 6 0 immediately to the right. Thus, the function is increas-
ing on the left of the maximum value and decreasing on its right. In summary, at a local 
extreme point, the sign of ƒ′(x) changes.

Example  1    Find the critical points of ƒ(x) = x3 - 12x - 5 and identify the open 
intervals on which ƒ is increasing and on which ƒ is decreasing.

Solution  The function ƒ is everywhere continuous and differentiable. The first derivative

 ƒ′(x) = 3x2 - 12 = 3(x2 - 4)

 = 3(x + 2)(x - 2)

is zero at x = -2 and x = 2. These critical points subdivide the domain of ƒ to create non-
overlapping open intervals (-q, -2), (-2, 2), and (2, q) on which ƒ′ is either positive or 
negative. We determine the sign of ƒ′ by evaluating ƒ′ at a convenient point in each subin-
terval. The behavior of ƒ is determined by then applying Corollary 3 to each subinterval. 
The results are summarized in the following table, and the graph of ƒ is given in Figure 4.20.

Historical Biography

Edmund Halley
(1656–1742)

These observations lead to a test for the presence and nature of local extreme values 
of differentiable functions.

x

(−2, 11)

(2, −21)

y

1 2 3 4−2−3−4 −1 0

−10

−20

10

20

y = x3 − 12x  −  5

Figure 4.20  The function ƒ(x) =  
x3 - 12x - 5 is monotonic on three  
separate intervals (Example 1).

Interval  	 -q 6 x 6 -2	 -2 6 x 6 2	 2 6 x 6 q

ƒ′ evaluated	 ƒ′(-3) = 15	 ƒ′(0) = -12	 ƒ′(3) = 15

Sign of ƒ′	 + 	 - 	 +

Behavior of ƒ	 x
−3 −2 −1 0 1 2 3

decreasing increasingincreasing

x

y = f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
 f ′  unde�ned

Local min

Local max
 f ′ = 0 No extremum

 f ′ = 0

No extremum
 f ′ = 0

Local min
 f ′ = 0

 f ′ < 0
 f ′ > 0

 f ′ > 0

 f ′ > 0
 f ′ < 0

 f ′ < 0

Figure 4.21  The critical points of a function locate where it is increasing and where it is decreasing. The 
first derivative changes sign at a critical point where a local extremum occurs.
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The test for local extrema at endpoints is similar, but there is only one side to consider in 
determining whether ƒ is increasing or decreasing, based on the sign of ƒ′.

Proof of the First Derivative Test    Part (1). Since the sign of ƒ′ changes from nega-
tive to positive at c, there are numbers a and b such that a 6 c 6 b, ƒ′ 6 0 on (a, c), and 
ƒ′ 7 0 on (c, b). If x∊(a, c), then ƒ(c) 6 ƒ(x) because ƒ′ 6 0 implies that ƒ is decreas-
ing on 3a, c4 . If x∊(c, b), then ƒ(c) 6 ƒ(x) because ƒ′ 7 0 implies that ƒ is increasing 
on 3c, b4 . Therefore, ƒ(x) Ú ƒ(c) for every x∊(a, b). By definition, ƒ has a local mini-
mum at c.

Parts (2) and (3) are proved similarly.�

Example  2    Find the critical points of

ƒ(x) = x1>3(x - 4) = x4>3 - 4x1>3.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

Solution  The function ƒ is continuous at all x since it is the product of two continuous 
functions, x1>3 and (x - 4). The first derivative

 ƒ′(x) = d
dx

  (x4>3 - 4x1>3) = 4
3 x1>3 - 4

3 x-2>3

 = 4
3 x-2>3(x - 1) =

4(x - 1)

3x2>3

is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the 
critical points x = 0 and x = 1 are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into open intervals on which ƒ′ is either posi-
tive or negative. The sign pattern of ƒ′ reveals the behavior of ƒ between and at the critical 
points, as summarized in the following table.

First Derivative Test for Local Extrema 

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is differ-
entiable at every point in some interval containing c except possibly at c itself. 
Moving across this interval from left to right,

1.  if ƒ′ changes from negative to positive at c, then ƒ has a local minimum at c;

2.  if ƒ′ changes from positive to negative at c, then ƒ has a local maximum at c;

3.  �if ƒ′ does not change sign at c (that is, ƒ′ is positive on both sides of c or 
negative on both sides), then ƒ has no local extremum at c.

Corollary 3 to the Mean Value Theorem implies that ƒ decreases on (-q, 0), 
decreases on (0, 1), and increases on (1, q). The First Derivative Test for Local Extrema 
tells us that ƒ does not have an extreme value at x = 0 (ƒ′ does not change sign) and that 
ƒ has a local minimum at x = 1 (ƒ′ changes from negative to positive).

The value of the local minimum is ƒ(1) = 11>3(1 - 4) = -3. This is also an absolute 
minimum since ƒ is decreasing on (-q, 1) and increasing on (1, q). Figure 4.22 shows 
this value in relation to the function’s graph.

Note that lim
 

xS0 ƒ′(x) = -q, so the graph of ƒ has a vertical tangent at the origin. 
�

x

y

0 1 2 3 4

1

−1

−2

2

4

−3

−1

y = x1�3(x − 4)

(1, −3)

Figure 4.22  The function ƒ(x) =  
x1>3(x - 4) decreases when x 6 1 and 
increases when x 7 1 (Example 2).

Interval	 x 6 0	 0 6 x 6 1	 x 7 1

Sign of ƒ′	 - 	 - 	 +

Behavior of ƒ	 x
−1 0 1 2

decreasing increasingdecreasing
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242	 Chapter 4: Applications of Derivatives

Example  3    Find the critical points of

ƒ(x) = (x2 - 3)ex.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

Solution  The function ƒ is continuous and differentiable for all real numbers, so the 
critical points occur only at the zeros of ƒ′.

Using the Derivative Product Rule, we find the derivative

 ƒ′(x) = (x2 - 3) # d
dx

 ex + d
dx

  (x2 - 3) # ex

 = (x2 - 3) # ex + (2x) # ex

 = (x2 + 2x - 3)ex.

Since ex is never zero, the first derivative is zero if and only if

 x2 + 2x - 3 = 0

 (x + 3)(x - 1) = 0.

The zeros x = -3 and x = 1 partition the x-axis into open intervals as follows.

Interval	 x 6 -3	 -3 6 x 6 1	 1 6 x

Sign of ƒ′	 + 	 - 	 +

Behavior of ƒ x
−3−4 −2 −1 0 1 2 3

decreasing increasingincreasing

We can see from the table that there is a local maximum (about 0.299) at x = -3 and 
a local minimum (about -5.437) at x = 1. The local minimum value is also an abso-
lute minimum because ƒ(x) 7 0 for 0 x 0 7 23. There is no absolute maximum. The 
function increases on (-q, -3) and (1, q) and decreases on (-3, 1). Figure 4.23 
shows the graph.�

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives 
are given in Exercises 1–14:

	 	 a.  What are the critical points of ƒ?

	 	 b.  On what open intervals is ƒ increasing or decreasing?

	 	 c.  �At what points, if any, does ƒ assume local maximum and mini-
mum values?

	 1.	 ƒ′(x) = x(x - 1)	 2.	 ƒ′(x) = (x - 1)(x + 2)

	 3.	 ƒ′(x) = (x - 1)2(x + 2)	 4.	 ƒ′(x) = (x - 1)2(x + 2)2

	 5.	 ƒ′(x) = (x - 1)e-x

	 6.	 ƒ′(x) = (x - 7)(x + 1)(x + 5)

	 7.	 ƒ′(x) =
x2(x - 1)

x + 2
, x ≠ -2

	 8.	 ƒ′(x) =
(x - 2)(x + 4)
(x + 1)(x - 3)

 , x ≠ -1, 3

	 9.	 ƒ′(x) = 1 - 4
x2 , x ≠ 0	 10.	 ƒ′(x) = 3 - 62x

 , x ≠ 0

	11.	 ƒ′(x) = x-1>3(x + 2)	 12.	 ƒ′(x) = x-1>2(x - 3)

13.	 ƒ′(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

14.	 ƒ′(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

Identifying Extrema
In Exercises 15–44:

	 	 a. � Find the open intervals on which the function is increasing and 
decreasing.

	 	 b. � Identify the function’s local and absolute extreme values, if 
any, saying where they occur.

15.	 		 16.	

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

Exercises  4.3

−5 −4 −3 −2 −1 1 2 3

−6

−5

−4

−3

−2

−1

1

2

3

4

x

y y = (x2 − 3)ex

Figure 4.23  The graph of 
ƒ(x) = (x2 - 3)ex (Example 3).
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57.	 ƒ(x) = sin 2x, 0 … x … p
58.	 ƒ(x) = sin x - cos x, 0 … x … 2p

59.	 ƒ(x) = 23 cos x + sin x, 0 … x … 2p

60.	 ƒ(x) = -2x + tan x, 
-p
2

6 x 6 p
2

61.	 ƒ(x) = x
2

- 2 sin 
x
2

, 0 … x … 2p

62.	 ƒ(x) = -2 cos x - cos2 x, -p … x … p
63.	 ƒ(x) = csc2 x - 2 cot x, 0 6 x 6 p

64.	 ƒ(x) = sec2 x - 2 tan x, 
-p
2

6 x 6 p
2

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme 
values at the given values of u, and say which kind of local extreme 
the function has.

65.	 h(u) = 3 cos 
u

2
, 0 … u … 2p, at u = 0 and u = 2p

66.	 h(u) = 5 sin 
u

2
, 0 … u … p, at u = 0 and u = p

67.	 Sketch the graph of a differentiable function y = ƒ(x) through 
the point (1, 1) if ƒ′(1) = 0 and

	 a.	ƒ′(x) 7 0 for x 6 1 and ƒ′(x) 6 0 for x 7 1;

	b.	 ƒ′(x) 6 0 for x 6 1 and ƒ′(x) 7 0 for x 7 1;

	c.	 ƒ′(x) 7 0 for x ≠ 1;

	d.	 ƒ′(x) 6 0 for x ≠ 1.

68.	 Sketch the graph of a differentiable function y = ƒ(x) that has

	a.	 a local minimum at (1, 1) and a local maximum at (3, 3);

	b.	 a local maximum at (1, 1) and a local minimum at (3, 3);

	c.	 local maxima at (1, 1) and (3, 3);

	d.	 local minima at (1, 1) and (3, 3).

69.	 Sketch the graph of a continuous function y = g(x) such that

	a.	 g(2) = 2, 0 6 g′ 6 1 for x 6 2, g′(x) S 1- as x S 2-, 
-1 6 g′ 6 0 for x 7 2, and g′(x) S -1+ as x S 2+;

	b.	 g(2) = 2, g′ 6 0 for x 6 2, g′(x) S -q as x S 2-, 
g′ 7 0 for x 7 2, and g′(x) S q as x S 2+.

70.	 Sketch the graph of a continuous function y = h(x) such that

	a.	 h(0) = 0, -2 … h(x) … 2 for all x, h′(x) S q as x S 0-, 
and h′(x) S q as x S 0+;

	b.	 h(0) = 0, -2 … h(x) … 0 for all x, h′(x) S q as x S 0-, 
and h′(x) S -q as x S 0+.

71.	 Discuss the extreme-value behavior of the function ƒ(x) =  
x sin (1>x), x ≠ 0. How many critical points does this function 
have? Where are they located on the x-axis? Does ƒ have an abso-
lute minimum? An absolute maximum? (See Exercise 49 in  
Section 2.3.)

72.	 Find the open intervals on which the function ƒ(x) = ax2 +  
bx + c, a ≠ 0, is increasing and decreasing. Describe the  
reasoning behind your answer.

73.	 Determine the values of constants a and b so that ƒ(x) =  
ax2 + bx has an absolute maximum at the point (1, 2).

74.	 Determine the values of constants a, b, c, and d so that 
ƒ(x) = ax3 + bx2 + cx + d has a local maximum at the point 
(0, 0) and a local minimum at the point (1, -1).

17.	 		 18.	

19.	 g(t) = - t2 - 3t + 3	 20.	 g(t) = -3t2 + 9t + 5

21.	 h(x) = -x3 + 2x2	 22.	 h(x) = 2x3 - 18x

23.	 ƒ(u) = 3u2 - 4u3	 24.	 ƒ(u) = 6u - u3

	25.	 ƒ(r) = 3r3 + 16r	 26.	 h(r) = (r + 7)3

	27.	 ƒ(x) = x4 - 8x2 + 16	 28.	 g(x) = x4 - 4x3 + 4x2

	29.	 H(t) = 3
2

 t4 - t6	 30.	 K(t) = 15t3 - t5

	31.	 ƒ(x) = x - 62x - 1	 32.	 g(x) = 42x - x2 + 3

	33.	 g(x) = x28 - x2	 34.	 g(x) = x225 - x

	35.	 ƒ(x) = x2 - 3
x - 2

, x ≠ 2	 36.	 ƒ(x) = x3

3x2 + 1
	37.	 ƒ(x) = x1>3(x + 8)	 38.	 g(x) = x2>3(x + 5)

	39.	 h(x) = x1>3(x2 - 4)	 40.	 k(x) = x2>3(x2 - 4)

	41.	 ƒ(x) = e2x + e-x	 42.	 ƒ(x) = e2x

	43.	 ƒ(x) = x ln x	 44.	 ƒ(x) = x2 ln x

In Exercises 45–56:

	 	 a. � Identify the function’s local extreme values in the given 
domain, and say where they occur.

	 	 b.  Which of the extreme values, if any, are absolute?

	 	 c. � Support your findings with a graphing calculator or computer 
grapher.

45.	 ƒ(x) = 2x - x2, -q 6 x … 2

46.	 ƒ(x) = (x + 1)2, -q 6 x … 0

47.	 g(x) = x2 - 4x + 4, 1 … x 6 q
48.	 g(x) = -x2 - 6x - 9, -4 … x 6 q
49.	 ƒ(t) = 12t - t3, -3 … t 6 q
50.	 ƒ(t) = t3 - 3t2, -q 6 t … 3

51.	 h(x) = x3

3
- 2x2 + 4x, 0 … x 6 q

52.	 k(x) = x3 + 3x2 + 3x + 1, -q 6 x … 0

53.	 ƒ(x) = 225 - x2, -5 … x … 5

54.	 ƒ(x) = 2x2 - 2x - 3, 3 … x 6 q

55.	 g(x) = x - 2
x2 - 1

, 0 … x 6 1

56.	 g(x) = x2

4 - x2 , -2 6 x … 1

In Exercises 57–64:

	 	 a. � Find the local extrema of each function on the given interval, 
and say where they occur.

	 	 b. � Graph the function and its derivative together. Comment on the 
behavior of ƒ in relation to the signs and values of ƒ′.

y = f (x)

−2

−1

1

2

2 31−1−2−3
x

y y

x

−2

−1

1

2

2 31−1−2−3

y = f (x)

T

T
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244	 Chapter 4: Applications of Derivatives

75.	 Locate and identify the absolute extreme values of

	a.	 ln (cos x) on 3-p>4, p>34 ,
	b.	 cos (ln x) on 31>2, 24 .

76.	  a.	 �Prove that ƒ(x) = x - ln x is increasing for x 7 1.

	b.	 Using part (a), show that ln x 6 x if x 7 1.

77.	 Find the absolute maximum and minimum values of ƒ(x) =  
ex - 2x on 30, 14 .

78.	 Where does the periodic function ƒ(x) = 2esin (x>2) take on its 
extreme values and what are these values?

x

y

0

y = 2esin (x�2)

79.	 Find the absolute maximum value of ƒ(x) = x2 ln (1>x) and say 
where it is assumed.

80.	 a.	 Prove that ex Ú 1 + x if x Ú 0.

	b.	 Use the result in part (a) to show that

ex Ú 1 + x + 1
2

 x2.

81.	 Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x1 and x2 in I, x2 ≠ x1 implies 
ƒ(x2) ≠ ƒ(x1).

Use the results of Exercise 81 to show that the functions in Exercises 
82–86 have inverses over their domains. Find a formula for dƒ -1>dx 
using Theorem 3, Section 3.8.

82.	 ƒ(x) = (1>3)x + (5>6)	 83.	 ƒ(x) = 27x3

84.	 ƒ(x) = 1 - 8x3	 85.	 ƒ(x) = (1 - x)3

86.	 ƒ(x) = x5>3

Definition  The graph of a differentiable function y = ƒ(x) is

(a)		 concave up on an open interval I if ƒ′ is increasing on I;

(b)	 concave down on an open interval I if ƒ′ is decreasing on I.

If y = ƒ(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theorem 
to the first derivative function. We conclude that ƒ′ increases if ƒ″ 7 0 on I, and decreases 
if ƒ″ 6 0.

4.4  Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is 
decreasing, and whether a local maximum or local minimum occurs at a critical point. In 
this section we see that the second derivative gives us information about how the graph of 
a differentiable function bends or turns. With this knowledge about the first and second 
derivatives, coupled with our previous understanding of symmetry and asymptotic behav-
ior studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. By 
organizing all of these ideas into a coherent procedure, we give a method for sketching 
graphs and revealing visually the key features of functions. Identifying and knowing the 
locations of these features is of major importance in mathematics and its applications to 
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portions 
defined on the intervals (-q, 0) and (0, q) turn in different ways. As we approach the 
origin from the left along the curve, the curve turns to our right and falls below its tan-
gents. The slopes of the tangents are decreasing on the interval (-q, 0). As we move 
away from the origin along the curve to the right, the curve turns to our left and rises above 
its tangents. The slopes of the tangents are increasing on the interval (0, q). This turning 
or bending behavior defines the concavity of the curve.

x

y

0

CONCA
V

E 
U

P 

C
O

N
CA

V
E 

DOW
N f ′ decreases

f ′ increases

y = x3

Figure 4.24  The graph of ƒ(x) = x3 
is concave down on (-q, 0) and concave 
up on (0, q) (Example 1a).
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If y = ƒ(x) is twice-differentiable, we will use the notations ƒ″ and y″ interchangeably 
when denoting the second derivative.

Example  1
(a)	 The curve y = x3 (Figure 4.24) is concave down on (-q, 0) where y″ = 6x 6 0 and 

concave up on (0, q) where y″ = 6x 7 0.

(b)	 The curve y = x2 (Figure 4.25) is concave up on (-q, q) because its second deriva-
tive y″ = 2 is always positive.�

Example  2    Determine the concavity of y = 3 + sin x on 30, 2p4 .
Solution  The first derivative of y = 3 + sin x is y′ = cos x, and the second derivative 
is y″ = -sin x. The graph of y = 3 + sin x is concave down on (0, p), where y″ = -sin x 
is negative. It is concave up on (p, 2p), where y″ = -sin x is positive (Figure 4.26).�

Points of Inflection

The curve y = 3 + sin x in Example 2 changes concavity at the point (p, 3). Since the 
first derivative y′ = cos x exists for all x, we see that the curve has a tangent line of slope 
-1 at the point (p, 3). This point is called a point of inflection of the curve. Notice from 
Figure 4.26 that the graph crosses its tangent line at this point and that the second deriva-
tive y″ = -sin x has value 0 when x = p. In general, we have the following definition.

Definition  A point (c, ƒ(c)) where the graph of a function has a tangent line 
and where the concavity changes is a point of inflection.

At a point of inflection (c, ƒ(c)), either ƒ″(c) = 0 or ƒ″(c) fails to exist.

The Second Derivative Test for Concavity

Let y = ƒ(x) be twice-differentiable on an interval I.

1.  If ƒ″ 7 0 on I, the graph of ƒ over I is concave up.

2.  If ƒ″ 6 0 on I, the graph of ƒ over I is concave down.

We observed that the second derivative of ƒ(x) = 3 + sin x is equal to zero at the 
inflection point (p, 3). Generally, if the second derivative exists at a point of inflection 
(c, ƒ(c)), then ƒ″(c) = 0. This follows immediately from the Intermediate Value Theorem 
whenever ƒ″ is continuous over an interval containing x = c because the second deriva-
tive changes sign moving across this interval. Even if the continuity assumption is dropped, 
it is still true that ƒ″(c) = 0, provided the second derivative exists (although a more 
advanced argument is required in this noncontinuous case). Since a tangent line must exist 
at the point of inflection, either the first derivative ƒ′(c) exists (is finite) or the graph has a 
vertical tangent at the point. At a vertical tangent neither the first nor second derivative 
exists. In summary, we conclude the following result.

The next example illustrates a function having a point of inflection where the first 
derivative exists, but the second derivative fails to exist.

C
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N
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−2 −1 0 1 2
x

1

2

3

4

y

y = x2

y″ > 0 y″ > 0

Figure 4.25  The graph of ƒ(x) = x2 
is concave up on every interval  
(Example 1b).

x

y
y = 3 + sinx 

p 2p0
−1

1

2

3

4

y ″ = −sinx

(p, 3)

Figure 4.26  Using the sign of y″ to 
determine the concavity of y (Example 2).
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246	 Chapter 4: Applications of Derivatives

Example  3    The graph of ƒ(x) = x5>3 has a horizontal tangent at the origin because 
ƒ′(x) = (5>3)x2>3 = 0 when x = 0. However, the second derivative

ƒ″(x) = d
dx

  a53 x2>3b = 10
9  x-1>3

fails to exist at x = 0. Nevertheless, ƒ″(x) 6 0 for x 6 0 and ƒ″(x) 7 0 for x 7 0, so 
the second derivative changes sign at x = 0 and there is a point of inflection at the origin. 
The graph is shown in Figure 4.27.�

Here is an example showing that an inflection point need not occur even though both 
derivatives exist and ƒ″ = 0.

Example  4    The curve y = x4 has no inflection point at x = 0 (Figure 4.28). Even 
though the second derivative y″ = 12x2 is zero there, it does not change sign.�

As our final illustration, we show a situation in which a point of inflection occurs at a 
vertical tangent to the curve where neither the first nor the second derivative exists.

Example  5    The graph of y = x1>3 has a point of inflection at the origin because the 
second derivative is positive for x 6 0 and negative for x 7 0:

y″ = d2

dx2  1x1>32 = d
dx

  a13 x-2>3b = -  29 x-5>3.

However, both y′ = x-2>3>3 and y″ fail to exist at x = 0, and there is a vertical tangent 
there. See Figure 4.29.�

Caution  Example 4 in Section 4.1 (Figure 4.9) shows that the function ƒ(x) = x2>3 does 
not have a second derivative at x = 0 and does not have a point of inflection there (there is 
no change in concavity at x = 0). Combined with the behavior of the function in Example 
5 above, we see that when the second derivative does not exist at x = c, an inflection 
point may or may not occur there. So we need to be careful about interpreting functional 
behavior whenever first or second derivatives fail to exist at a point. At such points the 
graph can have vertical tangents, corners, cusps, or various discontinuities.

To study the motion of an object moving along a line as a function of time, we often 
are interested in knowing when the object’s acceleration, given by the second derivative, is 
positive or negative. The points of inflection on the graph of the object’s position function 
reveal where the acceleration changes sign.

Example  6    A particle is moving along a horizontal coordinate line (positive to the 
right) with position function

s(t) = 2t3 - 14t2 + 22t - 5,  t Ú 0.

Find the velocity and acceleration, and describe the motion of the particle.

Solution  The velocity is

y(t) = s′(t) = 6t2 - 28t + 22 = 2(t - 1)(3t - 11),

and the acceleration is

a(t) = y′(t) = s″(t) = 12t - 28 = 4(3t - 7).

When the function s(t) is increasing, the particle is moving to the right; when s(t) is 
decreasing, the particle is moving to the left.

