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1. WHAT IS STATISTICS AND WHAT IS PROBABILITY?

Sometimes statistics is described as the art or science of decision making in the face of uncertainty.
Here are some examples to illustrate what it means.

Example 1. Recall the apocryphal story of two women who go to King Solomon with a child, each
claiming that it is her own daughter. The solution according to the story uses human psychology
and is not relevant to recall here. But is this a reasonable question that the king can decide?

Daughters resemble mothers to varying degrees, and one cannot be absolutely sure of guessing
correctly. On the other hand, by comparing various features of the child with those of the two
women, there is certainly a decent chance to guess correctly.

If we could always get the right answer, or if we could never get it right, the question would not
have been interesting. However, here we have uncertainty, but there is a decent chance of getting
the right answer. That makes it interesting - for example, we can have a debate between eyeists
and nosists as to whether it is better to compare the eyes or the noses in arriving at a decision.

Example 2. The IISc cricket team meets the Basavanagudi cricket club for a match. Unfortunately,
the Basavanagudi team forgot to bring a coin to toss. The IISc captain helpfully offers his coin, but
can he be trusted? What if he spent the previous night doctoring the coin so that it falls on one
side with probability 3/4 (or some other number)?

Instead of cricket, they could spend their time on the more interesting question of checking if
the coin is fair or biased. Here is one way. If the coin is fair, in a large number of tosses, common
sense suggests that we should get about equal number of heads and tails. So they toss the coin
100 times. If the number of heads is exactly 50, perhaps they will agree that it is fair. If the number
of heads is 90, perhaps they will agree that it is biased. What if the number of heads is 60? Or 35?
Where and on what basis to draw the line between fair and biased? Again we are faced with the
question of making decision in the face of uncertainty.

Example 3. A psychic claims to have divine visions unavailable to most of us. You are assigned
the task of testing her claims. You take a standard deck of cards, shuffle it well and keep it face
down on the table. The psychic writes down the list of cards in some order - whatever her vision
tells her about how the deck is ordered. Then you count the number of correct guesses. If the
number is 1 or 2, perhaps you can dismiss her claims. If it is 45, perhaps you ought to be take her
seriously. Again, where to draw the line?

The logic is this. Roughly one may say that surprise is just the name for our reaction to an event
that we á priori thought had low probability. Thus, we approach the experiment with the belief that
the psychic is just guessing at random, and if the results are such that under that random-guess-
hypothesis they have very small probability, then we are willing to discard our preconception and
accept that she is a psychic.

How low a probability is surprising? In the context of psychics, let us say, 1/10000. Once we fix
that, we must find a number m ≤ 52 such that by pure guessing, the probability to get more than
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m correct guesses is less that 1/10000. Then we tell the psychic that if she gets more thanm correct
guesses, we accept her claim, and otherwise, reject her claim. This raises the simple (and you can
do it yourself)

Question 4. For a deck of 52 cards, find the number m such that

P(by random guessing we get more than m correct guesses) <
1

10000
.

Summary: There are many situations in real life where one is required to make decisions under
uncertainty. A general template for the answer could be to fix a small number that we allow
as the probability of error, and deduce thresholds based on it. This brings us to the question of
computing probabilities in various situations.

Probability: Probability theory is a branch of pure mathematics, and forms the theoretical basis
of statistics. In itself, probability theory has some basic objects and their relations (like real num-
bers, addition etc for analysis) and it makes no pretense of saying anything about the real world.
Axioms are given and theorems are then deduced about these objects, just as in any other part of
mathematics.

But a very important aspect of probability is that it is applicable. In other words, there are many
situations in which it is reasonable to take a model in probability

In the example above, to compute the probability one must make the assumption that the deck
of cards was completely shuffled. In other words, all possible 52! orders of the 52 cards are
assumed to be equally likely. Whether this assumption is reasonable or not depends on how well
the card was shuffled, whether the psychic was able to get a peek at the cards, whether some
insider is informing the psychic of the cards etc. All these are non-mathematical questions, and
must be decided on other basis.