Notice that the first derivative (y = s′) is zero at the critical points t = 1 and t = 11>3.

−2

−1

1

2

1

0

y = x5�3

x

y

Point of
in�ection

−1

Figure 4.27  The graph of ƒ(x) = x5>3 
has a horizontal tangent at the origin where 
the concavity changes, although ƒ″ does 
not exist at x = 0 (Example 3).

x

y

0

1

1

2

−1

y = x4

y ″ = 0

Figure 4.28  The graph of y = x4 
has no inflection point at the origin, even 
though y″ = 0 there (Example 4).

x

y

0

y = x1�3Point of
in�ection

Figure 4.29  A point of inflection 
where y′ and y″ fail to exist (Example 5).
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The particle is moving to the right in the time intervals 30, 1) and (11>3, q), and moving 
to the left in (1, 11>3). It is momentarily stationary (at rest) at t = 1 and t = 11>3.

The acceleration a(t) = s″(t) = 4(3t - 7) is zero when t = 7>3.

THEOREM 5—Second Derivative Test for Local Extrema  Suppose ƒ″ is 
continuous on an open interval that contains x = c.

1.	 If ƒ′(c) = 0 and ƒ″(c) 6 0, then ƒ has a local maximum at x = c.

2.	 If ƒ′(c) = 0 and ƒ″(c) 7 0, then ƒ has a local minimum at x = c.

3.	 If ƒ′(c) = 0 and ƒ″(c) = 0, then the test fails. The function ƒ may have a 
local maximum, a local minimum, or neither.

Interval	 0 6 t 6 1	 1 6 t 6 11>3	 11>3 6 t

Sign of Y = s′	 + 	 - 	 +
Behavior of s	 increasing	 decreasing	 increasing

Particle motion	 right	 left	 right

Interval	 0 6 t 6 7>3	 7>3 6 t

Sign of a = s″	 - 	 +
Graph of s	 concave down	 concave up

The particle starts out moving to the right while slowing down, and then reverses and 
begins moving to the left at t = 1 under the influence of the leftward acceleration over the 
time interval 30, 7>3). The acceleration then changes direction at t = 7>3 but the particle 
continues moving leftward, while slowing down under the rightward acceleration. At 
t = 11>3 the particle reverses direction again: moving to the right in the same direction as 
the acceleration, so it is speeding up.�

Second Derivative Test for Local Extrema

Instead of looking for sign changes in ƒ′ at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

Proof    Part (1). If ƒ″(c) 6 0, then ƒ″(x) 6 0 on some open interval I containing the 
point c, since ƒ″ is continuous. Therefore, ƒ′ is decreasing on I. Since ƒ′(c) = 0, the sign 
of ƒ′ changes from positive to negative at c so ƒ has a local maximum at c by the First 
Derivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions y = x4, y = -x4, and y = x3. For each 

function, the first and second derivatives are zero at x = 0. Yet the function y = x4 has a 
local minimum there, y = -x4 has a local maximum, and y = x3 is increasing in any 
open interval containing x = 0 (having neither a maximum nor a minimum there). Thus 
the test fails.�

This test requires us to know ƒ″ only at c itself and not in an interval about c. This 
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if ƒ″ = 0 or if ƒ″ does not exist at x = c. When this happens, use the First Deriva-
tive Test for local extreme values.

f ′ = 0, f ″ < 0
1 local max

f ′ = 0, f ″ > 0
1 local min
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248	 Chapter 4: Applications of Derivatives

	(a)	 Using the First Derivative Test for local extrema and the table above, we see that there 
is no extremum at x = 0 and a local minimum at x = 3.

	(b)	 Using the table above, we see that ƒ is decreasing on (-q, 04  and 30, 34 , and 
increasing on 33, q).

	(c)	 ƒ″(x) = 12x2 - 24x = 12x(x - 2) is zero at x = 0 and x = 2. We use these points 
to define intervals where ƒ is concave up or concave down.

Together ƒ′ and ƒ″ tell us the shape of the function’s graph—that is, where the critical 
points are located and what happens at a critical point, where the function is increasing and 
where it is decreasing, and how the curve is turning or bending as defined by its concavity. 
We use this information to sketch a graph of the function that captures its key features.

Example  7    Sketch a graph of the function

ƒ(x) = x4 - 4x3 + 10

using the following steps.

(a)	 Identify where the extrema of ƒ occur.

(b)	 Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

(c)	 Find where the graph of ƒ is concave up and where it is concave down.

(d)	 Sketch the general shape of the graph for ƒ.

(e)	 Plot some specific points, such as local maximum and minimum points, points of 
inflection, and intercepts. Then sketch the curve.

Solution  The function ƒ is continuous since ƒ′(x) = 4x3 - 12x2 exists. The domain of 
ƒ is (-q, q), and the domain of ƒ′ is also (-q, q). Thus, the critical points of ƒ occur 
only at the zeros of ƒ′. Since

ƒ′(x) = 4x3 - 12x2 = 4x2(x - 3),

the first derivative is zero at x = 0 and x = 3. We use these critical points to define inter-
vals where ƒ is increasing or decreasing.

Interval	 x 6 0	 0 6 x 6 3	 3 6 x

Sign of ƒ′	 - 	 - 	 +
Behavior of ƒ	 decreasing	 decreasing	 increasing

Interval	 x 6 0	 0 6 x 6 2	 2 6 x

Sign of ƒ″	 + 	 - 	 +
Behavior of ƒ	 concave up	 concave down	 concave up

x * 0	 0 * x * 2	 2 * x * 3	 3 * x

decreasing	 decreasing	 decreasing	 increasing

concave up	 concave down	 concave up	 concave up

		  We see that ƒ is concave up on the intervals (-q, 0) and (2, q), and concave down 
on (0, 2).

	(d)	 Summarizing the information in the last two tables, we obtain the following.
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The general shape of the curve is shown in the accompanying figure.
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	(e)	 Plot the curve’s intercepts (if possible) and the points where y′ and y″ are zero. Indicate 
any local extreme values and inflection points. Use the general shape as a guide to sketch 
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of ƒ.�

The steps in Example 7 give a procedure for graphing the key features of a function. 
Asymptotes were defined and discussed in Section 2.6. We can find them for rational functions, 
and the methods in the next section give tools to help find them for more general functions.

Procedure for Graphing y = ƒ(x)
1.	 Identify the domain of ƒ and any symmetries the curve may have.

2.	 Find the derivatives y′ and y″.
3.	 �Find the critical points of ƒ, if any, and identify the function’s behavior at 

each one.

4.	 Find where the curve is increasing and where it is decreasing.

5.	 �Find the points of inflection, if any occur, and determine the concavity of the 
curve.

6.	 Identify any asymptotes that may exist.

7.	 �Plot key points, such as the intercepts and the points found in Steps 3–5, and 
sketch the curve together with any asymptotes that exist.

Example  8    Sketch the graph of ƒ(x) =
(x + 1)2

1 + x2 .

Solution
	 1.	 The domain of ƒ is (-q, q) and there are no symmetries about either axis or the ori-

gin (Section 1.1).

	 2.	 Find ƒ′ and ƒ″.

 ƒ(x) =
(x + 1)2

1 + x2   
x@intercept at x = -1, 
y@intercept (y = 1) at 
x = 0

 ƒ′(x) =
(1 + x2) # 2(x + 1) - (x + 1)2 # 2x

(1 + x2)2

 =
2(1 - x2)

(1 + x2)2     Critical points: x = -1, x = 1

 ƒ″(x) =
(1 + x2)2 # 2( -2x) - 2(1 - x2)32(1 + x2) # 2x4

(1 + x2)4

 =
4x(x2 - 3)

(1 + x2)3     After some algebra

	 3.	 Behavior at critical points. The critical points occur only at x = {1 where ƒ′(x) = 0 
(Step 2) since ƒ′ exists everywhere over the domain of ƒ. At x = -1, ƒ″(-1) = 1 7 0, 
yielding a relative minimum by the Second Derivative Test. At x = 1, f″(1) = -1 6 0, 
yielding a relative maximum by the Second Derivative test.
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Figure 4.30  The graph of ƒ(x) =
x4 - 4x3 + 10 (Example 7).
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250	 Chapter 4: Applications of Derivatives

	 4.	 Increasing and decreasing. We see that on the interval (-q, -1) the derivative 
ƒ′(x) 6 0, and the curve is decreasing. On the interval (-1, 1), ƒ′(x) 7 0 and the 
curve is increasing; it is decreasing on (1, q) where ƒ′(x) 6 0 again.

	 5.	 Inflection points. Notice that the denominator of the second derivative (Step 2) is 
always positive. The second derivative ƒ″ is zero when x = -23, 0, and 23. The sec-
ond derivative changes sign at each of these points: negative on 1-q, -232,  
positive on 1-23, 02, negative on 10, 232, and positive again on 123, q2. Thus 
each point is a point of inflection. The curve is concave down on the interval 
1-q, -232, concave up on 1-23, 02, concave down on 10, 232, and concave up 
again on 123, q2.

	 6.	 Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and 
denominator by x2 gives

 ƒ(x) =
(x + 1)2

1 + x2 = x2 + 2x + 1
1 + x2     Expanding numerator

 =
1 + (2>x) + (1>x2)

(1>x2) + 1
.     Dividing by x2

		  We see that ƒ(x) S 1+ as x S q and that ƒ(x) S 1- as x S -q. Thus, the line 
y = 1 is a horizontal asymptote.

Since ƒ decreases on (-q, -1) and then increases on (-1, 1), we know that 
ƒ(-1) = 0 is a local minimum. Although ƒ decreases on (1, q), it never crosses the 
horizontal asymptote y = 1 on that interval (it approaches the asymptote from above). 
So the graph never becomes negative, and ƒ(-1) = 0 is an absolute minimum as 
well. Likewise, ƒ(1) = 2 is an absolute maximum because the graph never crosses 
the asymptote y = 1 on the interval (-q, -1), approaching it from below. Therefore, 
there are no vertical asymptotes (the range of ƒ is 0 … y … 2).

	 7.	 The graph of ƒ is sketched in Figure 4.31. Notice how the graph is concave down as it 
approaches the horizontal asymptote y = 1 as x S -q, and concave up in its 
approach to y = 1 as x S q.�

Example  9    Sketch the graph of ƒ(x) = x2 + 4
2x

.

Solution
	 1.	 The domain of ƒ is all nonzero real numbers. There are no intercepts because neither x 

nor ƒ(x) can be zero. Since ƒ(-x) = -ƒ(x), we note that ƒ is an odd function, so the 
graph of ƒ is symmetric about the origin.

	 2.	 We calculate the derivatives of the function, but first rewrite it in order to simplify our 
computations:

ƒ(x) = x2 + 4
2x

= x
2

+ 2
x     Function simplified for differentiation

ƒ′(x) = 1
2

- 2
x2 = x2 - 4

2x2     Combine fractions to solve easily ƒ′(x) = 0.

ƒ″(x) = 4
x3     Exists throughout the entire domain of ƒ

	 3.	 The critical points occur at x = {2 where ƒ′(x) = 0. Since ƒ″(-2) 6 0 and 
ƒ″(2) 7 0, we see from the Second Derivative Test that a relative maximum occurs 
at x = -2 with ƒ(-2) = -2, and a relative minimum occurs at x = 2 with 
ƒ(2) = 2.

Figure 4.31  The graph of y =
(x + 1)2

1 + x2  

(Example 8).
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	 4.	 On the interval (-q, -2) the derivative ƒ′ is positive because x2 - 4 7 0 so the 
graph is increasing; on the interval (-2, 0) the derivative is negative and the graph is 
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on 
(2, q).

	 5.	 There are no points of inflection because ƒ″(x) 6 0 whenever x 6 0, ƒ″(x) 7 0 
whenever x 7 0, and ƒ″ exists everywhere and is never zero throughout the domain 
of ƒ. The graph is concave down on the interval (-q, 0) and concave up on the  
interval (0, q).

	 6.	 From the rewritten formula for ƒ(x), we see that

lim
xS0 +

 ax
2

+ 2
xb = +q  and  lim

xS0 -
 ax

2
+ 2

xb = -q,

		  so the y-axis is a vertical asymptote. Also, as x S q or as x S -q, the graph of ƒ(x) 
approaches the line y = x>2. Thus y = x>2 is an oblique asymptote.

	 7.	 The graph of ƒ is sketched in Figure 4.32.�

Example  10    Sketch the graph of ƒ(x) = e2>x.

Solution  The domain of ƒ is (-q, 0)h(0, q) and there are no symmetries about either 
axis or the origin. The derivatives of ƒ are

 ƒ′(x) = e2>x a-  2
x2b = -  

2e2>x

x2

and

 ƒ″(x) = -  
x2(2e2>x)(-2>x2) - 2e2>x(2x)

x4 =
4e2>x(1 + x)

x4 .

Both derivatives exist everywhere over the domain of ƒ. Moreover, since e2>x and x2 are 
both positive for all x ≠ 0, we see that ƒ′ 6 0 everywhere over the domain and the graph 
is everywhere decreasing. Examining the second derivative, we see that ƒ″(x) = 0 at 
x = -1. Since e2>x 7 0 and x4 7 0, we have ƒ″ 6 0 for x 6 -1 and ƒ″ 7 0 for 
x 7 -1, x ≠ 0. Therefore, the point (-1, e-2) is a point of inflection. The curve is con-
cave down on the interval (-q, -1) and concave up over (-1, 0) h  (0, q).

From Example 7, Section 2.6, we see that limxS0- ƒ(x) = 0. As x S 0+, we see that 
2>x S q, so limxS0+ ƒ(x) = q and the y-axis is a vertical asymptote. Also, as 
x S -q or x S q, 2>x S 0 and so limxS- q ƒ(x) = limxSq ƒ(x) = e0 = 1. Therefore, 
y = 1 is a horizontal asymptote. There are no absolute extrema, since ƒ never takes on the 
value 0 and has no absolute maximum. The graph of ƒ is sketched in Figure 4.33.�

Graphical Behavior of Functions from Derivatives

As we saw in Examples 7–10, we can learn much about a twice-differentiable function 
y = ƒ(x) by examining its first derivative. We can find where the function’s graph 
rises and falls and where any local extrema are located. We can differentiate y′ to 
learn how the graph bends as it passes over the intervals of rise and fall. We can determine 
the shape of the function’s graph. Information we cannot get from the derivative is 
how to place the graph in the xy-plane. But, as we discovered in Section 4.2, the only 
additional information we need to position the graph is the value of ƒ at one point. 
Information about the asymptotes is found using limits (Section 2.6). The following 

−2

42−4 −2

4

2

0
x

y

−4

y =
2
xx

x2 + 4y =
2x

(2, 2)

(−2, −2)

Figure 4.32  The graph of y = x2 + 4
2x

 
(Example 9).

−2 −1 1 2 3

1

2

3

4

5

In�ection
point

y = e2�x

0 1 2 3
x

y

y = 1

Figure 4.33  The graph of y = e2>x  
has a point of inflection at (-1, e-2).  
The line y = 1 is a horizontal asymptote  
and x = 0 is a vertical asymptote  
(Example 10).
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252	 Chapter 4: Applications of Derivatives

oror

or

y = f (x) y = f (x) y = f (x)

Differentiable 1
smooth, connected; graph
may rise and fall

y′ > 0 1 rises from
left to right;
may be wavy

y′ < 0 1 falls from
left to right;
may be wavy

y″ > 0 1 concave up
throughout; no waves; graph
may rise or fall

y″ < 0 1 concave down
throughout; no waves;
graph may rise or fall

y″ changes sign at an
in�ection point

y′ changes sign 1 graph
has local maximum or local
minimum

y′ = 0  and  y″ < 0
at a point; graph has
local maximum

y′ = 0  and  y″ > 0
at a point; graph has
local minimum

+ −
+−

+
−

figure summarizes how the first derivative and second derivative affect the shape of a 
graph.

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the 
functions graphed in Exercises 1–8. Identify the intervals on which 
the functions are concave up and concave down.

	 1.	 		 2.	

	 3.	 		 4.	

0
x

y

y =      −      − 2x +x3

3
1
3

x2

2

0
x

y

y =      − 2x2 + 4x4

4

0
x

y

y =     (x2 − 1)2�33
4

0
x

y

y =      x1�3(x2 − 7)9
14

	 5.	 		 6.	

	 7.	 		 8.	

Graphing Functions
In Exercises 9–58, identify the coordinates of any local and absolute 
extreme points and inflection points. Graph the function.

	 9.	 y = x2 - 4x + 3	 10.	 y = 6 - 2x - x2

11.	 y = x3 - 3x + 3	 12.	 y = x(6 - 2x)2

0
x

y

−

y = x + sin 2x, −       ≤ x ≤2p
3

2p
3

2p
3

2p
3

x

y

y = tan x − 4x, −     < x <p
2

p
2

0

x

y

y = sin 0 x 0 , −2p ≤ x ≤ 2p

0

NOT TO SCALE

x

y

0−p 3p
2

y = 2 cos x − "2 x,  −p ≤ x ≤ 3p
2

Exercises  4.4
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65.	 y′ = (8x - 5x2)(4 - x)2	 66.	 y′ = (x2 - 2x)(x - 5)2

67.	 y′ = sec2 x, -  
p

2
6 x 6 p

2

68.	 y′ = tan x, -  
p

2
6 x 6 p

2

69.	 y′ = cot  
u

2
, 0 6 u 6 2p	 70.	 y′ = csc2  

u

2
, 0 6 u 6 2p

71.	 y′ = tan2 u - 1, -  
p

2
6 u 6 p

2
72.	 y′ = 1 - cot2 u, 0 6 u 6 p
73.	 y′ = cos t, 0 … t … 2p

74.	 y′ = sin t, 0 … t … 2p

75.	 y′ = (x + 1)-2>3	 76.	 y′ = (x - 2)-1>3

77.	 y′ = x-2>3(x - 1)	 78.	 y′ = x-4>5(x + 1)

79.	 y′ = 2 0 x 0 = e-2x,  x … 0

2x,    x 7 0

80.	 y′ = e-x2,  x … 0

x2,    x 7 0

Sketching y from Graphs of y′ and y″
Each of Exercises 81–84 shows the graphs of the first and second 
derivatives of a function y = ƒ(x). Copy the picture and add to it a 
sketch of the approximate graph of ƒ, given that the graph passes 
through the point P.

81.	 		 82.	

83.	

84.	

Graphing Rational Functions
Graph the rational functions in Exercises 85–102 using all the steps in 
the graphing procedure on page 249.

85.	 y = 2x2 + x - 1
x2 - 1

	 86.	 y = x2 - 49
x2 + 5x - 14

87.	 y = x4 + 1
x2 	 88.	 y = x2 - 4

2x

89.	 y = 1
x2 - 1

	 90.	 y = x2

x2 - 1

y = f ′(x)

y = f ″(x)

P

x

y

P

x

y

y = f ′(x)

y = f ″(x)

P

0
x

y

y = f ′(x)

y = f ″(x)

P

0
x

y

y = f ′(x)

y = f ″(x)

13.	 y = -2x3 + 6x2 - 3	 14.	 y = 1 - 9x - 6x2 - x3

15.	 y = (x - 2)3 + 1

16.	 y = 1 - (x + 1)3

17.	 y = x4 - 2x2 = x2(x2 - 2)

18.	 y = -x4 + 6x2 - 4 = x2(6 - x2) - 4

19.	 y = 4x3 - x4 = x3(4 - x)

20.	 y = x4 + 2x3 = x3(x + 2)

21.	 y = x5 - 5x4 = x4(x - 5)

22.	 y = xax
2

- 5b
4

23.	 y = x + sin x, 0 … x … 2p

24.	 y = x - sin x, 0 … x … 2p

25.	 y = 23x - 2 cos x, 0 … x … 2p

26.	 y = 4
3

 x - tan x, 
-p
2

6 x 6 p
2

27.	 y = sin x cos x, 0 … x … p
28.	 y = cos x + 23 sin x, 0 … x … 2p

29.	 y = x1>5	 30.	 y = x2>5

31.	 y = x2x2 + 1
	 32.	 y = 21 - x2

2x + 1

33.	 y = 2x - 3x2>3	 34.	 y = 5x2>5 - 2x

35.	 y = x2>3a5
2

- xb 	 36.	 y = x2>3(x - 5)

37.	 y = x28 - x2	 38.	 y = (2 - x2)3>2

39.	 y = 216 - x2	 40.	 y = x2 + 2
x

41.	 y = x2 - 3
x - 2

	 42.	 y = 23 x3 + 1

43.	 y = 8x
x2 + 4

	 44.	 y = 5
x4 + 5

45.	 y = 0 x2 - 1 0 	 46.	 y = 0 x2 - 2 x 0
47.	 y = 2 0 x 0 = e2-x,  x 6 02x,    x Ú 0

48.	 y = 2 0 x - 4 0
49.	 y = xe1>x	 50.	 y = ex

x

51.	 y = ln (3 - x2)	 52.	 y = x (ln x)2

53.	 y = ex - 2e-x - 3x	 54.	 y = xe-x

55.	 y = ln (cos x)	 56.	 y = ln x2x

57.	 y = 1
1 + e-x	 58.	 y = ex

1 + ex

Sketching the General Shape, Knowing y ′
Each of Exercises 59–80 gives the first derivative of a continuous 
function y = ƒ(x). Find y″ and then use Steps 2–4 of the graphing 
procedure on page 249 to sketch the general shape of the graph of ƒ.

59.	 y′ = 2 + x - x2	 60.	 y′ = x2 - x - 6

61.	 y′ = x(x - 3)2	 62.	 y′ = x2(2 - x)

63.	 y′ = x(x2 - 12)	 64.	 y′ = (x - 1)2(2x + 3)
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254	 Chapter 4: Applications of Derivatives

Motion Along a Line  The graphs in Exercises 107 and 108 show 
the position s = ƒ(t) of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin? 
Toward the origin? At approximately what times is the (b) velocity 
equal to zero? (c) Acceleration equal to zero? (d) When is the accel-
eration positive? Negative?

	107.	

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

	108.	

D
is

pl
ac

em
en

t

s = f (t)

Time (sec)

5 10 150
t

s

	109.	 Marginal cost  The accompanying graph shows the hypotheti-
cal cost c = ƒ(x) of manufacturing x items. At approximately 
what production level does the marginal cost change from 
decreasing to increasing?

C
os

t

c = f (x)

Thousands of units produced
20 40 60 80 100120

x

c

	110.	 The accompanying graph shows the monthly revenue of the Widget 
Corporation for the past 12 years. During approximately what 
time intervals was the marginal revenue increasing? Decreasing?

t

y

y = r(t)

50 10

	111.	 Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2).

		  At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the 
sign pattern for y′.)

	 91.	 y = -  
x2 - 2
x2 - 1

	 92.	 y = x2 - 4
x2 - 2

	 93.	 y = x2

x + 1
	 94.	 y = -  

x2 - 4
x + 1

	 95.	 y = x2 - x + 1
x - 1

	 96.	 y = -  
x2 - x + 1

x - 1

	 97.	 y = x3 - 3x2 + 3x - 1
x2 + x - 2

	 98.	 y = x3 + x - 2
x - x2

	 99.	 y = x
x2 - 1

	 100.	 y = x - 1
x2(x - 2)

	101.	 y = 8
x2 + 4

  (Agnesi>s witch)

102.	 y = 4x
x2 + 4

  (Newton>s serpentine)

Theory and Examples
	103.	 The accompanying figure shows a portion of the graph of a 

twice-differentiable function y = ƒ(x). At each of the five 
labeled points, classify y′ and y″ as positive, negative, or zero.

y = f (x)
S

TR

Q
P

x

y

0

	104.	 Sketch a smooth connected curve y = ƒ(x) with

 ƒ(-2) = 8, 	  ƒ′(2) = ƒ′(-2) = 0, 

 ƒ(0) = 4, 	  ƒ′(x) 6 0 for 0 x 0 6 2, 

 ƒ(2) = 0, 	  ƒ″(x) 6 0 for x 6 0, 

 ƒ′(x) 7 0 for 0 x 0 7 2, 	  ƒ″(x) 7 0 for x 7 0.