However...: Probability and statistics are very relevant in many situations that do not involve any
uncertainty on the face of it. Here are some examples.

Example 5. Compression of data. Large files in a computer can be compressed to a .zip format
and uncompressed when necessary. How is it possible to compress data like this? To give a very
simple analogy, consider a long English word like invertebrate. If we take a novel and replace every
occurrence of this word with “zqz”, then it is certainly possible to recover the original novel (since
“zqz” does not occur anywhere else). But the reduction in size by replacing the 12-letter word
by the 3-letter word is not much, since the word invertebrate does not occur often. Instead, if we
replace the 4-letter word “then” by “zqz”, then the total reduction obtained may be much higher,
as the word “then” occurs quite often.

This suggests the following optimal way to represent words in English. The 26 most frequent
words will be represented by single letters. The next 26 × 26 most frequent words will be repre-
sented by two letter words, the next 26 × 26 × 26 most frequent words by three-letter words, etc.

6



Assuming there are no errors in transcription, this is a good way to reduce the size of any text
document! Now, this involves knowing what the frequencies of occurrences of various words in
actual texts are. Such statistics of usage of words are therefore clearly relevant (and they could be
different for biology textbooks as compared to 19th century novels).

Example 6. Search algorithms such as Google, use many randomized procedures. This cannot
be explained right now, but let us give a simple reason to say why introducing randomness is a
good idea in many situations. In the game of rock-paper-scissors, two people simultaneously shout
one of the three words, rock, paper or scissors. The rule is that scissors beats paper, paper beats
rock and rock beats scissors (if they both call the same word, they must repeat). In a game like
this, although there is complete symmetry in the three items, it would be silly to have a fixed
strategy. In other words, if you decide to always say rock, thinking that it doesn’t matter which
you choose, then your opponent can use that knowledge to always choose paper and thus win!
In many games where the opponent gets to know your strategy (but not your move), the best
strategy would involve randomly choosing your move.

2. DISCRETE PROBABILITY SPACES

Definition 7. Let Ω be a finite or countable1 set. Let p : Ω → [0, 1] be a function such that∑
ω∈Ω pω = 1. Then (Ω, p) is called a discrete probability space. Ω is called the sample space and

pω are called elementary probabilities.

• Any subset A ⊆ Ω is called an event. For an event A we define its probability as P(A) =∑
ω∈A pω.

• Any function X : Ω → R is called a random variable. For a random variable we define its
expected value or mean as E[X] =

∑
ω∈ΩX(ω)pω.

All of probability in one line: Take an (interesting) probability space (Ω, p) and an (interesting)

event A ⊆ Ω. Find P(A).

This is the mathematical side of the picture. It is easy to make up any number of probability
spaces - simply take a finite set and assign non-negative numbers to each element of the set so that
the total is 1.

Example 8. Ω = {0, 1} and p0 = p1 = 1
2 . There are only four events here, ∅, {0}, {1} and {0, 1}.

Their probabilities are, 0, 1/2, 1/2 and 1, respectively.

Example 9. Ω = {0, 1}. Fix a number 0 ≤ p ≤ 1 and let p1 = p and p0 = 1− p. The sample space is
the same as before, but the probability space is different for each value of p. Again there are only
four events, and their probabilities are P{∅} = 0, P{0} = 1− p, P{1} = p and P{0, 1} = 1.

1For those unfamiliar with countable sets, it will be explained in some detail later.
7



Example 10. Fix a positive integer n. Let

Ω = {0, 1}n = {ω : ω = (ω1, . . . , ωn) with ωi = 0 or 1 for each i ≤ n}.

Let pω = 2−n for each ω ∈ Ω. Since Ω has 2n elements, it follows that this is a valid assignment of

elementary probabilities.

There are 2#Ω = 22n events. One example is Ak = {ω : ω ∈ Ω and ω1 + . . .+ ωn = k}where k is
some fixed integer. In words, Ak consists of those n-tuples of zeros and ones that have a total of k

many ones. Since there are
(
n
k

)
ways to choose where to place these ones, we see that #Ak =

(
n
k

)
.

Consequently,

P{Ak} =
∑
ω∈Ak

pω =
#Ak
2n

=


(
n
k

)
2−n if 0 ≤ k ≤ n,

0 otherwise.

It will be convenient to adopt the notation that
(
a
b

)
= 0 if a, b are positive integers and if b > a or

if b < 0. Then we can simply write P{Ak} =
(
n
k

)
2−n without having to split the values of k into

cases.

Example 11. Fix two positive integers r and m. Let

Ω = {ω : ω = (ω1, . . . , ωr) with 1 ≤ ωi ≤ m for each i ≤ r}.

The cardinality of Ω is mr (since each co-ordinate ωi can take one of m values). Hence, if we set

pω = m−r for each ω ∈ Ω, we get a valid probability space.

Of course, there are 2m
r

many events, which is quite large even for small numbers like m = 3
and r = 4. Some interesting events are A = {ω : ωr = 1}, B = {ω : ωi 6= 1 for all i}, C =
{ω : ωi 6= ωj if i 6= j}. The reason why these are interesting will be explained later. Because of

equal elementary probabilities, the probability of an event S is just #S/mr.

• Counting A: We have m choices for each of ω1, . . . , ωr−1. There is only one choice for ωr.

Hence #A = mr−1. Thus, P(A) = mr−1

mr = 1
m .

• CountingB: We havem−1 choices for each ωi (since ωi cannot be 1). Hence #B = (m−1)r

and thus P(B) = (m−1)r

mr = (1− 1
m)r.

• Counting C: We must choose a distinct value for each ω1, . . . , ωr. This is impossible if
m < r. If m ≥ r, then ω1 can be chosen as any of m values. After ω1 is chosen, there are
(m− 1) possible values for ω2, and then (m− 2) values for ω3 etc., all the way till ωr which
has (m− r + 1) choices. Thus, #C = m(m− 1) . . . (m− r + 1). Note that we get the same
answer if we choose ωi in a different order (it would be strange if we did not!).

Thus, P(C) = m(m−1)...(m−r+1)
mr . Note that this formula is also valid for m < r since one

of the factors on the right side is zero.
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2.1. Probability in the real world. In real life, there are often situations where there are several
possible outcomes but which one will occur is unpredictable in some way. For example, when we
toss a coin, we may get heads or tails. In such cases we use words such as probability or chance,
event or happening, randomness etc. What is the relationship between the intuitive and mathematical
meanings of words such as probability or chance?

In a given physical situation, we choose one out of all possible probability spaces that we think
captures best the chance happenings in the situation. The chosen probability space is then called a
model or a probability model for the given situation. Once the model has been chosen, calculation of
probabilities of events therein is a mathematical problem. Whether the model really captures the
given situation, or whether the model is inadequate and over-simplified is a non-mathematical
question. Nevertheless that is an important question, and can be answered by observing the real

life situation and comparing the outcomes with predictions made using the model2.
Now we describe several “random experiments” (a non-mathematical term to indicate a “real-

life” phenomenon that is supposed to involve chance happenings) in which the previously given
examples of probability spaces arise. Describing the probability space is the first step in any prob-
ability problem.

Example 12. Physical situation: Toss a coin. Randomness enters because we believe that the coin
may turn up head or tail and that it is inherently unpredictable.

The corresponding probability model: Since there are two outcomes, the sample space Ω = {0, 1}
(where we use 1 for heads and 2 for tails) is a clear choice. What about elementary probabilities?

Under the equal chance hypothesis, we may take p0 = p1 = 1
2 . Then we have a probability model

for the coin toss.
If the coin was not fair, we would change the model by keeping Ω = {0, 1} as before but letting

p1 = p and p0 = 1− p where the parameter p ∈ [0, 1] is fixed.
Which model is correct? If the coin looks very symmetrical, then the two sides are equally likely

to turn up, so the first model where p1 = p0 = 1
2 is reasonable. However, if the coin looks irregular,

then theoretical considerations are usually inadequate to arrive at the value of p. Experimenting
with the coin (by tossing it a large number of times) is the only way.