	105.	 Sketch the graph of a twice-differentiable function y = ƒ(x) 
with the following properties. Label coordinates where possible.

	 x	 y	 Derivatives

	 x 6 2	  	 y′ 6 0, y″ 7 0
	 2	 1	 y′ = 0, y″ 7 0
	2 6 x 6 4	  	 y′ 7 0, y″ 7 0
	 4	 4	 y′ 7 0, y″ = 0
	4 6 x 6 6	  	 y′ 7 0, y″ 6 0
	 6	 7	 y′ = 0, y″ 6 0
	 x 7 6	  	 y′ 6 0, y″ 6 0

	106.	 Sketch the graph of a twice-differentiable function y = ƒ(x) that 
passes through the points (-2, 2), (-1, 1), (0, 0), (1, 1), and 
(2, 2) and whose first two derivatives have the following sign 
patterns.

y′: +      -      +      -
-2       0         2

y″: -      +      -
-1       1 
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4.5 I ndeterminate Forms and L’Hôpital’s Rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +q. The rule is known 
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who 
wrote the first introductory differential calculus text, where the rule first appeared in 
print. Limits involving transcendental functions often require some use of the rule for 
their calculation.

Indeterminate Form 0 ,0
If we want to know how the function

F(x) = x - sin x
x3

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x S 0. 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit 
of the denominator is 0. Moreover, in this case, both the numerator and denominator 
approach 0, and 0>0 is undefined. Such limits may or may not exist in general, but the 
limit does exist for the function F(x) under discussion by applying l’Hôpital’s Rule, as we 
will see in Example 1d.

	120.	 Suppose that the second derivative of the function y = ƒ(x) is

y″ = x2(x - 2)3(x + 3).

		  For what x-values does the graph of ƒ have an inflection point?

	121.	 Find the values of constants a, b, and c so that the graph of 
y = ax3 + bx2 + cx has a local maximum at x = 3, local mini-
mum at x = -1, and inflection point at (1, 11).

	122.	 Find the values of constants a, b, and c so that the graph of 
y = (x2 + a)>(bx + c) has a local minimum at x = 3 and a 
local maximum at (-1, -2).

Computer Explorations
In Exercises 123–126, find the inflection points (if any) on the graph of 
the function and the coordinates of the points on the graph where the 
function has a local maximum or local minimum value. Then graph the 
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second 
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the 
graphs of the derivatives related to the graph of the function?

	123.	 y = x5 - 5x4 - 240	 124.	 y = x3 - 12x2

	125.	 y = 4
5

 x5 + 16x2 - 25

	126.	 y = x4

4
- x3

3
- 4x2 + 12x + 20

	127.	 Graph ƒ(x) = 2x4 - 4x2 + 1 and its first two derivatives 
together. Comment on the behavior of ƒ in relation to the signs 
and values of ƒ′ and ƒ″.

	128.	 Graph ƒ(x) = x cos x and its second derivative together for 
0 … x … 2p. Comment on the behavior of the graph of ƒ in 
relation to the signs and values of ƒ″.

	112.	 Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2)(x - 4).

		  At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

	113.	 For x 7 0, sketch a curve y = ƒ(x) that has ƒ(1) = 0 and 
ƒ′(x) = 1>x. Can anything be said about the concavity of such a 
curve? Give reasons for your answer.

	114.	 Can anything be said about the graph of a function y = ƒ(x) that 
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

	115.	 If b, c, and d are constants, for what value of b will the curve 
y = x3 + bx2 + cx + d have a point of inflection at x = 1? 
Give reasons for your answer.

	116.	 Parabolas

	a.	 Find the coordinates of the vertex of the parabola 
y = ax2 + bx + c, a ≠ 0.

	b.	 When is the parabola concave up? Concave down? Give rea-
sons for your answers.

	117.	 Quadratic curves  What can you say about the inflection 
points of a quadratic curve y = ax2 + bx + c, a ≠ 0? Give 
reasons for your answer.

	118.	 Cubic curves  What can you say about the inflection points of 
a cubic curve y = ax3 + bx2 + cx + d, a ≠ 0? Give reasons 
for your answer.

	119.	 Suppose that the second derivative of the function y = ƒ(x) is

y″ = (x + 1)(x - 2).

		  For what x-values does the graph of ƒ have an inflection point?

HISTORICAL BIOGRAPHY

Guillaume François Antoine de l’Hôpital
(1661–1704)

Johann Bernoulli
(1667–1748)
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256	 Chapter 4: Applications of Derivatives

If the continuous functions ƒ(x) and g (x) are both zero at x = a, then

lim
xSa

  
ƒ(x)
g(x)

cannot be found by substituting x = a. The substitution produces 0>0, a meaningless 
expression, which we cannot evaluate. We use 0>0 as a notation for an expression known 
as an indeterminate form. Other meaningless expressions often occur, such as q>q, 
q # 0, q - q, 00, and 1q, which cannot be evaluated in a consistent way; these are 
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancelation, rearrangement of terms, or other algebraic 
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find limxS0 (sin x)>x. But we have had success with the limit

ƒ′(a) = lim
xSa

 
ƒ(x) - ƒ(a)

x - a  ,

from which we calculate derivatives and which produces the indeterminant form 0>0 
when we attempt to substitute x = a. L’Hôpital’s Rule enables us to draw on our success 
with derivatives to evaluate limits that otherwise lead to indeterminate forms.

THEOREM 6—L’Hôpital’s Rule  Suppose that ƒ(a) = g(a) = 0, that ƒ and 
g are differentiable on an open interval I containing a, and that g′(x) ≠ 0 on 
I if x ≠ a. Then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

,

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 6 at the end of this section.

Example  1    The following limits involve 0>0 indeterminate forms, so we apply 
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a)	 lim
xS0

 
3x - sin x

x = lim
xS0

 
3 - cos x

1
= 3 - cos x

1
2
x=0

= 2

(b)	 lim
xS0

 
21 + x - 1

x = lim
xS0

 

1

221 + x
1

= 1
2

(c)	 lim
xS0

 
21 + x - 1 - x>2

x2 	 0
0

 ; apply l’Hôpital’s Rule.

	 = lim
xS0

 
(1>2)(1 + x)-1>2 - 1>2

2x
	 Still 

0
0

 ; apply l’Hôpital’s Rule again.

	 = lim
xS0

 
-(1>4)(1 + x)-3>2

2
= -  18	 Not 

0
0

 ; limit is found.

Caution
To apply l’Hôpital’s Rule to ƒ>g, divide 
the derivative of ƒ by the derivative of 
g. Do not fall into the trap of taking the 
derivative of ƒ>g. The quotient to use is 
ƒ′>g′, not (ƒ>g)′.

M04_THOM4077_CH04_pp223-298.indd   256 6/1/13   2:46 AM

SAMPLE--NOT FOR DISTRIBUTION



	 4.5  Indeterminate Forms and L’Hôpital’s Rule	 257

(d)	 lim
xS0

 
x - sin x

x3 	 0
0

 ; apply l’Hôpital’s Rule.

	 = lim
xS0

 
1 - cos x

3x2 	 Still 
0
0

 ; apply l’Hôpital’s Rule again.

	  = lim
xS0

 
sin x
6x

	 Still 
0
0

 ; apply l’Hôpital’s Rule again.

	  = lim
xS0

 
cos x

6
= 1

6
	 Not 

0
0

 ; limit is found.�

	 Here is a summary of the procedure we followed in Example 1.

Using L’Hôpital’s Rule 

To find

lim
xSa

   
ƒ(x)
g(x)

by l’Hôpital’s Rule, we continue to differentiate ƒ and g, so long as we still get 
the form 0>0 at x = a. But as soon as one or the other of these derivatives is 
different from zero at x = a we stop differentiating. L’Hôpital’s Rule does not 
apply when either the numerator or denominator has a finite nonzero limit.

Example  2    Be careful to apply l’Hôpital’s Rule correctly:

lim
xS0

 
1 - cos x

x + x2       0
0

= lim
xS0

 
sin x

1 + 2x
    Not 

0
0

It is tempting to try to apply l’Hôpital’s Rule again, which would result in

lim
xS0

 
cos x

2
= 1

2
,

but this is not the correct limit. l’Hôpital’s Rule can be applied only to limits that give 
indeterminate forms, and limxS0 (sin x)>(1 + 2x) does not give an indeterminate form. 
Instead, this limit is 0>1 = 0, and the correct answer for the original limit is 0.�

L’Hôpital’s Rule applies to one-sided limits as well.

Example  3    In this example the one-sided limits are different.

(a)	 lim
xS0+

 
sin x

x2 	 0
0

			   = lim
xS0+

 
cos x

2x
= q	 Positive for x 7 0

(b)	 lim
xS0-

 
sin x

x2 	 0
0

			   = lim
xS0-

 
cos x

2x
= -q	 Negative for x 6 0�

Indeterminate Forms H,H, H # 0, H − H
Sometimes when we try to evaluate a limit as x S a by substituting x = a we get an inde-
terminant form like q>q, q # 0, or q - q, instead of 0>0. We first consider the form 
q>q.

Recall that q and +q mean the same 
thing.
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258	 Chapter 4: Applications of Derivatives

More advanced treatments of calculus prove that l’Hôpital’s Rule applies to the  
indeterminate form q>q, as well as to 0>0. If ƒ(x) S {q and g(x) S {q as x S a, 
then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

provided the limit on the right exists. In the notation x S a, a may be either finite or infi-
nite. Moreover, x S a may be replaced by the one-sided limits x S a+ or x S a-.

Example  4    Find the limits of these q>q forms:

(a)	 lim
xSp>2

  
sec x

1 + tan x
	 (b)  lim

xSq
  

ln x

22x
	 (c)  lim

xSq
  
ex

x2 .

Solution
	(a)	 The numerator and denominator are discontinuous at x = p>2, so we investigate the 

one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open 
interval with x = p>2 as an endpoint.

lim
xS(p>2)-

 
sec x

1 + tan x
  

q
q from the left so we apply l’Hôpital’s Rule.

	 = lim
xS(p>2)-

 
sec x tan x

sec2 x
= lim

xS(p>2)-
 sin x = 1

		  The right-hand limit is 1 also, with (-q)>(-q) as the indeterminate form. Therefore, 
the two-sided limit is equal to 1.

	(b)	 lim
xSq

  
ln x

22x
= lim

xSq
  

1>x
1>2x

= lim
xSq

  12x
= 0  

1>x
1>2x

= 2x
x = 12x

	(c)	 lim
xSq

  
ex

x2 = lim
xSq

  
ex

2x
= lim

xSq
  
ex

2
= q�

Next we turn our attention to the indeterminate forms q # 0 and q - q. Sometimes 
these forms can be handled by using algebra to convert them to a 0>0 or q>q form. Here 
again we do not mean to suggest that q # 0 or q - q is a number. They are only nota-
tions for functional behaviors when considering limits. Here are examples of how we 
might work with these indeterminate forms.

Example  5    Find the limits of these q # 0 forms:

(a)	 lim
xSq
ax sin 1xb 	 (b)  lim

xS0+
 2x ln x

Solution

	 a.	 lim
xSq
ax sin 1xb = lim

hS0+
a1

h
 sin hb =  lim

hS0+
 
sin h

h
= 1	 q # 0; let h = 1>x.

	 b.	  lim
xS0+

 2x ln x = lim
xS0+

 
ln x

1>2x
	 q # 0 converted to q>q

		   = lim
xS0+

 
1>x

-1>2x3>2 	 l’Hôpital’s Rule applied

		   = lim
xS0+
1-22x2 = 0�
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Example  6    Find the limit of this q - q form:

lim
xS0
a 1

sin x
- 1

xb .

Solution  If x S 0+, then sin x S 0+ and

1
sin x

- 1
x S q - q.

Similarly, if x S 0-, then sin x S 0- and

1
sin x

- 1
x S - q - (-q) = -q + q.

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

1
sin x

- 1
x = x - sin x

x sin x
.    Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

 lim
xS0
a 1

sin x
- 1

xb = lim
xS0

  
x - sin x

x sin x
    0

0

 = lim
xS0

  
1 - cos x

sin x + x cos x
    Still 

0
0

 = lim
xS0

  
sin x

2 cos x - x sin x
= 0

2
= 0.�

Indeterminate Powers

Limits that lead to the indeterminate forms 1q, 00, and q0 can sometimes be handled by 
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the 
logarithm expression and then exponentiate the result to find the original function limit. 
This procedure is justified by the continuity of the exponential function and Theorem 10 in 
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

If limxSa ln ƒ(x) = L, then

lim
xSa

 ƒ(x) = lim
xSa

 eln ƒ(x) = eL.

Here a may be either finite or infinite.

Example  7    Apply l’Hôpital’s Rule to show that limxS0+ (1 + x)1>x = e.

Solution  The limit leads to the indeterminate form 1q. We let ƒ(x) = (1 + x)1>x and 
find limxS0+ ln ƒ(x). Since

ln ƒ(x) = ln (1 + x)1>x = 1
x ln (1 + x),

l’Hôpital’s Rule now applies to give

 lim
xS0+

 ln ƒ(x) = lim
xS0+

 
ln (1 + x)

x     0
0

 = lim
xS0+

 

1
1 + x

1
    l’Hôpital’s Rule applied

 = 1
1

= 1.

Therefore, lim
xS0+

 (1 + x)1>x = lim
xS0+

 ƒ(x) = lim
xS0+

 eln ƒ(x) = e1 = e.�
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Example  8    Find limxSq  x1>x.

Solution  The limit leads to the indeterminate form q0. We let ƒ(x) = x1>x and find 
limxSq ln ƒ(x). Since

 ln ƒ(x) = ln x1>x = ln x
x  ,

l’Hôpital’s Rule gives

 lim
xSq

 ln ƒ(x) = lim
xSq

 
ln x

x   
q
q

 = lim
xSq

 
1>x
1

    l’Hôpital’s Rule applied

 = 0
1

= 0.

Therefore lim
xSq

 x1>x = lim
xSq

 ƒ(x) = lim
xSq

 eln ƒ(x) = e0 = 1.�

Proof of L’Hôpital’s Rule

Before we prove l’Hôpital’s Rule, we consider a special case to provide some geometric 
insight for its reasonableness. Consider the two functions ƒ(x) and g(x) having continuous 
derivatives and satisfying ƒ(a) = g(a) = 0, g′(a) ≠ 0. The graphs of ƒ(x) and g(x), 
together with their linearizations y = ƒ′(a)(x - a) and y = g′(a)(x - a), are shown in 
Figure 4.34. We know that near x = a, the linearizations provide good approximations to 
the functions. In fact,

ƒ(x) = ƒ′(a)(x - a) + P1(x - a) and g(x) = g′(a)(x - a) + P2(x - a)

where P1 S 0 and P2 S 0 as x S a. So, as Figure 4.34 suggests,

 lim
xSa

  
ƒ(x)
g(x)

= lim
xSa

  
ƒ′(a)(x - a) + P1(x - a)
g′(a)(x - a) + P2(x - a)

 = lim
xSa

  
ƒ′(a) + P1

g′(a) + P2
=

ƒ′(a)
g′(a)

	 g′(a) ≠ 0

 = lim
xSa

  
ƒ′(x)
g′(x)

, 	 Continuous derivatives

as asserted by l’Hôpital’s Rule. We now proceed to a proof of the rule based on the more 
general assumptions stated in Theorem 6, which do not require that g′(a) ≠ 0 and that 
the two functions have continuous derivatives.

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove 
Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

THEOREM 7—Cauchy’s Mean Value Theorem  Suppose functions ƒ and g 
are continuous on 3a, b4  and differentiable throughout (a, b) and also suppose 
g′(x) ≠ 0 throughout (a, b). Then there exists a number c in (a, b) at which

ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

.

Historical Biography

Augustin-Louis Cauchy
(1789–1857)

0 a

y

y = f ′(a)(x − a)

y = g′(a)(x − a)

f (x)

g(x)
x

Figure 4.34  The two functions in 
l’Hôpital’s Rule, graphed with their  
linear approximations at x = a.

Proof    We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show 
that g(a) ≠ g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

g′(c) =
g(b) - g(a)

b - a
= 0

When g(x) = x, Theorem 7 is the Mean 
Value Theorem.
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for some c between a and b, which cannot happen because g′(x) ≠ 0 in (a, b).
We next apply the Mean Value Theorem to the function

F(x) = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g(x) - g(a)4 .

This function is continuous and differentiable where ƒ and g are, and F(b) = F(a) = 0. 
Therefore, there is a number c between a and b for which F′(c) = 0. When expressed in 
terms of ƒ and g, this equation becomes

F′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g′(c)4 = 0

so that

	
ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

.�

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding 
curve C in the plane joining the two points A = (g(a), ƒ(a)) and B = (g(b), ƒ(b)). In 
Chapter 11 you will learn how the curve C can be formulated so that there is at least one 
point P on the curve for which the tangent to the curve at P is parallel to the secant line 
joining the points A and B. The slope of that tangent line turns out to be the quotient ƒ′>g′ 
evaluated at the number c in the interval (a, b), which is the left-hand side of the equation 
in Theorem 7. Because the slope of the secant line joining A and B is

ƒ(b) - ƒ(a)
g(b) - g(a)

,

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line 
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.35. 
Notice from the figure that it is possible for more than one point on the curve C to have a 
tangent line that is parallel to the secant line joining A and B.

Proof of l’Hôpital’s Rule    We first establish the limit equation for the case x S a+. 
The method needs almost no change to apply to x S a-, and the combination of these two 
cases establishes the result.

Suppose that x lies to the right of a. Then g′(x) ≠ 0, and we can apply Cauchy’s 
Mean Value Theorem to the closed interval from a to x. This step produces a number c 
between a and x such that

ƒ′(c)
g′(c)

=
ƒ(x) - ƒ(a)
g(x) - g(a)

.

But ƒ(a) = g(a) = 0, so

ƒ′(c)
g′(c)

=
ƒ(x)
g(x)

.

As x approaches a, c approaches a because it always lies between a and x. Therefore,

lim
xSa+

  
ƒ(x)
g(x)

= lim
cSa+

  
ƒ′(c)
g′(c)

= lim
xSa+

  
ƒ′(x)
g′(x)

,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case 
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to 
the closed interval 3x, a4 , x 6 a.�

0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

slope =
f (b) − f (a)
g(b) − g(a)

x

slope =
f ′(c)
g′(c)

Figure 4.35  There is at least one point 
P on the curve C for which the slope of the 
tangent to the curve at P is the same as the 
slope of the secant line joining the points 
A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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262	 Chapter 4: Applications of Derivatives

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then 
evaluate the limit using a method studied in Chapter 2.

	 1.	 lim
xS-2

 
x + 2
x2 - 4

	 2.	 lim
xS0

 
sin 5x

x

	 3.	 lim
xSq

 
5x2 - 3x
7x2 + 1

	 4.	 lim
xS1

 
x3 - 1

4x3 - x - 3

	 5.	 lim
xS0

 
1 - cos x

x2 	 6.	 lim
xSq

 
2x2 + 3x

x3 + x + 1

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

	 7.	 lim
xS2

 
x - 2
x2 - 4

	 8.	 lim
xS-5

 
x2 - 25
x + 5

	 9.	 lim
tS-3 

t3 - 4t + 15
t2 - t - 12

	 10.	 lim
tS-1

 
3t3 + 3

4t3 - t + 3

	11.	 lim
xSq

 
5x3 - 2x
7x3 + 3

	 12.	 lim
xSq

 
x - 8x2

12x2 + 5x

	13.	 lim
tS0

 
sin t2

t 	 14.	 lim
tS0

 
sin 5t

2t

	15.	 lim
xS0

 
8x2

cos x - 1
	 16.	 lim

xS0
 
sin x - x

x3

	17.	 lim
uSp>2

 
2u - p

cos (2p - u)	 18.	 lim
uS-p>3

 
3u + p

sin (u + (p>3))

	19.	 lim
uSp>2

 
1 - sin u

1 + cos 2u
	 20.	 lim

xS1
 

x - 1
ln x - sin px

	21.	 lim
xS0

 
x2

ln (sec x)
	 22.	 lim

xSp>2
 

ln (csc x)

(x - (p>2))2

	23.	 lim
tS0

 
t(1 - cos t)

t - sin t
	 24.	 lim

tS0
 

t sin t
1 - cos t

	25.	 lim
xS(p>2)-

ax - p
2
b  sec x	 26.	 lim

xS(p>2)-
 ap

2
- xb  tan x

	27.	 lim
uS0

 
3sin u - 1
u

	 28.	 lim
uS0

 
(1>2)u - 1

u

	29.	 lim
xS0

 
x2x

2x - 1
	 30.	 lim

xS0
 
3x - 1
2x - 1

	31.	 lim
xSq

 
ln (x + 1)

log2 x
	 32.	 lim

xSq
 

log2 x
log3 (x + 3)

	33.	 lim
xS0+

 
ln (x2 + 2x)

ln x
	 34.	 lim

xS0+
 
ln (ex - 1)

ln x

	35.	 lim
yS0

 
25y + 25 - 5

y 	 36.	 lim
yS0

 
2ay + a2 - a

y , a 7 0

	37.	 lim
xSq

 (ln 2x - ln (x + 1))	 38.	 lim
xS0+

 (ln x - ln sin x)

	39.	 lim
xS0+

 
(ln x)2

ln (sin x)
	 40.	 lim

xS0+
 a3x + 1

x - 1
sin x
b

	41.	 lim
xS1+

 a 1
x - 1

- 1
ln x
b 	 42.	 lim

xS0+
 (csc x - cot x + cos x)

	43.	 lim
uS0

 
cos u - 1

eu - u - 1
	 44.	 lim

hS0
 
eh - (1 + h)

h2

	45.	 lim
tSq

 
et + t2

et - t
	 46.	 lim

xSq
 x2e-x

	47.	  lim
xS0

 
x - sin x

x tan x 	 48.	  lim
xS0

 
(ex - 1)2

x sin x

	49.	  lim
uS0

 
u - sin u cos u

tan u - u 	 50.	  lim
xS0

 
sin 3x - 3x + x2

sin x sin 2x

Indeterminate Powers and Products
Find the limits in Exercises 51–66.

	51.	 lim
xS1+

 x1>(1-x)	 52.	 lim
xS1+

 x1>(x-1)

	53.	 lim
xSq

 (ln x)1>x	 54.	 lim
xSe+

 (ln x)1>(x-e)

	55.	 lim
xS0+

 x-1>ln x	 56.	 lim
xS  q

 x1>ln x

	57.	 lim
xSq

 (1 + 2x)1>(2 ln x)	 58.	 lim
xS0

 (ex + x)1>x

	59.	 lim
xS0+  

xx	 60.	 lim
xS0+

 a1 + 1
xb

x

	61.	 lim
xSq

 ax + 2
x - 1

b
x

	 62.	  lim
xSq

 ax
2 + 1

x + 2
b

1>x

	63.	  lim
xS0+

 x2 ln x	 64.	  lim
xS0+

 x (ln x)2

	65.	  lim
xS0+

 x tan ap
2

- xb 	 66.	  lim
xS0+

 sin x # ln x

Theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try 
it—you just keep on cycling. Find the limits some other way.

	67.	 lim
xSq

 
29x + 12x + 1

	 68.	 lim
xS0+

 
2x2sin x

	69.	 lim
xS(p>2)-

  
sec x
tan x 	 70.	 lim

xS0+
  
cot x
csc x

	71.	  lim
xSq

 
2x - 3x

3x + 4x	 72.	  lim
xS-q

 
2x + 4x

5x - 2x

	73.	  lim
xSq

 
ex2

xex	 74.	  lim
xS0+

 
x

e-1>x

	75.	 Which one is correct, and which one is wrong? Give reasons for 
your answers.

	a.	 lim
xS3

  
x - 3
x2 - 3

= lim
xS3

  
1
2x

= 1
6

  b.  lim
xS3

  
x - 3
x2 - 3

= 0
6

= 0

	76.	 Which one is correct, and which one is wrong? Give reasons for 
your answers.

	a.	  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

		   = lim
xS0

 
2

2 + sin x
= 2

2 + 0
= 1

	b.	  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

= -2
0 - 1

= 2

Exercises  4.5
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	a.	 Use l’Hôpital’s Rule to show that

lim
xSq

 a1 + 1
xb

x

= e.

	b.	 Graph

ƒ(x) = a1 + 1
x2b

x

 and g(x) = a1 + 1
xb

x

		  together for x Ú 0. How does the behavior of ƒ compare with 
that of g? Estimate the value of limxSq ƒ(x).

	c.	 Confirm your estimate of limxSq ƒ(x) by calculating it with 
l’Hôpital’s Rule.

85.	 Show that

lim
kSq

 a1 + r
k
b

k

= er.

86.	 Given that x 7 0, find the maximum value, if any, of

	a.	 x1>x

	b.	 x1>x2

	c.	 x1>xn
 (n a positive integer)

	d.	 Show that limxSq x1>xn = 1 for every positive integer n.

87.	 Use limits to find horizontal asymptotes for each function.

	a.	 y = x tan a1xb         b.  y = 3x + e2x

2x + e3x

88.	 Find ƒ′(0) for ƒ(x) = e e-1/x2
, x ≠ 0

0, x = 0.

89.	 The continuous extension of (sin x)x to 30, p 4
	a.	 Graph ƒ(x) = (sin x)x on the interval 0 … x … p. What 

value would you assign to ƒ to make it continuous at x = 0?

	b.	 Verify your conclusion in part (a) by finding limxS0+ ƒ(x) 
with l’Hôpital’s Rule.

	c.	 Returning to the graph, estimate the maximum value of ƒ on 
30, p4 . About where is max ƒ taken on?

	d.	 Sharpen your estimate in part (c) by graphing ƒ′ in the same 
window to see where its graph crosses the x-axis. To simplify 
your work, you might want to delete the exponential factor 
from the expression for ƒ′ and graph just the factor that has a 
zero.

90.	 The function (sin x)tan x (Continuation of Exercise 89.)

	a.	 Graph ƒ(x) = (sin x)tan x on the interval -7 … x … 7. How 
do you account for the gaps in the graph? How wide are the 
gaps?

	b.	 Now graph ƒ on the interval 0 … x … p. The function is not 
defined at x = p>2, but the graph has no break at this point. 
What is going on? What value does the graph appear to give 
for ƒ at x = p>2? (Hint: Use l’Hôpital’s Rule to find lim ƒ 
as x S (p>2)- and x S (p>2)+.)

	c.	 Continuing with the graphs in part (b), find max ƒ and min ƒ 
as accurately as you can and estimate the values of x at which 
they are taken on.

T

T

T

	77.	 Only one of these calculations is correct. Which one? Why are the 
others wrong? Give reasons for your answers.

	a.	 lim
xS0+

 x ln x = 0 # (-q) = 0

	b.	 lim
xS0+

 x ln x = 0 # (-q) = -q

	c.	 lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)
= -q

q = -1

	d.	  lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)

		   = lim
xS0+

 
(1>x)

(-1>x2)
= lim

xS0+
 (-x) = 0

	78.	 Find all values of c that satisfy the conclusion of Cauchy’s Mean 
Value Theorem for the given functions and interval.

	a.	 ƒ(x) = x,  g(x) = x2,  (a, b) = (-2, 0)

	b.	 ƒ(x) = x,  g(x) = x2,  (a, b) arbitrary

	c.	 ƒ(x) = x3>3 - 4x,  g(x) = x2,  (a, b) = (0, 3)

	79.	 Continuous extension  Find a value of c that makes the function

ƒ(x) = c 9x - 3 sin 3x
5x3 , x ≠ 0

c, x = 0

		  continuous at x = 0. Explain why your value of c works.

	80.	 For what values of a and b is 

 lim
xS0

 atan 2x
x3 + a

x2 + sin bx
x b = 0?

	81.	 H −  H Form

	a.	 Estimate the value of

lim
xSq 1x - 2x2 + x2

		  by graphing ƒ(x) = x - 2x2 + x over a suitably large inter-
val of x-values.

	b.	 Now confirm your estimate by finding the limit with 
l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-
tion 1x + 2x2 + x2>1x + 2x2 + x2 and simplify the new 
numerator.

	82.	 Find lim
xSq

 12x2 + 1 - 2x2.
83.	 0 ,0 Form  Estimate the value of

lim
xS1

 
2x2 - (3x + 1)2x + 2

x - 1

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84.	 This exercise explores the difference between the limit

lim
xSq

 a1 + 1
x2b

x

and the limit

lim
xSq

 a1 + 1
xb

x

= e.

T

T
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4.6  Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area? 
What are the dimensions for the least expensive cylindrical can of a given volume? How 
many items should be produced for the most profitable production run? Each of these 
questions asks for the best, or optimal, value of a given function. In this section we use 
derivatives to solve a variety of optimization problems in mathematics, physics, econom-
ics, and business.

Solving Applied Optimization Problems
1.	 Read the problem. Read the problem until you understand it. What is given? 

What is the unknown quantity to be optimized?

2.	 Draw a picture. Label any part that may be important to the problem.

3.	 Introduce variables. List every relation in the picture and in the problem as 
an equation or algebraic expression, and identify the unknown variable.

4.	 Write an equation for the unknown quantity. If you can, express the unknown 
as a function of a single variable or in two equations in two unknowns. This 
may require considerable manipulation.

5.	 Test the critical points and endpoints in the domain of the unknown. Use 
what you know about the shape of the function’s graph. Use the first and 
second derivatives to identify and classify the function’s critical points.

Example  1    An open-top box is to be made by cutting small congruent squares from 
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should 
the squares cut from the corners be to make the box hold as much as possible?

Solution  We start with a picture (Figure 4.36). In the figure, the corner squares are x in. 
on a side. The volume of the box is a function of this variable:

V(x) = x(12 - 2x)2 = 144x - 48x2 + 4x3.    V = hlw

Since the sides of the sheet of tin are only 12 in. long, x … 6 and the domain of V is the 
interval 0 … x … 6.

A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and 
a maximum near x = 2. To learn more, we examine the first derivative of V with respect 
to x:

dV
dx

= 144 - 96x + 12x2 = 12(12 - 8x + x2) = 12(2 - x)(6 - x).

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s 
domain and makes the critical-point list. The values of V at this one critical point and two 
endpoints are

 Critical point value: V(2) = 128

Endpoint values:  V(0) = 0,  V(6) = 0.

The maximum volume is 128 in3. The cutout squares should be 2 in. on a side.�

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 − 2x

12 − 2x

Figure 4.36  An open box made by 
cutting the corners from a square sheet of 
tin. What size corners maximize the box’s 
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

 

Maximum

y = x(12 − 2x)2,
0 ≤ x ≤ 6

NOT TO SCALE

Figure 4.37  The volume of the box in 
Figure 4.36 graphed as a function of x.
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Example  2    You have been asked to design a one-liter can shaped like a right circu-
lar cylinder (Figure 4.38). What dimensions will use the least material?

Solution  Volume of can: If r and h are measured in centimeters, then the volume of the 
can in cubic centimeters is

pr2h = 1000.    1 liter = 1000 cm3

Surface area of can:  A = 2pr2 + 2prh	 ()*	 ()*
	 circular 	 cylindrical 
	 ends	 wall

How can we interpret the phrase “least material”? For a first approximation we can ignore 
the thickness of the material and the waste in manufacturing. Then we ask for dimensions 
r and h that make the total surface area as small as possible while satisfying the constraint 
pr2h = 1000.

To express the surface area as a function of one variable, we solve for one of the vari-
ables in pr2h = 1000 and substitute that expression into the surface area formula. Solving 
for h is easier:

h = 1000
pr2 .

Thus,

 A = 2pr2 + 2prh

 = 2pr2 + 2pra1000
pr2 b

 = 2pr2 + 2000
r .

Our goal is to find a value of r 7 0 that minimizes the value of A. Figure 4.39 suggests 
that such a value exists.

Notice from the graph that for small r (a tall, thin cylindrical container), the term 
2000>r dominates (see Section 2.6) and A is large. For large r (a short, wide cylindrical 
container), the term 2pr2 dominates and A again is large.

h

2r

Figure 4.38  This one-liter can uses 
the least material when h = 2r  
(Example 2).

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A = 2pr2 +           ,  r > 0

500
p

Tall and thin

Short and wide

Figure 4.39  The graph of A = 2pr2 + 2000>r is concave up.
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Since A is differentiable on r 7 0, an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

 
dA
dr

= 4pr - 2000
r2

 0 = 4pr - 2000
r2     Set dA>dr = 0.

 4pr3 = 2000     Multiply by r2.

 r =  A3 500
p ≈ 5.42    Solve for r.

What happens at r = 23 500>p?
The second derivative

d2A
dr2 = 4p + 4000

r3

is positive throughout the domain of A. The graph is therefore everywhere concave up and 
the value of A at r = 23 500>p is an absolute minimum.

The corresponding value of h (after a little algebra) is

h = 1000
pr2 = 2 A3 500

p = 2r.

The one-liter can that uses the least material has height equal to twice the radius, here with 
r ≈ 5.42 cm and h ≈ 10.84 cm.�

Examples from Mathematics and Physics

Example  3    A rectangle is to be inscribed in a semicircle of radius 2. What is the 
largest area the rectangle can have, and what are its dimensions?

Solution  Let 1x, 24 - x22 be the coordinates of the corner of the rectangle obtained 
by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length, 
height, and area of the rectangle can then be expressed in terms of the position x of the 
lower right-hand corner:

Length: 2x,   Height: 24 - x2,  Area: 2x24 - x2.

Notice that the values of x are to be found in the interval 0 … x … 2, where the selected 
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

A(x) = 2x24 - x2

on the domain 30, 24 .
The derivative

dA
dx

= -2x224 - x2
+ 224 - x2

is not defined when x = 2 and is equal to zero when

 
-2x224 - x2

+ 224 - x2 = 0

 -2x2 + 2(4 - x2) = 0

 8 - 4x2 = 0

 x2 = 2

 x = {22.

x

y

0 2x−2 −x

2

x2 + y2 = 4

Qx, "4 − x2R

Figure 4.40  The rectangle inscribed 
in the semicircle in Example 3.
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Of the two zeros, x = 22 and x = -22, only x = 22 lies in the interior of A’s domain 
and makes the critical-point list. The values of A at the endpoints and at this one critical 
point are

 Critical point value: A1222 = 22224 - 2 = 4

Endpoint values:   A(0) = 0,  A(2) = 0.

The area has a maximum value of 4 when the rectangle is 24 - x2 = 22 units high and 
2x = 222 units long.�

Example  4    The speed of light depends on the medium through which it travels, and 
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along 
a path for which the time of travel is a minimum. Describe the path that a ray of light will 
follow in going from a point A in a medium where the speed of light is c1 to a point B in a 
second medium where its speed is c2.

Solution  Since light traveling from A to B follows the quickest route, we look for a path 
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the 
line separating the two media is the x-axis (Figure 4.41).

In a uniform medium, where the speed of light remains constant, “shortest time” 
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A 
to B will consist of a line segment from A to a boundary point P, followed by another line 
segment from P to B. Distance traveled equals rate times time, so

Time = distance
rate .

From Figure 4.41, the time required for light to travel from A to P is

t1 = AP
c1

= 2a2 + x2

c1
.

From P to B, the time is

t2 = PB
c2

=
2b2 + (d - x)2

c2
.

The time from A to B is the sum of these:

t = t1 + t2 = 2a2 + x2

c1
+
2b2 + (d - x)2

c2
.

This equation expresses t as a differentiable function of x whose domain is 30, d4 . We 
want to find the absolute minimum value of t on this closed interval. We find the derivative

dt
dx

= x

c12a2 + x2
- d - x

c22b2 + (d - x)2

and observe that it is continuous. In terms of the angles  u1 and u2 in Figure 4.41,

dt
dx

=
sin u1

c1
-

sin u2
c2

.

The function t has a negative derivative at x = 0 and a positive derivative at x = d. Since 
dt>dx is continuous over the interval 30, d4 , by the Intermediate Value Theorem for con-
tinuous functions (Section 2.5), there is a point x0∊ 30, d4  where dt>dx = 0 (Figure 4.42). 

Historical Biography

Willebrord Snell van Royen
(1580–1626)

Angle of
incidence

Medium 1

Angle of
refractionMedium 2

x

y

0 x d
P

B

b

a

A

u1
u1

u2

d − x

Figure 4.41  A light ray refracted  
(deflected from its path) as it passes from 
one medium to a denser medium  
(Example 4).

x

0 d

x

0 d
x0

dt�dx
positive

dt�dx
zero

dt�dx
negative

− − − − − +++++++++

Figure 4.42  The sign pattern of dt>dx 
in Example 4.
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There is only one such point because dt>dx is an increasing function of x (Exercise 62). At 
this unique point we then have

sin u1
c1

=
sin u2

c2
.

This equation is Snell’s Law or the Law of Refraction, and is an important principle in 
the theory of optics. It describes the path the ray of light follows.�

Examples from Economics

Suppose that

 r(x) = the revenue from selling x items

 c(x) = the cost of producing the x items

 p(x) = r(x) - c(x) = the profit from producing and selling x items.

Although x is usually an integer in many applications, we can learn about the behavior of 
these functions by defining them for all nonzero real numbers and by assuming they are 
differentiable functions. Economists use the terms marginal revenue, marginal cost, and 
marginal profit to name the derivatives r′(x), c′(x), and p′(x) of the revenue, cost, and 
profit functions. Let’s consider the relationship of the profit p to these derivatives.

If r(x) and c(x) are differentiable for x in some interval of production possibilities, 
and if p(x) = r(x) - c(x) has a maximum value there, it occurs at a critical point of p(x) 
or at an endpoint of the interval. If it occurs at a critical point, then p′(x) = r′(x) -
c′(x) = 0 and we see that r′(x) = c′(x). In economic terms, this last equation means that

At a production level yielding maximum profit, marginal revenue equals mar-
ginal cost (Figure 4.43).

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum pro�t), c′(x) = r ′(x)

Revenue r(x)

Maximum pro�t, c′(x) = r ′(x)

Figure 4.43  The graph of a typical cost function starts concave down and later turns concave 
up. It crosses the revenue curve at the break-even point B. To the left of B, the company operates 
at a loss. To the right, the company operates at a profit, with the maximum profit occurring where 
c′(x) = r′(x). Farther to the right, cost exceeds revenue (perhaps because of a combination of rising 
labor and material costs and market saturation) and production levels become unprofitable again.
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Example  5    Suppose that r(x) = 9x and c(x) = x3 - 6x2 + 15x, where x repre-
sents millions of MP3 players produced. Is there a production level that maximizes profit? 
If so, what is it?

Solution  Notice that r′(x) = 9 and c′(x) = 3x2 - 12x + 15.

 3x2 - 12x + 15 = 9    Set c′(x) = r′(x).

 3x2 - 12x + 6 = 0

The two solutions of the quadratic equation are

 x1 = 12 - 272
6

= 2 - 22 ≈ 0.586  and

x2 = 12 + 272
6

= 2 + 22 ≈ 3.414.

The possible production levels for maximum profit are x ≈ 0.586 million MP3 players or 
x ≈ 3.414 million. The second derivative of p(x) = r(x) - c(x) is p″(x) = -c″(x) since 
r″(x) is everywhere zero. Thus, p″(x) = 6(2 - x), which is negative at x = 2 + 22 and 
positive at x = 2 - 22. By the Second Derivative Test, a maximum profit occurs at 
about x = 3.414 (where revenue exceeds costs) and maximum loss occurs at about 
x = 0.586. The graphs of r(x) and c(x) are shown in Figure 4.44.�

Example  6    A cabinetmaker uses mahogany wood to produce 5 desks each day. 
Each delivery of one container of wood is $5000, whereas the storage of that material is 
$10 per day per unit stored, where a unit is the amount of material needed by her to pro-
duce 1 desk. How much material should be ordered each time, and how often should the 
material be delivered, to minimize her average daily cost in the production cycle between 
deliveries?

Solution  If she asks for a delivery every x days, then she must order 5x units to have 
enough material for that delivery cycle. The average amount in storage is approximately 
one-half of the delivery amount, or 5x>2. Thus, the cost of delivery and storage for each 
cycle is approximately

 Cost per cycle = delivery costs + storage costs

 Cost per cycle = 5000  +  a5x
2
b  #  x  #  10

	
()*	 ()*	 ()*	 ()*

	 delivery 	 average	 number of	 storage cost 
	 cost	 amount stored	

days stored	 per day

We compute the average daily cost c(x) by dividing the cost per cycle by the number of 
days x in the cycle (see Figure 4.45).

c(x) = 5000
x + 25x,  x 7 0.

As x S 0 and as x S q, the average daily cost becomes large. So we expect a minimum 
to exist, but where? Our goal is to determine the number of days x between deliveries that 
provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

 c′(x) = -  
500
x2 + 25 = 0

 x = {2200 ≈ {14.14.

x

y

0 2

Maximum
for pro�t

Local maximum for loss

c(x) = x3 − 6x2 + 15x

NOT TO SCALE

r(x) = 9x

2 − "2 2 + "2

Figure 4.44  The cost and revenue 
curves for Example 5.

x

y

min x value

c(x) =          + 25x

C
os

t

Cycle length

5000
x

y = 25x

y = 5000
x

Figure 4.45  The average daily cost 
c(x) is the sum of a hyperbola and a linear 
function (Example 6).
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270	 Chapter 4: Applications of Derivatives

Of the two critical points, only 2200 lies in the domain of c(x). The critical point value of 
the average daily cost is

c122002 = 50002200
+ 252200 = 50022 ≈ $707.11.

We note that c(x) is defined over the open interval (0, q) with c″(x) = 10000>x3 7 0. 
Thus, an absolute minimum exists at x = 2200 ≈ 14.14 days.

The cabinetmaker should schedule a delivery of 5(14) = 70 units of the mahogany 
wood every 14 days.�

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the 
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

	 1.	 Minimizing perimeter  What is the smallest perimeter possible 
for a rectangle whose area is 16 in2, and what are its dimensions?

	 2.	 Show that among all rectangles with an 8-m perimeter, the one 
with largest area is a square.

	 3.	 The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

	a.	 Express the y-coordinate of P in terms of x. (Hint: Write an 
equation for the line AB.)

	b.	 Express the area of the rectangle in terms of x.

	c.	 What is the largest area the rectangle can have, and what are 
its dimensions?

x

y

0 1

B

A
x−1

P(x, ?)

	 4.	 A rectangle has its base on the x-axis and its upper two vertices 
on the parabola y = 12 - x2. What is the largest area the rectan-
gle can have, and what are its dimensions?

	 5.	 You are planning to make an open rectangular box from an 8-in.-by-
15-in. piece of cardboard by cutting congruent squares from the cor-
ners and folding up the sides. What are the dimensions of the box of 
largest volume you can make this way, and what is its volume?

	 6.	 You are planning to close off a corner of the first quadrant with a 
line segment 20 units long running from (a, 0) to (0, b). Show 
that the area of the triangle enclosed by the segment is largest 
when a = b.

	 7.	 The best fencing plan  A rectangular plot of farmland will be 
bounded on one side by a river and on the other three sides by a  

single-strand electric fence. With 800 m of wire at your disposal, 
what is the largest area you can enclose, and what are its dimensions?

	 8.	 The shortest fence  A 216 m2 rectangular pea patch is to be 
enclosed by a fence and divided into two equal parts by another 
fence parallel to one of the sides. What dimensions for the outer 
rectangle will require the smallest total length of fence? How 
much fence will be needed?

	 9.	 Designing a tank  Your iron works has contracted to design and 
build a 500 ft3, square-based, open-top, rectangular steel holding 
tank for a paper company. The tank is to be made by welding thin 
stainless steel plates together along their edges. As the production 
engineer, your job is to find dimensions for the base and height 
that will make the tank weigh as little as possible.

	a.	 What dimensions do you tell the shop to use?

	b.	 Briefly describe how you took weight into account.

	10.	 Catching rainwater  A 1125 ft3 open-top rectangular tank with 
a square base x ft on a side and y ft deep is to be built with its top 
flush with the ground to catch runoff water. The costs associated 
with the tank involve not only the material from which the tank is 
made but also an excavation charge proportional to the product xy.

	a.	 If the total cost is

c = 5(x2 + 4xy) + 10xy,

		  what values of x and y will minimize it?

	b.	 Give a possible scenario for the cost function in part (a).

	11.	 Designing a poster  You are designing a rectangular poster to 
contain 50 in2 of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will 
minimize the amount of paper used?

	12.	 Find the volume of the largest right circular cone that can be 
inscribed in a sphere of radius 3.

y

x

3

3

Exercises  4.6
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24″

36″

x

24″

x

x x

x x

x x

18″

24″

36″

Base

The sheet is then unfolded.

	18.	 A rectangle is to be inscribed under the arch of the curve 
y = 4 cos (0.5x) from x = -p to x = p. What are the dimen-
sions of the rectangle with largest area, and what is the largest 
area?

	19.	 Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the 
maximum volume?

	20.	 a. � The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around) 
does not exceed 108 in. What dimensions will give a box with 
a square end the largest possible volume?

Square end

Girth = distance
around here

Length

	b.	 Graph the volume of a 108-in. box (length plus girth equals 
108 in.) as a function of its length and compare what you see 
with your answer in part (a).

21.	 (Continuation of Exercise 20.)

	a.	 Suppose that instead of having a box with square ends you 
have a box with square sides so that its dimensions are h by h 
by w and the girth is 2h + 2w. What dimensions will give the 
box its largest volume now?

T

	13.	 Two sides of a triangle have lengths a and b, and the angle 
between them is u. What value of u will maximize the triangle’s 
area? (Hint: A = (1>2)ab sin u.)

	14.	 Designing a can  What are the dimensions of the lightest open-
top right circular cylindrical can that will hold a volume of 
1000 cm3? Compare the result here with the result in Example 2.

	15.	 Designing a can  You are designing a 1000 cm3 right circular 
cylindrical can whose manufacture will take waste into account. 
There is no waste in cutting the aluminum for the side, but the top 
and bottom of radius r will be cut from squares that measure 2r 
units on a side. The total amount of aluminum used up by the can 
will therefore be

A = 8r2 + 2prh

		  rather than the A = 2pr2 + 2prh in Example 2. In Example 2, 
the ratio of h to r for the most economical can was 2 to 1. What is 
the ratio now?