There is always an approximation in going from the real-world to a mathematical model. For
example, the model above ignores the possibility that the coin can land on its side. If the coin is
very thick, then it might be closer to a cylinder which can land in three ways and then we would
have to modify the model...

2Roughly speaking we may divide the course into two parts according to these two issues. In the probability part
of the course, we shall take many such models for granted and learn how to calculate or approximately calculate
probabilities. In the statistics part of the course we shall see some methods by which we can arrive at such models, or
test the validity of a proposed model.
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Thus we see that example 9 is a good model for a physical coin toss. What physical situations
are captured by the probability spaces in example 10 and example 11?

Example 10: This probability space can be a model for tossing n fair coins. It is clear in what sense,
so we omit details for you to fill in.

The same probability space can also be a model for the tossing of the same coin n times in
succession. In this, we are implicitly assuming that the coin forgets the outcomes on the previous
tosses. While that may seem obvious, it would be violated if our “coin” was a hollow lens filled
with a semi-solid material like glue (then, depending on which way the coin fell on the first toss,
the glue would settle more on the lower side and consequently the coin would be more likely to
fall the same way again). This is a coin with memory!

Example 11: There are several situations that can be captured by this probability space. We list
some.

• There are r labelled balls and m labelled bins. One by one, we put the balls into bins “at

random”. Then, by letting ωi be the bin-number into which the ith ball goes, we can capture
the full configuration by the vector ω = (ω1, . . . , ωn). If each ball is placed completely at

random then the probabilities are m−r for each configuration ω.
In that example, A is the event that the last ball ends up in the first bin, B is the event

that the first bin is empty and C is the event that no bin contains more than one ball.

• Ifm = 6, then this may also be the model for throwing a fair die r times. Then ωi is the out-

come on the ith throw. Of course, it also models throwing r different (and distinguishable)
fair dice.

• If m = 2 and r = n, this is same as Example 10, and thus models the tossing of n fair coins
(or a fair coin n times).

• Let m = 365. Omitting the possibility of leap years, this is a model for choosing r people
at random and noting their birthdays (which can be in any of 365 “bins”). If we assume
that all days are equally likely as a birthday (is this really true?), then the same probability
space is a model for this physical situation. In this example, C is the event that no two
people have the same birthday.

The next example is more involved and interesting.

Example 13. Real-life situation: Imagine a man-woman pair. Their first child is random, for
example, the sex of the child, or the height to which the child will ultimately grow, etc cannot be
predicted with certainty. How to make a probability model that captures the situation?
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A possible probability model: Let there be n genes in each human, and each of the genes can take
two possible values (Mendel’s “factors”), which we denote as 0 or 1. Then, let Ω = {0, 1}n = {x =
(x1, . . . , xn) : xi = 0 or 1}. In this sense, each human being can be encoded as a vector in {0, 1}n.

To assign probabilities, one must know the parents. Let the two parents have gene sequences
a = (a1, . . . , an) and =

¯
(b1, . . . , bn). Then the possible offsprings gene sequences are in the set

Ω0 := {x ∈ {0, 1}n : xi = ai or bi, for each i ≤ n}. Let L := #{i : ai 6= bi}.
One possible assignment of probabilities is that each of these offsprings is equally likely. In that

case we can capture the situation in the following probability models.

(1) Let Ω0 be the sample space and let px = 2−L for each x ∈ Ω0.

(2) Let Ω be the sample space and let

px =

2−L if x ∈ Ω0

0 if x 6∈ Ω0.

The second one has the advantage that if we change the parent pair, we don’t have to change the
sample space, only the elementary probabilities. What are some interesting events? Hypotheti-
cally, the susceptibility to a disease X could be determined by the first ten genes, say the person is
likely to get the disease if there are at-most four 1s among the first ten. This would correspond to
the event that A = {x ∈ Ω0 : x0 + . . . + x10 ≤ 4}. (Caution: As far as I know, reading the genetic
sequence to infer about the phenotype is still an impractical task in general).