	16.	 Designing a box with a lid  A piece of cardboard measures  
10 in. by 15 in. Two equal squares are removed from the corners 
of a 10-in. side as shown in the figure. Two equal rectangles are 
removed from the other corners so that the tabs can be folded to 
form a rectangular box with lid.

10″

xx

x

x x

x

15″

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

	a.	 Write a formula V(x) for the volume of the box.

	b.	 Find the domain of V for the problem situation and graph V 
over this domain.

	c.	 Use a graphical method to find the maximum volume and the 
value of x that gives it.

	d.	 Confirm your result in part (c) analytically.

	17.	 Designing a suitcase  A 24-in.-by-36-in. sheet of cardboard is 
folded in half to form a 24-in.-by-18-in. rectangle as shown in the 
accompanying figure. Then four congruent squares of side length 
x are cut from the corners of the folded rectangle. The sheet is 
unfolded, and the six tabs are folded up to form a box with sides 
and a lid.

	a.	 Write a formula V(x) for the volume of the box.

	b.	 Find the domain of V for the problem situation and graph V 
over this domain.

	c.	 Use a graphical method to find the maximum volume and the 
value of x that gives it.

	d.	 Confirm your result in part (c) analytically.

	e.	 Find a value of x that yields a volume of 1120 in3.

	f.	 Write a paragraph describing the issues that arise in part (b).

T

T
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Crease

D C

BPA
x

x

L

R

Q (originally at A)
"L2 − x2

26.	 Constructing cylinders  Compare the answers to the following 
two construction problems.

	a.	 A rectangular sheet of perimeter 36 cm and dimensions x cm 
by y cm is to be rolled into a cylinder as shown in part (a) of 
the figure. What values of x and y give the largest volume?

	b.	 The same sheet is to be revolved about one of the sides of 
length y to sweep out the cylinder as shown in part (b) of the 
figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference = x
y

x

(b)

27.	 Constructing cones  A right triangle whose hypotenuse is 23 m long is revolved about one of its legs to generate a right 
circular cone. Find the radius, height, and volume of the cone of 
greatest volume that can be made this way.

h

r

"3

28.	 Find the point on the line 
x
a +

y
b

= 1 that is closest to the origin.

29.	 Find a positive number for which the sum of it and its reciprocal 
is the smallest (least) possible.

30.	 Find a positive number for which the sum of its reciprocal and 
four times its square is the smallest possible.

31.	 A wire b m long is cut into two pieces. One piece is bent into an 
equilateral triangle and the other is bent into a circle. If the sum of 
the areas enclosed by each part is a minimum, what is the length 
of each part?

32.	 Answer Exercise 31 if one piece is bent into a 
square and the other into a circle.

33.	 Determine the dimensions of the rectangle of 
largest area that can be inscribed in the right tri-
angle shown in the accompanying figure. 

w

Girth

h

h

	b.	 Graph the volume as a function of h and compare what you 
see with your answer in part (a).

22.	 A window is in the form of a rectangle surmounted by a semicircle. 
The rectangle is of clear glass, whereas the semicircle is of tinted 
glass that transmits only half as much light per unit area as clear 
glass does. The total perimeter is fixed. Find the proportions of 
the window that will admit the most light. Neglect the thickness 
of the frame.

23.	 A silo (base not included) is to be constructed in the form of a 
cylinder surmounted by a hemisphere. The cost of construction 
per square unit of surface area is twice as great for the hemisphere 
as it is for the cylindrical sidewall. Determine the dimensions to 
be used if the volume is fixed and the cost of construction is to be 
kept to a minimum. Neglect the thickness of the silo and waste in 
construction.

24.	 The trough in the figure is to be made to the dimensions shown. 
Only the angle u can be varied. What value of u will maximize 
the trough’s volume?

uu

20′

1′

1′

1′

25.	 Paper folding  A rectangular sheet of 8.5-in.-by-11-in. paper is 
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the 
paper is smoothed flat. The problem is to make the length of the 
crease as small as possible. Call the length L. Try it with paper.

	a.	 Show that L2 = 2x3>(2x - 8.5).

	b.	 What value of x minimizes L2?

	c.	 What is the minimum value of L?

T

4

3

5
w

h
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R =
y0

  2

g  sin 2a,

		  where g is the downward acceleration due to gravity. Find the 
angle a for which the range R is the largest possible.

43.	 Strength of a beam  The strength S of a rectangular wooden 
beam is proportional to its width times the square of its depth. 
(See the accompanying figure.)

	a.	 Find the dimensions of the strongest beam that can be cut 
from a 12-in.-diameter cylindrical log.

	b.	 Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k = 1. Reconcile what you see 
with your answer in part (a).

	c.	 On the same screen, graph S as a function of the beam’s depth 
d, again taking k = 1. Compare the graphs with one another 
and with your answer in part (a). What would be the effect of 
changing to some other value of k? Try it.

12″
d

w

44.	 Stiffness of a beam  The stiffness S of a rectangular beam is 
proportional to its width times the cube of its depth.

	a.	 Find the dimensions of the stiffest beam that can be cut from 
a 12-in.-diameter cylindrical log.

	b.	 Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k = 1. Reconcile what you see 
with your answer in part (a).

	c.	 On the same screen, graph S as a function of the beam’s depth 
d, again taking k = 1. Compare the graphs with one another 
and with your answer in part (a). What would be the effect of 
changing to some other value of k? Try it.

45.	 Frictionless cart  A small frictionless cart, attached to the wall 
by a spring, is pulled 10 cm from its rest position and released at 
time t = 0 to roll back and forth for 4 sec. Its position at time t is 
s = 10 cos pt.

	a.	 What is the cart’s maximum speed? When is the cart moving 
that fast? Where is it then? What is the magnitude of the 
acceleration then?

	b.	 Where is the cart when the magnitude of the acceleration is 
greatest? What is the cart’s speed then?

0 10
s

46.	 Two masses hanging side by side from springs have positions 
s1 = 2 sin t and s2 = sin 2t, respectively.

	a.	 At what times in the interval 0 6 t do the masses pass each 
other? (Hint: sin 2t = 2 sin t cos t.)

T

T

34.	 Determine the dimensions of the rect-
angle of largest area that can be 
inscribed in a semicircle of radius 3. 
(See accompanying figure.)

35.	 What value of a makes 
ƒ(x) = x2 + (a>x) have

	a.	 a local minimum at x = 2?

	b.	 a point of inflection at x = 1?

36.	 What values of a and b make ƒ(x) = x3 + ax2 + bx have

	a.	 a local maximum at x = -1 and a local minimum at x = 3?

	b.	 a local minimum at x = 4 and a point of inflection at x = 1?

Physical Applications
37.	 Vertical motion  The height above ground of an object moving 

vertically is given by

s = -16t2 + 96t + 112,

		  with s in feet and t in seconds. Find

	a.	 the object’s velocity when t = 0;

	b.	 its maximum height and when it occurs;

	c.	 its velocity when s = 0.

38.	 Quickest route  Jane is 2 mi offshore in a boat and wishes to reach 
a coastal village 6 mi down a straight shoreline from the point near-
est the boat. She can row 2 mph and can walk 5 mph. Where should 
she land her boat to reach the village in the least amount of time?

39.	 Shortest beam  The 8-ft wall shown here stands 27 ft from the 
building. Find the length of the shortest straight beam that will 
reach to the side of the building from the ground outside the wall.

Building

27′

Beam

8′ wall

40.	 Motion on a line  The positions of two particles on the s-axis 
are s1 = sin t and s2 = sin (t + p>3), with s1 and s2 in meters 
and t in seconds.

	a.	 At what time(s) in the interval 0 … t … 2p do the particles 
meet?

	b.	 What is the farthest apart that the particles ever get?

	c.	 When in the interval 0 … t … 2p is the distance between the 
particles changing the fastest?

41.	 The intensity of illumination at any point from a light source is 
proportional to the square of the reciprocal of the distance 
between the point and the light source. Two lights, one having an 
intensity eight times that of the other, are 6 m apart. How far from 
the stronger light is the total illumination least?

42.	 Projectile motion  The range R of a projectile fired from the ori-
gin over horizontal ground is the distance from the origin to the 
point of impact. If the projectile is fired with an initial velocity y0 
at an angle a with the horizontal, then in Chapter 13 we find that 

r = 3

w

h
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274	 Chapter 4: Applications of Derivatives

churches crumble away years ago called the change tin pest 
because it seemed to be contagious, and indeed it was, for the 
gray powder is a catalyst for its own formation.

				   A catalyst for a chemical reaction is a substance that con-
trols the rate of reaction without undergoing any permanent 
change in itself. An autocatalytic reaction is one whose product 
is a catalyst for its own formation. Such a reaction may proceed 
slowly at first if the amount of catalyst present is small and 
slowly again at the end, when most of the original substance is 
used up. But in between, when both the substance and its catalyst 
product are abundant, the reaction proceeds at a faster pace.

				   In some cases, it is reasonable to assume that the rate 
y = dx>dt of the reaction is proportional both to the amount of 
the original substance present and to the amount of product. That 
is, y may be considered to be a function of x alone, and

y = kx(a - x) = kax - kx2,

		  where
		   x = the amount of product
		   a = the amount of substance at the beginning
		   k = a positive constant.

		  At what value of x does the rate y have a maximum? What is the 
maximum value of y?

50.	 Airplane landing path  An airplane is flying at altitude H when it 
begins its descent to an airport runway that is at horizontal ground 
distance L from the airplane, as shown in the figure. Assume that the 
landing path of the airplane is the graph of a cubic polynomial func-
tion y = ax3 + bx2 + cx + d,  where y(-L) = H and y(0) = 0.

	a.	 What is dy>dx at x = 0?

	b.	 What is dy>dx at x = -L?

	c.	 Use the values for dy>dx at x = 0 and x = -L together with 
y(0) = 0 and y(-L) = H  to show that

y(x) = H c 2ax
L
b

3

+ 3ax
L
b

2

d .

Landing path y

x

H = Cruising altitude
Airport

L

Business and Economics
	51.	 It costs you c dollars each to manufacture and distribute backpacks. 

If the backpacks sell at x dollars each, the number sold is given by

n = a
x - c + b(100 - x),

		  where a and b are positive constants. What selling price will bring 
a maximum profit?

52.	 You operate a tour service that offers the following rates:

		 �   $200 per person if 50 people (the minimum number to book the 
tour) go on the tour.

		 �   For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

		  It costs $6000 (a fixed cost) plus $32 per person to conduct the 
tour. How many people does it take to maximize your profit?

	b.	 When in the interval 0 … t … 2p is the vertical distance 
between the masses the greatest? What is this distance? (Hint: 
cos 2t = 2 cos2 t - 1.)

s

0

m2

s1

s2

m1

47.	 Distance between two ships  At noon, ship A was 12 nautical 
miles due north of ship B. Ship A was sailing south at 12 knots 
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

	a.	 Start counting time with t = 0 at noon and express the dis-
tance s between the ships as a function of t.

	b.	 How rapidly was the distance between the ships changing at 
noon? One hour later?

	c.	 The visibility that day was 5 nautical miles. Did the ships 
ever sight each other?

	d.	 Graph s and ds>dt together as functions of t for -1 … t … 3, 
using different colors if possible. Compare the graphs and 
reconcile what you see with your answers in parts (b)  
and (c).

	e.	 The graph of ds>dt looks as if it might have a horizontal 
asymptote in the first quadrant. This in turn suggests that 
ds>dt approaches a limiting value as t S q. What is this 
value? What is its relation to the ships’ individual speeds?

48.	 Fermat’s principle in optics  Light from a source A is reflected 
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle, 
the angle of incidence must equal the angle of reflection, both 
measured from the line normal to the reflecting surface. (This 
result can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
re�ection

A
u1

u2

49.	 Tin pest  When metallic tin is kept below 13.2°C, it slowly 
becomes brittle and crumbles to a gray powder. Tin objects even-
tually crumble to this gray powder spontaneously if kept in a cold 
climate for years. The Europeans who saw tin organ pipes in their 

T
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			   Under reasonable assumptions about the elasticity of 
the tracheal wall and about how the air near the wall is 
slowed by friction, the average flow velocity y can be mod-
eled by the equation

y = c(r0 - r)r2 cm>sec,  
r0

2
… r … r0 ,

		  where r0 is the rest radius of the trachea in centimeters and c 
is a positive constant whose value depends in part on the 
length of the trachea.

			   Show that y is greatest when r = (2>3)r0; that is, when 
the trachea is about 33% contracted. The remarkable fact is 
that X-ray photographs confirm that the trachea contracts 
about this much during a cough.

	b.	 Take r0 to be 0.5 and c to be 1 and graph y over the interval 
0 … r … 0.5. Compare what you see with the claim that y is 
at a maximum when r = (2>3)r0.

Theory and Examples
61.	 An inequality for positive integers  Show that if a, b, c, and d 

are positive integers, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)
abcd

Ú 16.

62.	 The derivative dt>dx in Example 4

	a.	 Show that

ƒ(x) = x2a2 + x2

		  is an increasing function of x.

	b.	 Show that

g(x) = d - x2b2 + (d - x)2

		  is a decreasing function of x.

	c.	 Show that

dt
dx

= x

c12a2 + x2
- d - x

c22b2 + (d - x)2

		  is an increasing function of x.

63.	 Let ƒ(x) and g(x) be the differentiable functions graphed here. 
Point c is the point where the vertical distance between the curves 
is the greatest. Is there anything special about the tangents to the 
two curves at c? Give reasons for your answer.

x
a c b

y = f (x)

y = g(x)

T

53.	 Wilson lot size formula  One of the formulas for inventory 
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

A(q) = km
q + cm +

hq
2

,

		  where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of 
placing an order (the same, no matter how often you order), c is 
the cost of one item (a constant), m is the number of items sold 
each week (a constant), and h is the weekly holding cost per item 
(a constant that takes into account things such as space, utilities, 
insurance, and security).

	a.	 Your job, as the inventory manager for your store, is to find 
the quantity that will minimize A(q). What is it? (The formula 
you get for the answer is called the Wilson lot size formula.)

	b.	 Shipping costs sometimes depend on order size. When they 
do, it is more realistic to replace k by k + bq, the sum of k 
and a constant multiple of q. What is the most economical 
quantity to order now?

54.	 Production level  Prove that the production level (if any) at 
which average cost is smallest is a level at which the average cost 
equals marginal cost.

55.	 Show that if r(x) = 6x and c(x) = x3 - 6x2 + 15x are your rev-
enue and cost functions, then the best you can do is break even 
(have revenue equal cost).

56.	 Production level  Suppose that c(x) = x3 - 20x2 + 20,000x is 
the cost of manufacturing x items. Find a production level that 
will minimize the average cost of making x items.

57.	 You are to construct an open rectangular box with a square base 
and a volume of 48 ft3. If material for the bottom costs $6>ft2 and 
material for the sides costs $4>ft2, what dimensions will result in 
the least expensive box? What is the minimum cost?

58.	 The 800-room Mega Motel chain is filled to capacity when the 
room charge is $50 per night. For each $10 increase in room 
charge, 40 fewer rooms are filled each night. What charge per 
room will result in the maximum revenue per night?

Biology
59.	 Sensitivity to medicine  (Continuation of Exercise 72, Section 

3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative 
dR>dM , where

R = M2aC
2

- M
3
b

		  and C is a constant.

60.	 How we cough

	a.	 When we cough, the trachea (windpipe) contracts to increase 
the velocity of the air going out. This raises the questions of 
how much it should contract to maximize the velocity and 
whether it really contracts that much when we cough.
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276	 Chapter 4: Applications of Derivatives

	b.	  Graph the distance function D(x) and y = 2x together and 
reconcile what you see with your answer in part (a).

(x, "x)

0 3
2, 0

y

x

y = "x

a     b

68.	 a.  �How close does the semicircle y = 216 - x2 come to the 
point 11, 232?

	b.	  Graph the distance function and y = 216 - x2 together and 
reconcile what you see with your answer in part (a).

T

T

64.	 You have been asked to determine whether the function ƒ(x) =
3 + 4 cos x + cos 2x is ever negative.

	a.	 Explain why you need to consider values of x only in the 
interval 30, 2p4 .

	b.	 Is ƒ ever negative? Explain.

65.	 a.  �The function y = cot x - 22 csc x has an absolute maxi-
mum value on the interval 0 6 x 6 p. Find it.

	b.	  Graph the function and compare what you see with your 
answer in part (a).

66.	 a.  �The function y = tan x + 3 cot x has an absolute minimum 
value on the interval 0 6 x 6 p>2. Find it.

	b.	  Graph the function and compare what you see with your 
answer in part (a).

67.	 a.  �How close does the curve y = 2x come to the point  
(3>2, 0)? (Hint: If you minimize the square of the distance, 
you can avoid square roots.)

T

T

4.7 N ewton’s Method

In this section we study a numerical method, called Newton’s method or the Newton–
Raphson method, which is a technique to approximate the solution to an equation 
ƒ(x) = 0. Essentially it uses tangent lines of the graph of y = ƒ(x) near the points where ƒ 
is zero to estimate the solution. (A value of x where ƒ is zero is a root of the function ƒ and 
a solution of the equation ƒ(x) = 0.)

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation ƒ(x) = 0 is to pro-
duce a sequence of approximations that approach the solution. We pick the first number x0 
of the sequence. Then, under favorable circumstances, the method does the rest by moving 
step by step toward a point where the graph of ƒ crosses the x-axis (Figure 4.46). At each 
step the method approximates a zero of ƒ with a zero of one of its linearizations. Here is 
how it works.

The initial estimate, x0, may be found by graphing or just plain guessing. The method then 
uses the tangent to the curve y = ƒ(x) at (x0, ƒ(x0)) to approximate the curve, calling the 
point x1 where the tangent meets the x-axis (Figure 4.46). The number x1 is usually a better 
approximation to the solution than is x0. The point x2 where the tangent to the curve at 
(x1, ƒ(x1)) crosses the x-axis is the next approximation in the sequence. We continue on, 
using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-
ing way. Given the approximation xn, the point-slope equation for the tangent to the curve 
at (xn, ƒ(xn)) is

y = ƒ(xn) + ƒ′(xn)(x - xn).

We can find where it crosses the x-axis by setting y = 0 (Figure 4.47):

 0 = ƒ(xn) + ƒ′(xn)(x - xn)

 -  
ƒ(xn)
ƒ′(xn)

= x - xn

 x = xn -
ƒ(xn)
ƒ′(xn)

    If ƒ′(xn) ≠ 0

This value of x is the next approximation xn+1. Here is a summary of Newton’s method.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird
APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y = f (x)

Figure 4.46  Newton’s method starts 
with an initial guess x0 and (under favor-
able circumstances) improves the guess 
one step at a time.
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Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find 
solutions of equations.

In our first example, we find decimal approximations to 22 by estimating the posi-
tive root of the equation ƒ(x) = x2 - 2 = 0.

Example  1    Find the positive root of the equation

ƒ(x) = x2 - 2 = 0.

Solution  With ƒ(x) = x2 - 2 and ƒ′(x) = 2x, Equation (1) becomes

 xn+1 = xn -
xn 

2 - 2
2xn

 = xn -
xn

2
+ 1

xn

 =
xn

2
+ 1

xn
.

The equation

xn+1 =
xn

2
+ 1

xn

enables us to go from each approximation to the next with just a few keystrokes. With the 
starting value x0 = 1, we get the results in the first column of the following table. (To five 
decimal places, 22 = 1.41421.)

x

y

0

Root sought

Tangent line
(graph of
linearization
of f at xn)

y = f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))
Slope: f ′(xn)
Tangent line equation:
 y − f (xn) = f ′(xn)(x − xn)

xn+1 = xn −
f (xn)
f '(xn)

Figure 4.47  The geometry of the suc-
cessive steps of Newton’s method. From 
xn we go up to the curve and follow the 
tangent line down to find xn+1.

Newton’s Method
1.	 Guess a first approximation to a solution of the equation ƒ(x) = 0. A graph 

of y = ƒ(x) may help.

2.	 Use the first approximation to get a second, the second to get a third, and so 
on, using the formula

	 xn+1 = xn -
ƒ(xn)
ƒ′(xn)

,  if ƒ′(xn) ≠ 0.� (1)

Newton’s method is the method used by most software applications to calculate roots 
because it converges so fast (more about this later). If the arithmetic in the table in Exam-
ple 1 had been carried to 13 decimal places instead of 5, then going one step further would 
have given 22 correctly to more than 10 decimal places.

 	 Error	 Number of  
		  correct digits

x0 = 1	 -0.41421	 1

x1 = 1.5	 0.08579	 1

x2 = 1.41667	 0.00246	 3

x3 = 1.41422	 0.00001	 5
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278	 Chapter 4: Applications of Derivatives

Example  2    Find the x-coordinate of the point where the curve y = x3 - x crosses 
the horizontal line y = 1.

Solution  The curve crosses the line when x3 - x = 1 or x3 - x - 1 = 0. When does 
ƒ(x) = x3 - x - 1 equal zero? Since ƒ(1) = -1 and ƒ(2) = 5, we know by the Interme-
diate Value Theorem there is a root in the interval (1, 2) (Figure 4.48).

We apply Newton’s method to ƒ with the starting value x0 = 1. The results are dis-
played in Table 4.1 and Figure 4.49.

At n = 5, we come to the result x6 = x5 = 1.3247 17957. When xn+1 = xn, Equa-
tion (1) shows that ƒ(xn) = 0. We have found a solution of ƒ(x) = 0 to nine decimals.�

Table 4.1  The result of applying Newton’s method to ƒ(x) = x 3 - x - 1  
with x0 = 1

n	 xn	 ƒ(xn) 	 ƒ′(xn) 	 xn+1 = xn −
ƒ(xn)
ƒ′(xn)

0	 1	 -1	 2	 1.5

1	 1.5	    0.875	 5.75	 1.3478 26087

2	 1.3478 26087	    0.1006 82173	 4.4499 05482	 1.3252 00399

3	 1.3252 00399	    0.0020 58362	 4.2684 68292	 1.3247 18174

4	 1.3247 18174	    0.0000 00924	 4.2646 34722	 1.3247 17957

5	 1.3247 17957	 -1.8672E@13	 4.2646 32999	 1.3247 17957

x

y

0

5

1

10

−1 2 3

15

20
y = x3 − x − 1

Figure 4.48  The graph of ƒ(x) =
x3 - x - 1 crosses the x-axis once; this is 
the root we want to find (Example 2).

In Figure 4.50 we have indicated that the process in Example 2 might have started at 
the point B0(3, 23) on the curve, with x0 = 3. Point B0 is quite far from the x-axis, but the 
tangent at B0 crosses the x-axis at about (2.12, 0), so x1 is still an improvement over x0. If 
we use Equation (1) repeatedly as before, with ƒ(x) = x3 - x - 1 and ƒ′(x) = 3x2 - 1, 
we obtain the nine-place solution x7 = x6 = 1.3247 17957 in seven steps.

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations xn in 
Newton’s method. Intuitively, we mean that as the number n of approximations increases 
without bound, the values xn get arbitrarily close to the desired root r. (This notion is  
similar to the idea of the limit of a function g(t) as t approaches infinity, as defined in  
Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but 
this is not guaranteed. One way to test convergence is to begin by graphing the function to 
estimate a good starting value for x0. You can test that you are getting closer to a zero of 
the function by evaluating 0 ƒ(xn) 0 , and check that the approximations are converging by 
evaluating 0 xn - xn+1 0 .