Reasonable model? There are many simplifications involved here. Firstly, genes are somewhat
ill-defined concepts, better defined are nucleotides in the DNA (and even then there are two copies
of each gene). Secondly, there are many “errors” in real DNA, even the total number of genes can
change, there can be big chunks missing, a whole extra chromosome etc. Thirdly, the assumption
that all possible gene-sequences in Ω0 are equally likely is incorrect - if two genes are physically
close to each other in a chromosome, then they are likely to both come from the father or both
from the mother. Lastly, if our interest originally was to guess the eventual height of the child or
its intelligence, then it is not clear that these are determined by the genes alone (environmental
factors such as availability of food etc. also matter). Finally, in case of the problem that Solomon
faced, the information about genes of the parents was not available, the model as written would
be use.

Remark 14. We have discussed at length the reasonability of the model in this example to indicate
the enormous effort needed to find a sufficiently accurate but also reasonably simple probability
model for a real-world situation. Henceforth, we shall omit such caveats and simply switch back-
and-forth between a real-world situation and a reasonable-looking probability model as if there
is no difference between the two. However, thinking about the appropriateness of the chosen
models is much encouraged.
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3. EXAMPLES OF DISCRETE PROBABILITY SPACES

Example 15. Toss n coins. We saw this before, but assumed that the coins are fair. Now we do
not. The sample space is

Ω = {0, 1}n = {ω = (ω1, . . . , ωn) : ωi = 0 or 1 for each i ≤ n}.

Further we assign pω = α
(1)
ω1 . . . α

(n)
ωn . Here α(j)

0 and α
(j)
1 are supposed to indicate the probabilities

that the jth coin falls tails up or heads up, respectively. Why did we take the product of α(j)
· s and

not some other combination? This is a non-mathematical question about what model is suited
for the given real-life example. For now, the only justification is that empirically the above model
seems to capture the real life situation accurately.

In particular, if the n coins are identical, we may write p = α
(j)
1 (for any j) and the elementary

probabilities become pω = p
P
i ωiqn−

P
i ωi where q = 1− p.

Fix 0 ≤ k ≤ n and let Bk = {ω :
∑n

i=1 ωi = k} be the event that we see exactly k heads out

of n tosses. Then P(Bk) =
(
n
k

)
pkqn−k. If Ak is the event that there are at least k heads, then

P(Ak) =
n∑̀
=k

(
n
`

)
p`qn−`.

Example 16. Toss a coin n times. Again

Ω = {0, 1}n = {ω = (ω1, . . . , ωn) : ωi = 0 or 1 for each i ≤ n},

pω = p
P
i ωiqn−

P
i ωi .

This is the same probability space that we got for the tossing of n identical looking coins. Implicit
is the assumption that once a coin is tossed, for the next toss it is as good as a different coin but with
the same p. It is possible to imagine a world where coins retain the memory of what happened
before (or as explained before, we can make a “coin” that remembers previous tosses!), in which
case this would not be a good model for the given situation. We don’t believe that this is the case
for coins in our world, and this can be verified empirically.

Example 17. Shuffle a deck of 52 cards. Ω = S52, the set of all permutations3 of [52] and pπ = 1
52!

for each π ∈ S52.

Example 18. “Psychic” guesses a deck of cards. The sample space is Ω = S52 × S52 and p(π,σ) =

1/(52!)2 for each pair (π, σ) of permutations. In a pair (π, σ), the permutation π denotes the actual

3We use the notation [n] to denote the set {1, 2, . . . , n}. A permutation of [n] is a vector (i1, i2, . . . , in) where i1, . . . , in
are distinct elements of [n], in other words, they are 1, 2, . . . , n but in some order. Mathematically, we may define a
permutation as a bijection π : [n]→ [n]. Indeed, for a bijection π, the numbers π(1), . . . , π(n) are just 1, 2, . . . , n in some
order.

12



order of cards in the shuffled deck, and σ denotes the order guessed by the psychic. If the guesses
are purely random, then the probabilities are as we have written.

An interesting random variable is the number of correct guesses. This is the functionX : Ω→ R

defined by X(π, σ) =
∑52

i=1 1πi=σi . Correspondingly we have the events Ak = {(π, σ) : X(π, σ) ≥
k}.

Example 19. Toss a coin till a head turns up. Ω = {1, 01, 001, 0001, . . .} ∪ {0̄}. Let us write

0k1 = 0 . . . 01 as a short form for k zeros (tails) followed by 1 and 0̄ stands for the sequence of all

tails. Let p ∈ [0, 1]. Then, we set p0k1 = qkp for each k ∈ N. We also set p0̄ = 0 if p > 0 and p0̄ = 1 if
p = 0. This is forced on us by the requirement that elementary probabilities add to 1.

Let A = {0k1 : k ≥ n} be the event that at least n tails fall before a head turns up. Then

P(A) = qnp+ qn+1p+ . . . = qn.

Example 20. Place r distinguishable balls in m distinguishable urns at random. We saw this
before (the words “labelled” and “distinguishable” mean the same thing here). The sample space

is Ω = [m]r = {ω = (ω1, . . . , ωr) : 1 ≤ ωi ≤ m} and pω = m−r for every ω ∈ Ω. Here ωi indicates

the urn number into which the ith ball goes.

Example 21. Place r indistinguishable balls in m distinguishable urns at random. Since the
balls are indistinguishable, we can only count the number of balls in each urn. The sample space
is

Ω = {(`1, . . . , `m) : `i ≥ 0, `1 + . . .+ `m = r}.

We give two proposals for the elementary probabilities.

(1) Let pMB
(`1,...,`m) = m!

`1!`2!...`m!
1
mr . These are the probabilities that result if we place r labelled

balls in m labelled urns, and then erase the labels on the balls.

(2) Let pBE
(`1,...,`m) = 1

(m+r−1
r−1 ) for each (`1, . . . , `m) ∈ Ω. Elementary probabilities are chosen so

that all distinguishable configurations are equally likely.

That these are legitimate probability spaces depend on two combinatorial facts.

Exercise 22. (1) Let (`1, . . . , `m) ∈ Ω. Show that #{ω ∈ [m]r :
∑r

j=1 1ωj=i = `i for each i ∈

[m]} = n!
`1!`2!...`m! . Hence or directly, show that

∑
ω∈Ω

pMB
ω = 1.

(2) Show that #Ω =
(
m+r−1
r−1

)
. Hence,

∑
ω∈Ω

pBEω = 1.

The two models are clearly different. Which one captures reality? We can arbitrarily label the
balls for our convenience, and then erase the labels in the end. This clearly yields elementary
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probabilities pMB . Or to put it another way, pick the balls one by one and assign them randomly

to one of the urns. This suggests that pMB is the “right one”.
This leaves open the question of whether there is a natural mechanism of assigning balls to urns

so that the probabilities pBE shows up. No such mechanism has been found. But this probability
space does occur in the physical world. If r photons (“indistinguishable balls”) are to occupy m
energy levels (“urns”), then empirically it has been verified that the correct probability space is

the second one!4

Example 23. Sampling with replacement from a population. Define Ω = {ω ∈ [N ]k : ωi ∈
[N ] for 1 ≤ i ≤ k} with pω = 1/Nk for each ω ∈ Ω. Here [N ] is the population (so the size of

the population is N ) and the size of the sample is k. Often the language used is of a box with N
coupons from which k are drawn with replacement.

Example 24. Sampling without replacement from a population. Now we take Ω = {ω ∈ [N ]k : ωi are distinct elements of [N ]}
with pω = 1/N(N − 1) . . . (N − k + 1) for each ω ∈ Ω.