Newton’s method does not always converge. For instance, if

ƒ(x) = e -2r - x, x 6 r2x - r, x Ú r,

the graph will be like the one in Figure 4.51. If we begin with x0 = r - h, we get 
x1 = r + h, and successive approximations go back and forth between these two values. 
No amount of iteration brings us closer to the root than our first guess.

If Newton’s method does converge, it converges to a root. Be careful, however. There 
are situations in which the method appears to converge but no root is there. Fortunately, 
such situations are rare.

x

y

0

5

1

10

−1 2.12 3

15

20

25

Root sought

1.6

y = x3 − x − 1

B0(3, 23)

B1(2.12, 6.35)

x1x2 x0
−1�"3 1�"3

Figure 4.50  Any starting value x0 to 
the right of x = 1>23 will lead to the 
root in Example 2.

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y = x3 − x − 1

(1, −1)

Figure 4.49  The first three x-values in 
Table 4.1 (four decimal places).
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When Newton’s method converges to a root, it may not be the root you have in mind. 
Figure 4.52 shows two ways this can happen.

Figure 4.51  Newton’s method fails to 
converge. You go from x0 to x1 and back 
to x0, never getting any closer to r.

x

y

0
r

y = f (x)

x1x0

Figure 4.52  If you start too far away, Newton’s method may miss the root you want.

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y = f (x)

y = f (x)

Root Finding
	 1.	 Use Newton’s method to estimate the solutions of the equation 

x2 + x - 1 = 0. Start with x0 = -1 for the left-hand solution 
and with x0 = 1 for the solution on the right. Then, in each case, 
find x2.

	 2.	 Use Newton’s method to estimate the one real solution of 
x3 + 3x + 1 = 0. Start with x0 = 0 and then find x2.

	 3.	 Use Newton’s method to estimate the two zeros of the function 
ƒ(x) = x4 + x - 3. Start with x0 = -1 for the left-hand zero and 
with x0 = 1 for the zero on the right. Then, in each case, find x2.

	 4.	 Use Newton’s method to estimate the two zeros of the function 
ƒ(x) = 2x - x2 + 1. Start with x0 = 0 for the left-hand zero and 
with x0 = 2 for the zero on the right. Then, in each case, find x2.

	 5.	 Use Newton’s method to find the positive fourth root of 2 by 
solving the equation x4 - 2 = 0. Start with x0 = 1 and find x2.

	 6.	 Use Newton’s method to find the negative fourth root of 2 by 
solving the equation x4 - 2 = 0. Start with x0 = -1 and find x2.

	 7.	 Guessing a root  Suppose that your first guess is lucky, in the 
sense that x0 is a root of ƒ(x) = 0. Assuming that ƒ′(x0) is 
defined and not 0, what happens to x1 and later approximations?

	 8.	 Estimating pi  You plan to estimate p>2 to five decimal places 
by using Newton’s method to solve the equation cos x = 0. Does 
it matter what your starting value is? Give reasons for your 
answer.

Theory and Examples
	 9.	 Oscillation  Show that if h 7 0, applying Newton’s method to

ƒ(x) = e2x, x Ú 02-x, x 6 0

		  leads to x1 = -h if x0 = h and to x1 = h if x0 = -h. Draw a 
picture that shows what is going on.

	10.	 Approximations that get worse and worse  Apply Newton’s 
method to ƒ(x) = x1>3 with x0 = 1 and calculate x1, x2, x3, and x4. 
Find a formula for 0 xn 0 . What happens to 0 xn 0  as n S q? Draw a 
picture that shows what is going on.

	11.	 Explain why the following four statements ask for the same  
information:

	  i)  Find the roots of ƒ(x) = x3 - 3x - 1.

	 ii)  �Find the x-coordinates of the intersections of the curve 
y = x3 with the line y = 3x + 1.

	iii)  �Find the x-coordinates of the points where the curve 
y = x3 - 3x crosses the horizontal line y = 1.

	iv)  �Find the values of x where the derivative of g(x) =
(1>4)x4 - (3>2)x2 - x + 5 equals zero.

	12.	 Locating a planet  To calculate a planet’s space coordinates, 
we have to solve equations like x = 1 + 0.5 sin x. Graphing the 
function ƒ(x) = x - 1 - 0.5 sin x suggests that the function has 
a root near x = 1.5. Use one application of Newton’s method to 
improve this estimate. That is, start with x0 = 1.5 and find x1. 
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

	13.	 Intersecting curves  The curve y = tan x crosses the line 
y = 2x between x = 0 and x = p>2. Use Newton’s method to 
find where.

	14.	 Real solutions of a quartic  Use Newton’s method to find the 
two real solutions of the equation x4 - 2x3 - x2 - 2x + 2 = 0.

	15.	 a.	 �How many solutions does the equation sin 3x = 0.99 - x2 
have?

	b.	 Use Newton’s method to find them.

	16.	 Intersection of curves

	a.	 Does cos 3x ever equal x? Give reasons for your answer.

	b.	 Use Newton’s method to find where.

	17.	 Find the four real zeros of the function ƒ(x) = 2x4 - 4x2 + 1.

T

T

T

Exercises  4.7
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280	 Chapter 4: Applications of Derivatives

the submarine travels on the parabolic path y = x2 and that the 
buoy is located at the point (2, -1>2).

	a.	 Show that the value of x that minimizes the distance between 
the submarine and the buoy is a solution of the equation 
x = 1>(x2 + 1).

	b.	 Solve the equation x = 1>(x2 + 1) with Newton’s method.

x

y

0

2, −

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

y = x2

a        b

	29.	 Curves that are nearly flat at the root  Some curves are so flat 
that, in practice, Newton’s method stops too far from the root to 
give a useful estimate. Try Newton’s method on ƒ(x) = (x - 1)40 
with a starting value of x0 = 2 to see how close your machine 
comes to the root x = 1. See the accompanying graph.

x

y

0

(2, 1)

1

1

2

Nearly �at

Slope = 40Slope = −40

y = (x − 1)40

30.	 The accompanying figure shows a circle of radius r with a chord 
of length 2 and an arc s of length 3. Use Newton’s method to 
solve for r and u (radians) to four decimal places. Assume 
0 6 u 6 p.

u 2

r

r

s = 3

T

	18.	 Estimating pi  Estimate p to as many decimal places as your 
calculator will display by using Newton’s method to solve the 
equation tan x = 0 with x0 = 3.

	19.	 Intersection of curves  At what value(s) of x does cos x = 2x?

	20.	 Intersection of curves  At what value(s) of x does cos x = -x?

	21.	 The graphs of y = x2(x + 1) and y = 1>x (x 7 0) intersect at 
one point x = r. Use Newton’s method to estimate the value of r 
to four decimal places.

1

21−1 0

3

2

x

y

y = x
1

y = x2(x + 1)

rr, 1a    b

	22.	 The graphs of y = 2x and y = 3 - x2 intersect at one point 
x = r. Use Newton’s method to estimate the value of r to four 
decimal places.

	23.	 Intersection of curves  At what value(s) of x does e-x2
 =

x2 - x + 1?

	24.	 Intersection of curves  At what value(s) of x does ln (1 - x2) =  
x - 1?

	25.	 Use the Intermediate Value Theorem from Section 2.5 to show 
that ƒ(x) = x3 + 2x - 4 has a root between x = 1 and x = 2. 
Then find the root to five decimal places.

	26.	 Factoring a quartic  Find the approximate values of r1 through 
r4 in the factorization

8x4 - 14x3 - 9x2 + 11x - 1 = 8(x - r1)(x - r2)(x - r3)(x - r4).

x

y

2

1−1 2

−4

−6

−2

−8

−10

−12

y = 8x4 − 14x3 − 9x2 + 11x − 1

	27.	 Converging to different zeros  Use Newton’s method to find 
the zeros of ƒ(x) = 4x4 - 4x2 using the given starting values.

	a.	 x0 = -2 and x0 = -0.8, lying in 1-q, -22>22
	b.	 x0 = -0.5 and x0 = 0.25, lying in 1-221>7, 221>72
	c.	 x0 = 0.8 and x0 = 2, lying in 122>2, q2
	d.	 x0 = -221>7 and x0 = 221>7

	28.	 The sonobuoy problem  In submarine location problems, it is 
often necessary to find a submarine’s closest point of approach 
(CPA) to a sonobuoy (sound detector) in the water. Suppose that 

T

T
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4.8  Antiderivatives

We have studied how to find the derivative of a function and how to use it to solve a wide 
range of problems. However, many other problems require that we recover a function from 
its known derivative (from its known rate of change). For instance, the laws of physics tell 
us the acceleration of an object falling from an initial height, and we can use this to com-
pute its velocity and its height at any time. More generally, starting with a function ƒ, we 
want to find a function F whose derivative is ƒ. If such a function F exists, it is called an 
antiderivative of ƒ. We will see in the next chapter that antiderivatives are the link con-
necting the two major elements of calculus: derivatives and definite integrals.

Finding Antiderivatives

Theorem 8  If F is an antiderivative of ƒ on an interval I, then the most gen-
eral antiderivative of ƒ on I is

F(x) + C

where C is an arbitrary constant.

Definition  A function F is an antiderivative of ƒ on an interval I if 
F′(x) = ƒ(x) for all x in I.

The process of recovering a function F(x) from its derivative ƒ(x) is called antidifferentia-
tion. We use capital letters such as F to represent an antiderivative of a function ƒ, G to 
represent an antiderivative of g, and so forth.

Example  1    Find an antiderivative for each of the following functions.

(a)	 ƒ(x) = 2x      (b)  g(x) = cos x      (c)  h(x) = 1
x + 2e2x

Solution  We need to think backward here: What function do we know has a derivative 
equal to the given function?

(a)	 F(x) = x2      (b)  G(x) = sin x      (c)  H(x) = ln 0 x 0 + e2x

Each answer can be checked by differentiating. The derivative of F(x) = x2 is 2x.  
The derivative of G(x) = sin x is cos x, and the derivative of H(x) = ln 0 x 0 + e2x is 
(1>x) + 2e2x.�

The function F(x) = x2 is not the only function whose derivative is 2x. The function 
x2 + 1 has the same derivative. So does x2 + C for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two 
antiderivatives of a function differ by a constant. So the functions x2 + C, where C is an 
arbitrary constant, form all the antiderivatives of ƒ(x) = 2x. More generally, we have 
the following result.

Thus the most general antiderivative of ƒ on I is a family of functions F(x) + C 
whose graphs are vertical translations of one another. We can select a particular antideriva-
tive from this family by assigning a specific value to C. Here is an example showing how 
such an assignment might be made.
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282	 Chapter 4: Applications of Derivatives

Example  2    Find an antiderivative of ƒ(x) = 3x2 that satisfies F(1) = -1.

Solution  Since the derivative of x3 is 3x2, the general antiderivative

F(x) = x3 + C

gives all the antiderivatives of ƒ(x). The condition F(1) = -1 determines a specific value 
for C. Substituting x = 1 into F(x) = x3 + C gives

F(1) = (1)3 + C = 1 + C.

Since F(1) = -1, solving 1 + C = -1 for C gives C = -2. So

F(x) = x3 - 2

is the antiderivative satisfying F(1) = -1. Notice that this assignment for C selects the 
particular curve from the family of curves y = x3 + C that passes through the point 
(1, -1) in the plane (Figure 4.53).�

By working backward from assorted differentiation rules, we can derive formulas and 
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative 
formula to obtain the function to its left. For example, the derivative of (tan kx)>k + C is 
sec2 kx, whatever the value of the constants C or k ≠ 0, and this establishes Formula 4 
for the most general antiderivative of sec2 kx.

Example  3    Find the general antiderivative of each of the following functions.

	(a)  ƒ(x) = x5	 (b)  g(x) = 12x
	 (c)  h(x) = sin 2x

	(d)  i(x) = cos  
x
2

	 (e)  j(x) = e-3x	 (f)  k(x) = 2x

Figure 4.53  The curves y = x3 + C 
fill the coordinate plane without overlap-
ping. In Example 2, we identify the curve 
y = x3 - 2 as the one that passes through 
the given point (1, -1).

2

1

0

−1

−2

x

y

y = x3 + C C = 1

C = 2

C = 0

C = −1

C = −2

(1, −1)

Table 4.2  Antiderivative formulas, k a nonzero constant

	 Function	 General antiderivative	 Function	 General antiderivative

  1.	 xn	 1
n + 1

 xn+1 + C, n ≠ -1

  2.	 sin kx	 -1
k
 cos kx + C 

  3.	 cos kx	 1
k
 sin kx + C

  4.	 sec2 kx	 1
k
 tan kx + C

  5.	 csc2 kx	 -1
k
 cot kx + C

  6.	 sec kx tan kx	 1
k
 sec kx + C

  7.	 csc kx cot kx	 -1
k
 csc kx + C

  8.	 ekx	 1
k

 ekx + C

  9.	 1
x 	 ln 0 x 0 + C, x ≠ 0

10.	 121 - k2x2
	 1

k
 sin-1 kx + C

11.	 1
1 + k2x2	 1

k
  tan-1 kx + C

12.	 1

x2k2x2 - 1
	 sec-1 kx + C, kx 7 1

13.	 akx	 a 1
k ln a

b  akx + C, a 7 0, a ≠ 1
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Solution  In each case, we can use one of the formulas listed in Table 4.2.

	(a)	 F(x) = x6

6
+ C	

Formula 1  
with n = 5

	(b)	 g(x) = x-1>2, so

		  G(x) = x1>2

1>2 + C = 22x + C	
Formula 1  
with n = -1>2

	(c)	 H(x) = -cos 2x
2

+ C	
Formula 2  
with k = 2

	(d)	 I(x) =
sin (x>2)

1>2 + C = 2 sin  
x
2

+ C	
Formula 3  
with k = 1>2

	(e)	 J(x) = -1
3 e-3x + C	

Formula 8  
with k = -3

	(f)	 K(x) = a 1
ln 2
b  2x + C	

Formula 13  
with a = 2, k = 1 �

Other derivative rules also lead to corresponding antiderivative rules. We can add and 
subtract antiderivatives and multiply them by constants.

Table 4.3  Antiderivative linearity rules

 		  Function	 General antiderivative

1.	 Constant Multiple Rule:	 kƒ(x)	 kF(x) + C, k a constant

2.	 Negative Rule:	 -ƒ(x)	 -F(x) + C

3.	 Sum or Difference Rule:	 ƒ(x) { g(x)	 F(x) { G(x) + C

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and 
verifying that the result agrees with the original function. Formula 2 is the special case 
k = -1 in Formula 1.

Example  4    Find the general antiderivative of

ƒ(x) = 32x
+ sin 2x.

Solution  We have that ƒ(x) = 3g(x) + h(x) for the functions g and h in Example 3. 
Since G(x) = 22x is an antiderivative of g(x) from Example 3b, it follows from the Con-
stant Multiple Rule for antiderivatives that 3G(x) = 3 # 22x = 62x is an antiderivative 
of 3g(x) = 3>2x. Likewise, from Example 3c we know that H(x) = (-1>2) cos 2x is an 
antiderivative of h(x) = sin 2x. From the Sum Rule for antiderivatives, we then get that

 F(x) = 3G(x) + H(x) + C

 = 62x - 1
2

 cos 2x + C

is the general antiderivative formula for ƒ(x), where C is an arbitrary constant.�

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods 
and techniques for finding them are a major part of calculus, and we take up that study in 
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284	 Chapter 4: Applications of Derivatives

Chapter 8. Finding an antiderivative for a function ƒ(x) is the same problem as finding a 
function y(x) that satisfies the equation

dy
dx

= ƒ(x).

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the 
equation. This function is found by taking the antiderivative of ƒ(x). We can fix the arbi-
trary constant arising in the antidifferentiation process by specifying an initial condition

y(x0) = y0.

This condition means the function y(x) has the value y0 when x = x0. The combination of 
a differential equation and an initial condition is called an initial value problem. Such 
problems play important roles in all branches of science.

The most general antiderivative F(x) + C (such as x3 + C in Example 2) of the 
function ƒ(x) gives the general solution y = F(x) + C of the differential equation 
dy>dx = ƒ(x). The general solution gives all the solutions of the equation (there are infi-
nitely many, one for each value of C). We solve the differential equation by finding its 
general solution. We then solve the initial value problem by finding the particular solu-
tion that satisfies the initial condition y(x0) = y0. In Example 2, the function y = x3 - 2 
is the particular solution of the differential equation dy>dx = 3x2 satisfying the initial 
condition y(1) = -1.

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and 
the derivative of its velocity function gives its acceleration. If we know an object’s accel-
eration, then by finding an antiderivative we can recover the velocity, and from an antide-
rivative of the velocity we can recover its position function. This procedure was used as an 
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual 
framework in terms of antiderivatives, we revisit the problem from the point of view of 
differential equations.

Example  5    A hot-air balloon ascending at the rate of 12 ft>sec is at a height 80 ft 
above the ground when a package is dropped. How long does it take the package to reach 
the ground?

Solution  Let y(t) denote the velocity of the package at time t, and let s(t) denote its 
height above the ground. The acceleration of gravity near the surface of the earth is 
32 ft>sec2. Assuming no other forces act on the dropped package, we have

dy
dt

= -32.        
Negative because gravity acts in the 
direction of decreasing s

This leads to the following initial value problem (Figure 4.54):

	  Differential equation:    
dy
dt

= -32

	 Initial condition:  y(0) = 12.     Balloon initially rising

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1.	 Solve the differential equation: The general formula for an antiderivative of -32 is

y = -32t + C.

	 Having found the general solution of the differential equation, we use the initial con-
dition to find the particular solution that solves our problem.

Figure 4.54  A package dropped from 
a rising hot-air balloon (Example 5).

s

0 ground

s(t)

y(0) = 12

dy
dt

 = −32
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2.	 Evaluate C:

 12 = -32(0) + C    Initial condition y(0) = 12

 C = 12.

	 The solution of the initial value problem is

y = -32t + 12.

Since velocity is the derivative of height, and the height of the package is 80 ft at time 
t = 0 when it is dropped, we now have a second initial value problem: 

Differential equation:  
ds
dt

= -32t + 12    Set y = ds>dt  in the previous equation.

Initial condition:    s(0) = 80.

We solve this initial value problem to find the height as a function of t.

1.	 Solve the differential equation: Finding the general antiderivative of -32t + 12 gives

s = -16t2 + 12t + C.

2.	 Evaluate C:

 80 = -16(0)2 + 12(0) + C    Initial condition s(0) = 80

 C = 80.

	 The package’s height above ground at time t is

s = -16t2 + 12t + 80.

Use the solution: To find how long it takes the package to reach the ground, we set s 
equal to 0 and solve for t:

 -16t2 + 12t + 80 = 0

 -4t2 + 3t + 20 = 0

 t = -3 { 2329
-8  Quadratic formula

 t ≈ -1.89,  t ≈ 2.64.

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-
ative root has no physical meaning.)�

Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function ƒ.

Definition  The collection of all antiderivatives of ƒ is called the indefinite 
integral of ƒ with respect to x, and is denoted by

Lƒ(x) dx.

The symbol 1  is an integral sign. The function ƒ is the integrand of the inte-
gral, and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand function is always 
followed by a differential to indicate the variable of integration. We will have more to say 
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286	 Chapter 4: Applications of Derivatives

about why this is important in Chapter 5. Using this notation, we restate the solutions of 
Example 1, as follows:

L2x dx = x2 + C,

Lcos x dx = sin x + C,

L
 

a1x + 2e2xb  dx = ln 0 x 0 + e2x + C.

This notation is related to the main application of antiderivatives, which will be explored 
in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite sums, 
an unexpected and wonderfully useful role that is described in a central result of Chapter 5, 
called the Fundamental Theorem of Calculus.

Example  6    Evaluate

L (x2 - 2x + 5) dx.

Solution  If we recognize that (x3>3) - x2 + 5x is an antiderivative of x2 - 2x + 5, 
we can evaluate the integral as

    antiderivative$++%++&

L (x2 - 2x + 5) dx = x3

3 - x2 + 5x + C."
arbitrary constant

If we do not recognize the antiderivative right away, we can generate it term-by-term 
with the Sum, Difference, and Constant Multiple Rules:

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 = Lx2 dx - 2Lx dx + 5L1 dx

 = ax
3

3 + C1b - 2ax
2

2
+ C2b + 5(x + C3)

 = x3

3 + C1 - x2 - 2C2 + 5x + 5C3.

This formula is more complicated than it needs to be. If we combine C1, -2C2, and 5C3 
into a single arbitrary constant C = C1 - 2C2 + 5C3, the formula simplifies to

x3

3 - x2 + 5x + C

and still gives all the possible antiderivatives there are. For this reason, we recommend that 
you go right to the final form even if you elect to integrate term-by-term. Write

 L (x2 - 2x + 5) dx = Lx2 dx - L2x dx + L5 dx

 = x3

3 - x2 + 5x + C.

Find the simplest antiderivative you can for each part and add the arbitrary constant of 
integration at the end.�
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Finding Antiderivatives
In Exercises 1–24, find an antiderivative for each function. Do as 
many as you can mentally. Check your answers by differentiation.

	 1.	 	a.	2x	 b.	 x2	 c.	 x2 - 2x + 1

	 2.	 	a.	6x	 b.	 x7	 c.	 x7 - 6x + 8

	 3.	 	a.	 -3x-4	 b.	 x-4	 c.	 x-4 + 2x + 3

	 4.	 	a.	 2x-3	 b.	
x-3

2
+ x2	 c.	 -x-3 + x - 1

	 5.	 	a.	 1
x2	 b.	

5
x2	 c.	 2 - 5

x2

	 6.	 	a.	 -  
2
x3	 b.	 1

2x3	 c.	 x3 - 1
x3

	 7.	 	a.	
3
2

 2x	 b.	 1

22x
	 c.	 2x + 12x

	 8.	 	a.	 4
3
23 x	 b.	 1

323 x
	 c.	 23 x + 123 x

	 9.	 	a.	 2
3

 x-1>3	 b.	 1
3

 x-2>3	 c.	 -  
1
3

 x-4>3

	10.	 	a.	 1
2

 x-1>2	 b.	 -  
1
2

 x-3>2	 c.	 -  
3
2

 x-5>2

	11.	 	a.	 1
x 	 b.	

7
x 	 c.	 1 - 5

x

	12.	 	a.	 1
3x

	 b.	 2
5x

	 c.	 1 + 4
3x

- 1
x2

	13.	 	a.	 -p sin px	 b.	 3 sin x	 c.	 sin px - 3 sin 3x

	14.	 	a.	p cos px	 b.	
p

2
 cos  
px
2

	 c.	 cos 
px
2

+ p cos x

	15.	 	a.	 sec2 x	 b.	 2
3

 sec2  
x
3

	 c.	 -sec2  
3x
2

16.	 	a.	 csc2 x	 b.	 -  
3
2

 csc2  
3x
2

	 c.	 1 - 8 csc2 2x

17.	 	a.	csc x cot x	 b.	 -csc 5x cot 5x	 c.	 -p csc 
px
2

 cot 
px
2

18.	 	a.	sec x tan x	 b.	 4 sec 3x tan 3x	 c.	 sec 
px
2

 tan 
px
2

19.	 	a.	 e3x	 b.	 e-x	 c.	 ex>2

20.	 	a.	 e-2x	 b.	 e4x>3	 c.	 e-x>5

21.	 	a.	 3x	 b.	 2-x	 c.	 a5
3
b

x

22.	 	a.	 x23	 b.	 xp	 c.	 x22-1

23.	 	a.	 221 - x2
	 b.	 1

2(x2 + 1)
	 c.	 1

1 + 4x2

24.	 	a.	 x - a1
2
b

x

	 b.	 x2 + 2x	 c.	 px - x-1

Finding Indefinite Integrals
In Exercises 25–70, find the most general antiderivative or indefinite 
integral. You may need to try a solution and then adjust your guess. 
Check your answers by differentiation.

25.	 L (x + 1) dx	 26.	 L (5 - 6x) dx

27.	 L a3t2 + t
2
b  dt	 28.	 L a

t2

2
+ 4t3b  dt

29.	 L (2x3 - 5x + 7) dx	 30.	 L (1 - x2 - 3x5) dx

31.	 L a
1
x2 - x2 - 1

3
b  dx	 32.	 L a

1
5

- 2
x3 + 2xb  dx

33.	 Lx-1>3 dx	 34.	 Lx-5>4 dx

35.	 L12x + 23 x2 dx	 36.	 L a
2x
2

+ 22x
b  dx

37.	 L a8y - 2
y1>4b  dy	 38.	 L a

1
7

- 1
y5>4b  dy

39.	 L2x(1 - x-3) dx	 40.	 Lx-3(x + 1) dx

41.	 L  
t2t + 2t

t2  dt	 42.	 L  
4 + 2t

t3  dt

43.	 L (-2 cos t) dt	 44.	 L (-5 sin t) dt

45.	 L7 sin 
u

3
  du	 46.	 L3 cos 5u du

47.	 L (-3 csc2 x) dx	 48.	 L a-  
sec2 x

3
b  dx

49.	 L  
csc u cot u

2
 du	 50.	 L  

2
5

 sec u tan u du

51.	 L (e3x + 5e-x) dx	 52.	 L (2ex - 3e-2x) dx

53.	 L  (e-x + 4x) dx	 54.	 L (1.3)x dx

55.	 L (4 sec x tan x - 2 sec2 x) dx

	56.	 L  
1
2

 (csc2 x - csc x cot x) dx

57.	 L (sin 2x - csc2 x) dx	 58.	 L (2 cos 2x - 3 sin 3x) dx

59.	 L  
1 + cos 4t

2
 dt	 60.	 L  

1 - cos 6t
2

 dt

61.	 L  a1x - 5
x2 + 1

b  dx	 62.	 L  a 221 - y2
- 1

y1>4b  dy

63.	 L  3x23 dx	 64.	 Lx22-1 dx

Exercises  4.8
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288	 Chapter 4: Applications of Derivatives

84.	 Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

	a.	 L  tan u sec2 u du = sec3 u
3

+ C

	b.	 L  tan u sec2 u du = 1
2

 tan2 u + C

	c.	 L  tan u sec2 u du = 1
2

 sec2 u + C

85.	 Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

	a.	 L (2x + 1)2 dx =
(2x + 1)3

3
+ C

	b.	 L3(2x + 1)2 dx = (2x + 1)3 + C

	c.	 L6(2x + 1)2 dx = (2x + 1)3 + C

86.	 Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

	a.	 L22x + 1 dx = 2x2 + x + C

	b.	 L22x + 1 dx = 2x2 + x + C

	c.	 L22x + 1 dx = 1
3

 122x + 123 + C

87.	 Right, or wrong? Give a brief reason why.

L  
-15(x + 3)2

(x - 2)4  dx = ax + 3
x - 2

b
3

+ C

88.	 Right, or wrong? Give a brief reason why.

L  
x cos (x2) - sin (x2)

x2  dx =
sin (x2)

x + C

Initial Value Problems
89.	 Which of the following graphs shows the solution of the initial 

value problem

dy
dx

= 2x, y = 4 when x = 1?

x

y

0 1−1

(a)

(1, 4)

x

y

0 1−1

(b)

(1, 4)

x

y

0 1−1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

		  Give reasons for your answer.

65.	 L (1 + tan2 u) du

		  (Hint: 1 + tan2 u = sec2 u)

66.	 L (2 + tan2 u) du

67.	 Lcot2 x dx

		  (Hint: 1 + cot2 x = csc2 x)

68.	 L (1 - cot2 x) dx

69.	 L  cos u (tan u + sec u) du	 70.	 L  
csc u

csc u - sin u
 du

Checking Antiderivative Formulas
Verify the formulas in Exercises 71–82 by differentiation.

71.	 L (7x - 2)3 dx =
(7x - 2)4

28
+ C

72.	 L (3x + 5)-2 dx = -  
(3x + 5)-1

3
+ C

73.	 L sec2 (5x - 1) dx = 1
5

 tan (5x - 1) + C

74.	 Lcsc2 ax - 1
3
b  dx = -3 cot ax - 1

3
b + C

75.	 L  
1

(x + 1)2 dx = -  
1

x + 1
+ C

76.	 L  
1

(x + 1)2 dx = x
x + 1

+ C

	77.	 L  
1

x + 1
 dx = ln 0 x + 1 0 + C, x ≠ -1

	78.	 L  xex dx = xex - ex + C

	79.	 L  
dx

a2 + x2 = 1
a tan-1 ax

ab + C

80.	 L  
dx2a2 - x2

= sin-1 ax
ab + C

81.	 L  
tan-1 x

x2  dx = ln x - 1
2

 ln (1 + x2) - tan-1 x
x + C

82.	 L (sin-1 x)2 dx = x(sin-1 x)2 - 2x + 221 - x2 sin-1 x + C

83.	 Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

	a.	 Lx sin x dx = x2

2
 sin x + C

	b.	 Lx sin x dx = -x cos x + C

	c.	 Lx sin x dx = -x cos x + sin x + C
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	110.	
d3 u
dt3 = 0; u″(0) = -2, u′(0) = -  

1
2

, u(0) = 22

	111.	 y(4) = -sin t + cos t ;
y‴(0) = 7, y″(0) = y′(0) = -1, y(0) = 0

	112.	 y(4) = -cos x + 8 sin 2x ;
y‴(0) = 0, y″(0) = y′(0) = 1, y(0) = 3

	113.	 Find the curve y = ƒ(x) in the xy-plane that passes through the 
point (9, 4) and whose slope at each point is 32x.

	114.	 a.  �Find a curve y = ƒ(x) with the following properties:

	 	  i) 
d2y

dx2 = 6x

		  ii)  �Its graph passes through the point (0, 1) and has a hori-
zontal tangent there.

	b.	 How many curves like this are there? How do you know?

Solution (Integral) Curves
Exercises 115–118 show solution curves of differential equations. In 
each exercise, find an equation for the curve through the labeled point.

	115.	 	 116.	

	117.	 	 118.	

Applications
119.	 Finding displacement from an antiderivative of velocity

	a.	 Suppose that the velocity of a body moving along the s-axis is

ds
dt

= y = 9.8t - 3.

		   i)	 �Find the body’s displacement over the time interval from 
t = 1 to t = 3 given that s = 5 when t = 0.

		  ii)	 �Find the body’s displacement from t = 1 to t = 3 given 
that s = -2 when t = 0.

		 iii)	 �Now find the body’s displacement from t = 1 to t = 3 
given that s = s0 when t = 0.

x
0

(1, 0.5)

1

1

2

−1

y = 1 −     x1�3dy
dx

4
3

x
1

1

y

2−1

2

−1

0

 

(−1, 1)

= x − 1
dy
dx

x
0 2

1

y
= sin x − cos xdy

dx

(−p, −1)

x
0

(1, 2)

1

2

y

2

−2

4

6

=           + psin pxdy
dx

1
2"x

3

	 90.	 Which of the following graphs shows the solution of the initial 
value problem

dy
dx

= -x, y = 1 when x = -1?

x

y

0

(−1, 1)
(−1, 1) (−1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

		  Give reasons for your answer.

Solve the initial value problems in Exercises 91–112.

	 91.	
dy
dx

= 2x - 7, y(2) = 0

	 92.	
dy
dx

= 10 - x, y(0) = -1

	 93.	
dy
dx

= 1
x2 + x, x 7 0; y(2) = 1

	 94.	
dy
dx

= 9x2 - 4x + 5, y(-1) = 0

	 95.	
dy
dx

= 3x-2>3, y(-1) = -5

	 96.	
dy
dx

= 1

22x
, y(4) = 0

	 97.	
ds
dt

= 1 + cos t, s(0) = 4

	 98.	
ds
dt

= cos t + sin t, s(p) = 1

	 99.	
dr
du

= -p sin pu, r(0) = 0

	100.	
dr
du

= cos pu, r(0) = 1

	101.	
dy
dt

= 1
2

 sec t tan t, y(0) = 1

	102.	
dy
dt

= 8t + csc2 t, yap
2
b = -7

	103.	
dy
dt

= 3

t2t2 - 1
, t 7 1, y(2) = 0

	104.	
dy
dt

= 8
1 + t2 + sec2 t, y(0) = 1

	105.	
d2y

dx2 = 2 - 6x; y′(0) = 4, y(0) = 1

	106.	
d2y

dx2 = 0; y′(0) = 2, y(0) = 0

	107.	
d2r
dt2 = 2

t3 ; 
dr
dt

2
t=1

= 1, r(1) = 1

	108.	
d2s
dt2 = 3t

8
 ; 

ds
dt

2
t=4

= 3, s(4) = 4

	109.	
d3y

dx3 = 6; y″(0) = -8, y′(0) = 0, y(0) = 5
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290	 Chapter 4: Applications of Derivatives

		  where y0 and s0 are the body’s velocity and position at time 
t = 0. Derive this equation by solving the initial value problem

Differential equation:  
d2s
dt2 = a

Initial conditions:   
ds
dt

= y0 and s = s0 when t = 0.

126.	 Free fall near the surface of a planet  For free fall near the 
surface of a planet where the acceleration due to gravity has a 
constant magnitude of g length@units>sec2, Equation (1) in Exer-
cise 125 takes the form

	 s = -  
1
2

 gt2 + y0 t + s0 ,� (2)

		  where s is the body’s height above the surface. The equation has 
a minus sign because the acceleration acts downward, in the 
direction of decreasing s. The velocity y0 is positive if the object 
is rising at time t = 0 and negative if the object is falling.

Instead of using the result of Exercise 125, you can derive 
Equation (2) directly by solving an appropriate initial value 
problem. What initial value problem? Solve it to be sure you 
have the right one, explaining the solution steps as you go along.

127.	 Suppose that

ƒ(x) = d
dx

 11 - 2x2 and g(x) = d
dx

 (x + 2).

		  Find:

	a.	 Lƒ(x) dx	 b.  Lg(x) dx

	c.	 L [-ƒ(x)] dx	 d.  L 3-g(x)4  dx

	e.	 L 3ƒ(x) + g(x)4  dx	 f.  L 3ƒ(x) - g(x)4  dx

128.	 Uniqueness of solutions  If differentiable functions y = F(x) 
and y = g(x) both solve the initial value problem

dy
dx

= ƒ(x),  y(x0) = y0,

		  on an interval I, must F(x) = G(x) for every x in I? Give reasons 
for your answer.

Computer Explorations
Use a CAS to solve the initial value problems in Exercises 129–132. 
Plot the solution curves.

129.	 y′ = cos2 x + sin x, y(p) = 1

130.	 y′ = 1
x + x, y(1) = -1

131.	 y′ = 124 - x2
, y(0) = 2

132.	 y″ = 2
x + 2x, y(1) = 0, y′(1) = 0

	b.	 Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time t. Is it true that 
once you know an antiderivative of the velocity function 
ds>dt you can find the body’s displacement from t = a to 
t = b even if you do not know the body’s exact position at 
either of those times? Give reasons for your answer.

120.	 Liftoff from Earth  A rocket lifts off the surface of Earth with 
a constant acceleration of 20 m>sec2. How fast will the rocket 
be going 1 min later?

121.	 Stopping a car in time  You are driving along a highway at a 
steady 60 mph (88 ft>sec) when you see an accident ahead 
and slam on the brakes. What constant deceleration is required 
to stop your car in 242 ft? To find out, carry out the following 
steps.

	1.	Solve the initial value problem

Differential equation: 
d2s
dt2 = -k  (k constant)

Initial conditions:   
ds
dt

= 88 and s = 0 when t = 0.

Measuring time and distance from  
when the brakes are applied

	2.	Find the value of t that makes ds>dt = 0. (The answer will 
involve k.)

	3.	Find the value of k that makes s = 242 for the value of t you 
found in Step 2.

122.	 Stopping a motorcycle  The State of Illinois Cycle Rider 
Safety Program requires motorcycle riders to be able to brake 
from 30 mph (44 ft>sec) to 0 in 45 ft. What constant decelera-
tion does it take to do that?

123.	 Motion along a coordinate line  A particle moves on a coordi-
nate line with acceleration a = d2s>dt2 = 152t - 13>2t2, 
subject to the conditions that ds>dt = 4 and s = 0 when t = 1. 
Find

	a.	 the velocity y = ds>dt in terms of t

	b.	 the position s in terms of t.

124.	 The hammer and the feather  When Apollo 15 astronaut 
David Scott dropped a hammer and a feather on the moon to 
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the 
ground. The television footage of the event shows the hammer 
and the feather falling more slowly than on Earth, where, in a 
vacuum, they would have taken only half a second to fall the 4 
ft. How long did it take the hammer and feather to fall 4 ft on the 
moon? To find out, solve the following initial value problem for 
s as a function of t. Then find the value of t that makes s equal to 0.

Differential equation: 
d2s
dt2 = -5.2 ft>sec2

Initial conditions:   
ds
dt

= 0 and s = 4 when t = 0

125.	 Motion with constant acceleration  The standard equation for 
the position s of a body moving with a constant acceleration a 
along a coordinate line is

	 s = a
2

 t2 + y0 t + s0 ,� (1)

T
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Chapter  4	 Questions to Guide Your Review

Chapter  4	 Practice Exercises

	 1.	 What can be said about the extreme values of a function that is 
continuous on a closed interval?

	 2.	 What does it mean for a function to have a local extreme value on 
its domain? An absolute extreme value? How are local and abso-
lute extreme values related, if at all? Give examples.

	 3.	 How do you find the absolute extrema of a continuous function 
on a closed interval? Give examples.

	 4.	 What are the hypotheses and conclusion of Rolle’s Theorem? Are 
the hypotheses really necessary? Explain.

	 5.	 What are the hypotheses and conclusion of the Mean Value Theo-
rem? What physical interpretations might the theorem have?

	 6.	 State the Mean Value Theorem’s three corollaries.

	 7.	 How can you sometimes identify a function ƒ(x) by knowing ƒ′ 
and knowing the value of ƒ at a point x = x0? Give an example.

	 8.	 What is the First Derivative Test for Local Extreme Values? Give 
examples of how it is applied.

	 9.	 How do you test a twice-differentiable function to determine 
where its graph is concave up or concave down? Give examples.

	10.	 What is an inflection point? Give an example. What physical sig-
nificance do inflection points sometimes have?

	11.	 What is the Second Derivative Test for Local Extreme Values? 
Give examples of how it is applied.

	12.	 What do the derivatives of a function tell you about the shape of 
its graph?

	13.	 List the steps you would take to graph a polynomial function. 
Illustrate with an example.

Extreme Values
	 1.	 Does ƒ(x) = x3 + 2x + tan x have any local maximum or mini-

mum values? Give reasons for your answer.

	 2.	 Does g(x) = csc x + 2 cot x have any local maximum values? 
Give reasons for your answer.

	 3.	 Does ƒ(x) = (7 + x)(11 - 3x)1>3 have an absolute minimum 
value? An absolute maximum? If so, find them or give reasons 
why they fail to exist. List all critical points of ƒ.

	 4.	 Find values of a and b such that the function

ƒ(x) = ax + b
x2 - 1

		  has a local extreme value of 1 at x = 3. Is this extreme value a 
local maximum, or a local minimum? Give reasons for your 
answer.

	 5.	 Does g(x) = ex - x have an absolute minimum value? An abso-
lute maximum? If so, find them or give reasons why they fail to 
exist. List all critical points of g.

	14.	 What is a cusp? Give examples.

	15.	 List the steps you would take to graph a rational function. Illus-
trate with an example.

	16.	 Outline a general strategy for solving max-min problems. Give 
examples.

	17.	 Describe l’Hôpital’s Rule. How do you know when to use the rule 
and when to stop? Give an example.

	18.	 How can you sometimes handle limits that lead to indeterminate 
forms q>q, q # 0, and q - q? Give examples.

	19.	 How can you sometimes handle limits that lead to indeterminate 
forms 1q, 00, and qq? Give examples.

	20.	 Describe Newton’s method for solving equations. Give an example. 
What is the theory behind the method? What are some of the 
things to watch out for when you use the method?

	21.	 Can a function have more than one antiderivative? If so, how are 
the antiderivatives related? Explain.

	22.	 What is an indefinite integral? How do you evaluate one? What 
general formulas do you know for finding indefinite integrals?

	23.	 How can you sometimes solve a differential equation of the form 
dy>dx = ƒ(x)?

	24.	 What is an initial value problem? How do you solve one? Give an 
example.

	25.	 If you know the acceleration of a body moving along a coordinate 
line as a function of time, what more do you need to know to find 
the body’s position function? Give an example.

	 6.	 Does ƒ(x) = 2ex>(1 + x2) have an absolute minimum value? An 
absolute maximum? If so, find them or give reasons why they fail 
to exist. List all critical points of ƒ.

In Exercises 7 and 8, find the absolute maximum and absolute mini-
mum values of ƒ over the interval.

	 7.	 ƒ(x) = x - 2 ln x, 1 … x … 3

	 8.	 ƒ(x) = (4>x) + ln x2, 1 … x … 4

	 9.	 The greatest integer function ƒ(x) = :x;, defined for all values 
of x, assumes a local maximum value of 0 at each point of 30, 1). 
Could any of these local maximum values also be local minimum 
values of ƒ? Give reasons for your answer.

	10.	 a.  �Give an example of a differentiable function ƒ whose first 
derivative is zero at some point c even though ƒ has neither a 
local maximum nor a local minimum at c.

b.	 How is this consistent with Theorem 2 in Section 4.1? Give 
reasons for your answer.
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292	 Chapter 4: Applications of Derivatives

that at some instant during that period the reservoir’s volume was 
increasing at a rate in excess of 225,000 gal>min. (An acre-foot 
is 43,560 ft3, the volume that would cover 1 acre to the depth of  
1 ft. A cubic foot holds 7.48 gal.)

20.	 The formula F(x) = 3x + C gives a different function for each 
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely F′(x) = 3. Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any 
others? Give reasons for your answers.

21.	 Show that

d
dx

 a x
x + 1

b = d
dx

 a-  
1

x + 1
b

		  even though

x
x + 1

≠ -  
1

x + 1
.

		  Doesn’t this contradict Corollary 2 of the Mean Value Theorem? 
Give reasons for your answer.

22.	 Calculate the first derivatives of ƒ(x) = x2>(x2 + 1) and g(x) =
-1>(x2 + 1). What can you conclude about the graphs of these 
functions?

Analyzing Graphs
In Exercises 23 and 24, use the graph to answer the questions.

23.	 Identify any global extreme values of ƒ and the values of x at 
which they occur.

y

x

(1, 1)
2,    1

2

0

y = f (x)

a    b

24.	 Estimate the open intervals on which the function y = ƒ(x) is

a.	 increasing.

b.	 decreasing.

c.	 Use the given graph of ƒ′ to indicate where any local extreme 
values of the function occur, and whether each extreme is a 
relative maximum or minimum.

y

x

(−3, 1)

(2, 3)

−1

−2

y = f ′(x)

Each of the graphs in Exercises 25 and 26 is the graph of the position 
function s = ƒ(t) of an object moving on a coordinate line (t represents 
time). At approximately what times (if any) is each object’s (a) velocity 
equal to zero? (b) Acceleration equal to zero? During approximately 
what time intervals does the object move (c) forward? (d) Backward?

	11.	 The function y = 1>x does not take on either a maximum or a 
minimum on the interval 0 6 x 6 1 even though the function is 
continuous on this interval. Does this contradict the Extreme 
Value Theorem for continuous functions? Why?

	12.	 What are the maximum and minimum values of the function 
y = 0 x 0  on the interval -1 … x 6 1? Notice that the interval is 
not closed. Is this consistent with the Extreme Value Theorem for 
continuous functions? Why?

	13.	 A graph that is large enough to show a function’s global behavior 
may fail to reveal important local features. The graph of ƒ(x) =
(x8>8) - (x6>2) - x5 + 5x3 is a case in point.

a.	 Graph ƒ over the interval -2.5 … x … 2.5. Where does the 
graph appear to have local extreme values or points of inflec-
tion?

b.	 Now factor ƒ′(x) and show that ƒ has a local maximum at 
x =23 5 ≈ 1.70998 and local minima at x = {23 ≈  
{1.73205.

c.	 Zoom in on the graph to find a viewing window that shows 
the presence of the extreme values at x = 23 5 and x = 23.

The moral here is that without calculus the existence of two 
of the three extreme values would probably have gone unnoticed. 
On any normal graph of the function, the values would lie close 
enough together to fall within the dimensions of a single pixel on 
the screen.

(Source: Uses of Technology in the Mathematics Curricu-
lum, by Benny Evans and Jerry Johnson, Oklahoma State Univer-
sity, published in 1990 under National Science Foundation Grant 
USE-8950044.)

	14.	 (Continuation of Exercise 13.)

a.	 Graph ƒ(x) = (x8>8) - (2>5)x5 - 5x - (5>x2) + 11 over 
the interval -2 … x … 2. Where does the graph appear to 
have local extreme values or points of inflection?

b.	 Show that ƒ has a local maximum value at x = 27 5 ≈ 1.2585 
and a local minimum value at x = 23 2 ≈ 1.2599.

c.	 Zoom in to find a viewing window that shows the presence of 
the extreme values at x = 27 5 and x = 23 2.

The Mean Value Theorem
	15.	 a.  �Show that g(t) = sin2 t - 3t decreases on every interval in its 

domain.

b.	 How many solutions does the equation sin2 t - 3t = 5 have? 
Give reasons for your answer.

	16.	 a.  �Show that y = tan u increases on every open interval in its 
domain.

b.	 If the conclusion in part (a) is really correct, how do you 
explain the fact that tan p = 0 is less than tan (p>4) = 1?

17.	 	a.  �Show that the equation x4 + 2x2 - 2 = 0 has exactly one 
solution on 30, 14 .

b.	 Find the solution to as many decimal places as you can.

18.	 	a.  �Show that ƒ(x) = x>(x + 1) increases on every open interval 
in its domain.

b.	 Show that ƒ(x) = x3 + 2x has no local maximum or mini-
mum values.

19.	 Water in a reservoir  As a result of a heavy rain, the volume of 
water in a reservoir increased by 1400 acre-ft in 24 hours. Show 

T

T

T
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	69.	 lim
xS0

 (csc x - cot x)	 70.	 lim
xS0
a 1

x4 - 1
x2b

	71.	 lim
xSq
12x2 + x + 1 - 2x2 - x2

	72.	 lim
xSq
a x3

x2 - 1
- x3

x2 + 1
b

Find the limits in Exercises 73–84.