Fix m < N and define the random variable X(ω) =
∑k

i=1 1ωi≤m. If the population [N ] contains

a subset, say [m], (could be the subset of people having a certain disease), then X(ω) counts the
number of people in the sample who have the disease. Using X one can define events such as
A = {ω : X(ω) = `} for some ` ≤ m. If ω ∈ A, then ` of the ωi must be in [m] and the rest in
[N ] \ [m]. Hence

#A =
(
k

`

)
m(m− 1) . . . (m− `+ 1)(N −m)(N −m− 1) . . . (N −m− (k − `) + 1).

As the probabilities are equal for all sample points, we get

P(A) =

(
k
`

)
m(m− 1) . . . (m− `+ 1)(N −m)(N −m− 1) . . . (N −m− (k − `) + 1)

N(N − 1) . . . (N − k + 1)

=
1(
N
k

)(m
`

)(
N −m
k − `

)
.

This expression arises whenever the population is subdivided into two parts and we count the
number of samples that fall in one of the sub-populations.

4The probabilities pMB and pBE are called Maxwell-Boltzmann statistics and Bose-Einstein statistics. There is a
third kind, called Fermi-Dirac statistics which is obeyed by electrons. For general m ≥ r, the sample space is
ΩFD = {(`1, . . . , `m) : `i = 0 or 1 and `1 + . . . + `m = r} with equal probabilities for each element. In words, all
distinguishable configurations are equally likely, with the added constraint that at most one electron can occupy each
energy level.
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Example 25. Gibbs measures. Let Ω be a finite set and let H : Ω → R be a function. Fix β ≥ 0.

Define Zβ =
∑

ω e
−βH(ω) and then set pω = 1

Zβ
e−βH(ω). This is clearly a valid assignment of

probabilities.
This is a class of examples from statistical physics. In that context, Ω is the set of all possible

states of a system andH(ω) is the energy of the state ω. In mechanics a system settles down to the
state with the lowest possible energy, but if there are thermal fluctuations (meaning the ambient
temperature is not absolute zero), then the system may also be found in other states, but higher

energies are less and less likely. In the above assignment, for two states ω and ω′, we see that

pω/pω′ = eβ(H(ω′)−H(ω)) showing that higher energy states are less probable. When β = 0, we get
pω = 1/|Ω|, the uniform distribution on Ω. In statistical physics, β is equated to 1/κT where T is
the temperature and κ is Boltzmann’s constant.

Different physical systems are defined by choosing Ω and H differently. Hence this provides a
rich class of examples which are of great importance in probability.

It may seem that probability is trivial, since the only problem is to find the sum of pω for ω
belonging to event of interest. This is far from the case. The following example is an illustration.

Example 26. Percolation. Fixm,n and consider a rectangle in Z2,R = {(i, j) ∈ Z2 : 0 ≤ i ≤ n, 0 ≤
j ≤ m}. Draw this on the plane along with the grid lines. We see (m + 1)n horizontal edges and
(n+ 1)m vertical edges. Let E be the set of N = (m+ 1)n+ (n+ 1)m edges and let Ω be the set of

all subsets of E. Then |Ω| = 2N . Let pω = 2−N for each ω ∈ Ω. An interesting event is

A = {ω ∈ Ω : the subset of edges in ω

connect the top side of R to the bottom side of R}.

This may be thought of as follows. Imagine that each edge is a pipe through which water can
flow. However each tube may be blocked or open. ω is the subset of pipes that are open. Now
pour water at the top of the rectangle R. Will water trickle down to the bottom? The answer is yes
if and only if ω belongs to A.

Finding P(A) is a very difficult problem. When n is large and m = 2n, it is expected that P(A)

converges to a specific number, but proving it is an open problem as of today!5

We now give two non-examples.