	73.	 lim
xS0

 
10x - 1

x 	 74.	 lim
uS0

 
3u - 1
u

	75.	 lim
xS0

 
2sin x - 1

ex - 1
	 76.	 lim

xS0
 
2-sin x - 1

ex - 1

	77.	 lim
xS0

 
5 - 5 cos x
ex - x - 1

	 78.	 lim
xS0

 
4 - 4ex

xex

	79.	 lim
tS0+

 
t - ln (1 + 2t)

t2 	 80.	 lim
xS4

 
sin2 (px)

ex-4 + 3 - x

	81.	 lim
tS0+

 ae
t

t - 1
t b 	 82.	 lim

yS0+
 e-1>y ln y

	83.	 lim
xSq

 a1 + b
xb

kx

	 84.	 lim
xSq

 a1 + 2
x + 7

x2b

Optimization
	85.	 The sum of two nonnegative numbers is 36. Find the numbers if

a.	 the difference of their square roots is to be as large as possible.

b.	 the sum of their square roots is to be as large as possible.

	86.	 The sum of two nonnegative numbers is 20. Find the numbers

a.	 if the product of one number and the square root of the other 
is to be as large as possible.

b.	 if one number plus the square root of the other is to be as 
large as possible.

87.	 An isosceles triangle has its vertex at the origin and its base paral-
lel to the x-axis with the vertices above the axis on the curve 
y = 27 - x2. Find the largest area the triangle can have.

	88.	 A customer has asked you to design an open-top rectangular 
stainless steel vat. It is to have a square base and a volume of 
32 ft3, to be welded from quarter-inch plate, and to weigh no 
more than necessary. What dimensions do you recommend?

	89.	 Find the height and radius of the largest right circular cylinder 
that can be put in a sphere of radius 23.

	90.	 The figure here shows two right circular cones, one upside down 
inside the other. The two bases are parallel, and the vertex of the 
smaller cone lies at the center of the larger cone’s base. What 
values of r and h will give the smaller cone the largest possible 
volume?

r

6′
h

12′

	25.	

t

s

0 3 6 9 12 14

s = f (t)
	

	26.	

t

s

0 2 4 6 8

s = f (t)

Graphs and Graphing
Graph the curves in Exercises 27– 42.

	27.	 y = x2 - (x3>6)	 28.	 y = x3 - 3x2 + 3

	29.	 y = -x3 + 6x2 - 9x + 3

	30.	 y = (1>8)(x3 + 3x2 - 9x - 27)

	31.	 y = x3(8 - x)	 32.	 y = x2(2x2 - 9)

	33.	 y = x - 3x2>3	 34.	 y = x1>3(x - 4)

	35.	 y = x23 - x	 36.	 y = x24 - x2

	37.	 y = (x - 3)2 ex	 38.	 y = xe-x2

	39.	 y = ln (x2 - 4x + 3)	 40.	 y = ln (sin x)

	41.	 y = sin-1 a1xb 	 42.	 y = tan-1 a1xb

Each of Exercises 43– 48 gives the first derivative of a function 
y = ƒ(x). (a) At what points, if any, does the graph of ƒ have a local 
maximum, local minimum, or inflection point? (b) Sketch the general 
shape of the graph.

	43.	 y′ = 16 - x2	 44.	 y′ = x2 - x - 6

	45.	 y′ = 6x(x + 1)(x - 2)	 46.	 y′ = x2(6 - 4x)

	47.	 y′ = x4 - 2x2	 48.	 y′ = 4x2 - x4

In Exercises 49–52, graph each function. Then use the function’s first 
derivative to explain what you see.

	49.	 y = x2>3 + (x - 1)1>3	 50.	 y = x2>3 + (x - 1)2>3

	51.	 y = x1>3 + (x - 1)1>3	 52.	 y = x2>3 - (x - 1)1>3

Sketch the graphs of the rational functions in Exercises 53–60.

	53.	 y = x + 1
x - 3

	 54.	 y = 2x
x + 5

	55.	 y = x2 + 1
x 	 56.	 y = x2 - x + 1

x

	57.	 y = x3 + 2
2x

	 58.	 y = x4 - 1
x2

	59.	 y = x2 - 4
x2 - 3

	 60.	 y = x2

x2 - 4

Using L’Hôpital’s Rule
Use l’Hôpital’s Rule to find the limits in Exercises 61–72.

	61.	 lim
xS1

 
x2 + 3x - 4

x - 1
	 62.	 lim

xS1
  
xa - 1
xb - 1

	63.	 lim
xSp

 
tan x

x 	 64.	 lim
xS0

  
tan x

x + sin x

	65.	 lim
xS0

  
sin2 x
tan(x2)

	 66.	 lim
xS0

  
sin mx
sin nx

	67.	 lim
xSp>2-

 sec 7x cos 3x	 68.	 lim
xS0+

2x sec x
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	107.	 L sec2 
s

10
 ds	 108.	 Lcsc2 ps ds

	109.	L  csc 22u cot 22u du	 110.	 L  sec 
u

3
 tan 
u

3
 du

	111.	 L sin2  
x
4

  dx  aHint: sin2 u = 1 - cos 2u
2

b

	112.	 Lcos2  
x
2

  dx

	113.	 L  a3x - xb  dx	 114.	 L  a 5
x2 + 2

x2 + 1
b  dx

	115.	 L  a1
2

 et - e-tb  dt	 116.	 L  (5s + s5) ds

	117.	 L  u1-p du	 118.	 L  2p+ r dr

	119.	 L  
3

2x2x2 - 1
 dx	 120.	 L  

du216 - u2

Initial Value Problems
Solve the initial value problems in Exercises 121–124.

	121.	
dy
dx

= x2 + 1
x2 , y(1) = -1

	122.	
dy
dx

= ax + 1
xb

2

, y(1) = 1

	123.	
d2r
dt2 = 152t + 32t

 ; r′(1) = 8, r (1) = 0

	124.	
d3r
dt3 = -cos t; r″(0) = r′(0) = 0, r (0) = -1

Applications and Examples

	125.	 Can the integrations in (a) and (b) both be correct? Explain.

	a.	 L  
dx21 - x2

= sin-1 x + C

	b.	 L  
dx21 - x2

= -L-  
dx21 - x2

= -cos-1 x + C

126.	 Can the integrations in (a) and (b) both be correct? Explain.

	a.	 L  
dx21 - x2

= -L-  
dx21 - x2

= -cos-1 x + C

	b.	  L  
dx21 - x2

= L  
-du21 - (-u)2

	
x = -u
dx = -du

		  = L  
-du21 - u2

		  = cos-1 u + C

		  = cos-1 (-x) + C	 u = -x

127.	 The rectangle shown here has one side on the positive y-axis, 
one side on the positive x-axis, and its upper right-hand vertex 

	91.	 Manufacturing tires  Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where 
0 … x … 4 and

y = 40 - 10x
5 - x

.

		  Your profit on a grade A tire is twice your profit on a grade B tire. 
What is the most profitable number of each kind to make?

	92.	 Particle motion  The positions of two particles on the s-axis are 
s1 = cos t and s2 = cos (t + p>4).

	a.	 What is the farthest apart the particles ever get?

	b.	 When do the particles collide?

	93.	 Open-top box  An open-top rectangular box is constructed from 
a 10-in.-by-16-in. piece of cardboard by cutting squares of equal 
side length from the corners and folding up the sides. Find ana-
lytically the dimensions of the box of largest volume and the 
maximum volume. Support your answers graphically.

	94.	 The ladder problem  What is the approximate length (in feet) 
of the longest ladder you can carry horizontally around the corner 
of the corridor shown here? Round your answer down to the near-
est foot.

x

y

0

6

8

(8, 6)

Newton’s Method
	 95.	 Let ƒ(x) = 3x - x3. Show that the equation ƒ(x) = -4 has a 

solution in the interval 32, 34  and use Newton’s method to find it.

	 96.	 Let ƒ(x) = x4 - x3. Show that the equation ƒ(x) = 75 has a solu-
tion in the interval 33, 44  and use Newton’s method to find it.

Finding Indefinite Integrals
Find the indefinite integrals (most general antiderivatives) in Exer-
cises 97–120. You may need to try a solution and then adjust your 
guess. Check your answers by differentiation.

	 97.	 L (x3 + 5x - 7) dx	 98.	 L a8t3 - t2

2
+ tb  dt

	 99.	 L a32t + 4
t2b  dt	 100.	 L a

1

22t
- 3

t4b  dt

	101.	 L  
dr

(r + 5)2	 102.	 L  
6 dr

1r - 2223
	103.	 L3u2u2 + 1 du	 104.	 L  

u27 + u2
 du

	105.	 Lx3(1 + x4)-1>4 dx	 106.	 L (2 - x)3>5 dx

T
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132.	 g(x) = e23-2x-x2

133.	 Graph the following functions and use what you see to locate 
and estimate the extreme values, identify the coordinates of the 
inflection points, and identify the intervals on which the graphs 
are concave up and concave down. Then confirm your estimates 
by working with the functions’ derivatives.

	a.	 y = (ln x)>2x

	b.	 y = e-x2

	c.	 y = (1 + x)e-x

134.	  Graph ƒ(x) = x ln x. Does the function appear to have an abso-
lute minimum value? Confirm your answer with calculus.

135.	  Graph ƒ(x) = (sin x)sin x over 30, 3p4 . Explain what you see.

136.	 A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes 
the ratio of the radius of the core to the thickness of the insula-
tion, it is known that the speed of the transmission signal is 
given by the equation y = x2 ln (1>x). If the radius of the core is 
1 cm, what insulation thickness h will allow the greatest trans-
mission speed?

Insulation

x = r
h

h
r

Core

T

T

T

on the curve y = e-x2
. What dimensions give the rectangle its 

largest area, and what is that area?

x

y

0

1 y = e−x2

	128.	 The rectangle shown here has one side on the positive y-axis, 
one side on the positive x-axis, and its upper right-hand vertex 
on the curve y = (ln x)>x2. What dimensions give the rectangle 
its largest area, and what is that area?

x

y

0

0.2 y = 

1

0.1
x2

ln x

In Exercises 129 and 130, find the absolute maximum and minimum 
values of each function on the given interval.

	129.	 y = x ln 2x - x, c 1
2e

, 
e
2
d

	130.	 y = 10x(2 - ln x), (0, e24
In Exercises 131 and 132, find the absolute maxima and minima of 
the functions and say where they are assumed.

131.	 ƒ(x) = ex>2x4+1

Chapter  4	 Additional and Advanced Exercises

Functions and Derivatives
	 1.	 What can you say about a function whose maximum and mini-

mum values on an interval are equal? Give reasons for your 
answer.

	 2.	 Is it true that a discontinuous function cannot have both an abso-
lute maximum and an absolute minimum value on a closed inter-
val? Give reasons for your answer.

	 3.	 Can you conclude anything about the extreme values of a contin-
uous function on an open interval? On a half-open interval? Give 
reasons for your answer.

	 4.	 Local extrema  Use the sign pattern for the derivative

dƒ
dx

= 6(x - 1)(x - 2)2(x - 3)3(x - 4)4

		  to identify the points where ƒ has local maximum and minimum 
values.

	 5.	 Local extrema

a.	 Suppose that the first derivative of y = ƒ(x) is

y′ = 6(x + 1)(x - 2)2.

		 At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

b.	 Suppose that the first derivative of y = ƒ(x) is

y′ = 6x(x + 1)(x - 2).

		 At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

	 6.	 If ƒ′(x) … 2 for all x, what is the most the values of ƒ can 
increase on 30, 64 ? Give reasons for your answer.

	 7.	 Bounding a function  Suppose that ƒ is continuous on 3a, b4  
and that c is an interior point of the interval. Show that if 
ƒ′(x) … 0 on 3a, c) and ƒ′(x) Ú 0 on (c, b4 , then ƒ(x) is never 
less than ƒ(c) on 3a, b4 .

	 8.	 An inequality

a.	 Show that -1>2 … x>(1 + x2) … 1>2 for every value of x.

b.	 Suppose that ƒ is a function whose derivative is ƒ′(x) =  
x>(1 + x2). Use the result in part (a) to show that

0 ƒ(b) - ƒ(a) 0 … 1
2

 0 b - a 0
		 for any a and b.
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x

y

Range

Ground

h

y

0

Tank kept full,
top open

Exit velocity = "64(h − y)

	16.	 Kicking a field goal  An American football player wants to kick 
a field goal with the ball being on a right hash mark. Assume that 
the goal posts are b feet apart and that the hash mark line is a dis-
tance a 7 0 feet from the right goal post. (See the accompanying 
figure.) Find the distance h from the goal post line that gives the 
kicker his largest angle b. Assume that the football field is flat.

Goal post line

Football

h

b a

Goal posts

b u

	17.	 A max-min problem with a variable answer  Sometimes the 
solution of a max-min problem depends on the proportions of the 
shapes involved. As a case in point, suppose that a right circular 
cylinder of radius r and height h is inscribed in a right circular 
cone of radius R and height H, as shown here. Find the value of r 
(in terms of R and H) that maximizes the total surface area of the 
cylinder (including top and bottom). As you will see, the solution 
depends on whether H … 2R or H 7 2R.

H

R

r

h

	 9.	 The derivative of ƒ(x) = x2 is zero at x = 0, but ƒ is not a con-
stant function. Doesn’t this contradict the corollary of the Mean 
Value Theorem that says that functions with zero derivatives are 
constant? Give reasons for your answer.

	10.	 Extrema and inflection points  Let h = ƒg be the product of 
two differentiable functions of x.

a.	 If ƒ and g are positive, with local maxima at x = a, and if ƒ′ 
and g′ change sign at a, does h have a local maximum at a?

b.	 If the graphs of ƒ and g have inflection points at x = a, does 
the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no, 
give a counterexample.

11.	 Finding a function   Use the following information to find the 
values of a, b, and c in the formula ƒ(x) = (x + a)>
(bx2 + cx + 2).

	  i)  The values of a, b, and c are either 0 or 1.

	 ii)  The graph of ƒ passes through the point (-1, 0).

	iii)  The line y = 1 is an asymptote of the graph of ƒ.

	12.	 Horizontal tangent  For what value or values of the constant k 
will the curve y = x3 + kx2 + 3x - 4 have exactly one horizon-
tal tangent?

Optimization
	13.	 Largest inscribed triangle  Points A and B lie at the ends of a 

diameter of a unit circle and point C lies on the circumference. Is 
it true that the area of triangle ABC is largest when the triangle is 
isosceles? How do you know?

	14.	 Proving the second derivative test  The Second Derivative 
Test for Local Maxima and Minima (Section 4.4) says:

a.	 ƒ has a local maximum value at x = c if ƒ′(c) = 0 and 
ƒ″(c) 6 0

b.	 ƒ has a local minimum value at x = c if ƒ′(c) = 0 and 
ƒ″(c) 7 0.

		  To prove statement (a), let P = (1>2) 0 ƒ″(c) 0 . Then use the fact 
that

ƒ″(c) = lim
hS0

 
ƒ′(c + h) - ƒ′(c)

h
= lim

hS0
 
ƒ′(c + h)

h

		  to conclude that for some d 7 0,

0 6 0 h 0 6 d  1  
ƒ′(c + h)

h
6 ƒ″(c) + P 6 0.

		  Thus, ƒ′(c + h) is positive for -d 6 h 6 0 and negative for 
0 6 h 6 d. Prove statement (b) in a similar way.

	15.	 Hole in a water tank  You want to bore a hole in the side of the 
tank shown here at a height that will make the stream of water 
coming out hit the ground as far from the tank as possible. If you 
drill the hole near the top, where the pressure is low, the water 
will exit slowly but spend a relatively long time in the air. If you 
drill the hole near the bottom, the water will exit at a higher 
velocity but have only a short time to fall. Where is the best place, 
if any, for the hole? (Hint: How long will it take an exiting drop-
let of water to fall from height y to the ground?)
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	25.	 Free fall in the fourteenth century  In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model 
of free fall that assumed that the velocity of a falling body was 
proportional to the distance fallen. It seemed reasonable to think 
that a body that had fallen 20 ft might be moving twice as fast as 
a body that had fallen 10 ft. And besides, none of the instruments 
in use at the time were accurate enough to prove otherwise. 
Today we can see just how far off Albert of Saxony’s model was 
by solving the initial value problem implicit in his model. Solve 
the problem and compare your solution graphically with the 
equation s = 16t2. You will see that it describes a motion that 
starts too slowly at first and then becomes too fast too soon to be 
realistic.

	26.	 Group blood testing  During World War II it was necessary to 
administer blood tests to large numbers of recruits. There are two 
standard ways to administer a blood test to N people. In method 1, 
each person is tested separately. In method 2, the blood samples 
of x people are pooled and tested as one large sample. If the test is 
negative, this one test is enough for all x people. If the test is posi-
tive, then each of the x people is tested separately, requiring a 
total of x + 1 tests. Using the second method and some probabil-
ity theory it can be shown that, on the average, the total number 
of tests y will be

y = Na1 - qx + 1
xb .

		  With q = 0.99 and N = 1000, find the integer value of x that mini-
mizes y. Also find the integer value of x that maximizes y. (This  
second result is not important to the real-life situation.) The group 
testing method was used in World War II with a savings of 80% over 
the individual testing method, but not with the given value of q.

	27.	 Assume that the brakes of an automobile produce a constant 
deceleration of k ft>sec2. (a) Determine what k must be to bring 
an automobile traveling 60 mi>hr (88 ft>sec) to rest in a distance 
of 100 ft from the point where the brakes are applied. (b) With 
the same k, how far would a car traveling 30 mi>hr go before 
being brought to a stop?

	28.	 Let ƒ(x), g(x) be two continuously differentiable functions satis-
fying the relationships ƒ′(x) = g(x) and ƒ″(x) = -ƒ(x). Let 
h(x) = ƒ2(x) + g2(x). If h(0) = 5, find h(10).

	29.	 Can there be a curve satisfying the following conditions? d2y>dx2 
is everywhere equal to zero and, when x = 0, y = 0 and 
dy>dx = 1. Give a reason for your answer.

	30.	 Find the equation for the curve in the xy-plane that passes through 
the point (1, -1) if its slope at x is always 3x2 + 2.

	31.	 A particle moves along the x-axis. Its acceleration is a = - t2. At 
t = 0, the particle is at the origin. In the course of its motion, it 
reaches the point x = b, where b 7 0, but no point beyond b. 
Determine its velocity at t = 0.

	32.	 A particle moves with acceleration a = 2t - 11>2t2. Assum-
ing that the velocity y = 4>3 and the position s = -4>15 when 
t = 0, find

a.	 the velocity y in terms of t.

b.	 the position s in terms of t.

	33.	 Given ƒ(x) = ax2 + 2bx + c with a 7 0. By considering the 
minimum, prove that ƒ(x) Ú 0 for all real x if and only if 
b2 - ac … 0.

T

	18.	 Minimizing a parameter  Find the smallest value of the posi-
tive constant m that will make mx - 1 + (1>x) greater than or 
equal to zero for all positive values of x.

Limits
	19.	 Evaluate the following limits.

a.	 lim
xS0

 
2 sin 5x

3x
	 b.	 lim

xS0
 sin 5x cot 3x

c.	 lim
xS0

 x csc2 22x	 d.	 lim
xSp>2

(sec x - tan x)

e.	 lim
xS0

  
x - sin x
x - tan x	 f.	 lim

xS0
  
sin x2

x sin x

g.	 lim
xS0

 
sec x - 1

x2 	 h.	 lim
xS2

  
x3 - 8
x2 - 4

	20.	 L’Hôpital’s Rule does not help with the following limits. Find 
them some other way.

a.	 lim
xSq

 
2x + 52x + 5

	 b.	 lim
xSq

 
2x

x + 72x

Theory and Examples
	21.	 Suppose that it costs a company y = a + bx dollars to produce x 

units per week. It can sell x units per week at a price of 
P = c - ex dollars per unit. Each of a, b, c, and e represents a 
positive constant. (a) What production level maximizes the 
profit? (b) What is the corresponding price? (c) What is the 
weekly profit at this level of production? (d) At what price should 
each item be sold to maximize profits if the government imposes 
a tax of t dollars per item sold? Comment on the difference 
between this price and the price before the tax.

22.	 Estimating reciprocals without division  You can estimate the 
value of the reciprocal of a number a without ever dividing by a if 
you apply Newton’s method to the function ƒ(x) = (1>x) - a. 
For example, if a = 3, the function involved is ƒ(x) = (1>x) - 3.

a.	 Graph y = (1>x) - 3. Where does the graph cross the 
x-axis?

b.	 Show that the recursion formula in this case is

xn+1 = xn(2 - 3xn),

		 so there is no need for division.

23.	 To find x = 2q a, we apply Newton’s method to ƒ(x) = xq - a. 
Here we assume that a is a positive real number and q is a posi-
tive integer. Show that x1 is a “weighted average” of x0 and 
a>x0

  q-1, and find the coefficients m0, m1 such that

x1 = m0 x0 + m1a a
x0 

q-1b , 
 m0 7 0, m1 7 0,

m0 + m1 = 1.

		  What conclusion would you reach if x0 and a>x0 

q-1 were equal? 
What would be the value of x1 in that case?

	24.	 The family of straight lines y = ax + b (a, b arbitrary constants) 
can be characterized by the relation y″ = 0. Find a similar rela-
tion satisfied by the family of all circles

(x - h)2 + (y - h)2 = r2,

		  where h and r are arbitrary constants. (Hint: Eliminate h and r 
from the set of three equations including the given one and two 
obtained by successive differentiation.)
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a

C

B

O

A

d1

d2

d2 cos u

b = d2 sin u

u

		  In our model, we assume that AC = a and BC = b are fixed. 
Thus we have the relations

d1 + d2 cos u = a d2 sin u = b,

		  so that

d2 = b csc u,

d1 = a - d2 cos u = a - b cot u.

		  We can express the total loss L as a function of u:

L = kaa - b cot u
R4 + b csc u

r4 b .

a.	 Show that the critical value of u for which dL>du equals zero 
is

uc = cos-1 
r4

R4 .

b.	 If the ratio of the pipe radii is r>R = 5>6, estimate to the 
nearest degree the optimal branching angle given in part (a).

	34.	 Schwarz’s inequality

a.	 In Exercise 33, let

ƒ(x) = (a1 x + b1)2 + (a2 x + b2)2 + g+ (an  x + bn)2,

		  and deduce Schwarz’s inequality:
		  (a1 b1 + a2 b2 + g+ an  bn)2

		         … 1a1 

2 + a2 

2 + g+ an  

221b1 

2 + b2 

2 + g+ bn  

22.
b.	 Show that equality holds in Schwarz’s inequality only if there 

exists a real number x that makes ai  x equal -bi for every 
value of i from 1 to n.

	35.	 The best branching angles for blood vessels and pipes  When 
a smaller pipe branches off from a larger one in a flow system, we 
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy 
loss due to friction be minimized along the section AOB shown in 
the accompanying figure. In this diagram, B is a given point to be 
reached by the smaller pipe, A is a point in the larger pipe 
upstream from B, and O is the point where the branching occurs. 
A law due to Poiseuille states that the loss of energy due to fric-
tion in nonturbulent flow is proportional to the length of the path 
and inversely proportional to the fourth power of the radius. 
Thus, the loss along AO is (kd1)>R4 and along OB is (kd2)>r4, 
where k is a constant, d1 is the length of AO, d2 is the length of 
OB, R is the radius of the larger pipe, and r is the radius of the 
smaller pipe. The angle u is to be chosen to minimize the sum of 
these two losses:

L = k 
d1

R4 + k 
d2

r4 .

Chapter  4	 Technology Application Projects

Mathematica/Maple Modules:

Motion Along a Straight Line: Positionu Velocityu Acceleration
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and  
acceleration. Figures in the text can be animated.

Newton’s Method: Estimate P to How Many Places?
Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired  
accuracy. The numbers p, e, and 22 are approximated.
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