Example 27. Pick a natural number uniformly at random. The sample space is clearly Ω = N =
{1, 2, 3, . . .}. The phrase “uniformly at random” suggests that the elementary probabilities should
be the same for all elements. That is pi = p for all i ∈ N for some p. If p = 0, then

∑
i∈N pi = 0

5In a very similar problem on a triangular lattice, it was proved by Stanislav Smirnov (2001) for which he won a
fields medal. Proof that computing probabilities is not always trivial!
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whereas if p > 0, then
∑

i∈N pi = ∞. This means that there is no way to assign elementary

probabilities so that each number has the same chance to be picked.
This appears obvious, but many folklore puzzles and paradoxes in probability are based on

the faulty assumption that it is possible to pick a natural number at random. For example, when
asked a question like “What is the probability that a random integer is odd?”, many people answer
1/2. We want to emphasize that the probability space has to be defined first, and only then can
probabilities of events be calculated. Thus, the question does not make sense to us and we do not

have to answer it!6

Example 28. A non-example. A dart is thrown at a circular dart board. We assume that the dart
does hit the board but were it hits is “random” in the same sense in which we say the a coin toss
is random. Intuitively this appears to make sense. However our framework is not general enough
to incorporate this example. Let us see why.

The dart board can be considered to be the disk Ω = {(x, y) : x2 + y2 ≤ r2} of given radius r.
This is an uncountable set. We cannot assign elementary probabilities p(x,y) for each (x, y) ∈ Ω

in any reasonable way. In fact the only reasonable assignment would be to set p(x,y) = 0 for each

(x, y) but then what is P(A) for a subset A? Uncountable sums are not well defined.
We need a branch of mathematics called measure theory to make proper sense of uncountable

probability spaces. This will not be done in this course although we shall later say a bit about the
difficulties involved. The same difficulty shows up in the following “random experiments” also.

(1) Draw a number at random from the interval [0, 1]. Ω = [0, 1] which is uncountable.

(2) Toss a fair coin infinitely many times. Ω = {0, 1}N := {ω = (ω1, ω2, . . .) : ωi = 0 or 1}.
This is again an uncountable set.

Remark 29. In one sense, the first non-example is almost irredeemable but the second non-example
can be dealt with, except for technicalities beyond this course. We shall later give a set of working
rules to work with such “continuous probabilities”. Fully satisfactory development will have to
wait for a course in measure theory.

6For those interested, there is one way to make sense of such questions. It is to consider a sequence of probability
spaces Ω(n) = {1, 2, . . . , n} with elementary probabilities p(n)

i = 1/n for each i ∈ Ωn. Then, for a subset A ⊆ Z, we
consider Pn(A ∩ Ωn) = #(A ∩ [n])/n. If these probabilities converge to a limit x as n → ∞, then we could say that
A has asymptotic probability x. In this sense, the set of odd numbers does have asymptotic probability 1/2, the set
of numbers divisible by 7 has asymptotic probability 1/7 and the set of prime numbers has asymptotic probability 0.
However, this notion of asymptotic probability has many shortcomings. Many subsets of natural numbers will not have
an asymptotic probability, and even sets which do have asymptotic probability fail to satisfy basic rules of probability
that we shall see later. Hence, we shall keep such examples out of our system.
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4. COUNTABLE AND UNCOUNTABLE

Definition 30. An set Ω is said to be finite if there is an n ∈ N and a bijection from Ω onto [n]. An
infinite set Ω is said to be countable if there is a bijection from N onto Ω.

Generally, the word countable also includes finite sets. If Ω is an infinite countable set, then
using any bijection f : N→ Ω, we can list the elements of Ω as a sequence

f(1), f(2), f(3) . . .

so that each element of Ω occurs exactly once in the sequence. Conversely, if you can write the
elements of Ω as a sequence, it defines an injective function from natural numbers onto Ω (send 1
to the first element of the sequence, 2 to the second element etc).

Example 31. The set of integers Z is countable. Define f : N→ Z by

f(n) =

1
2n if n is even.

−1
2(n− 1) if n is odd.

It is clear that f maps N into Z. Check that it is one-one and onto. Thus, we have found a bijection
from N onto Z which shows that Z is countable. This function is a formal way of saying the we
can list the elements of Z as

0,+1,−1,+2,−2,+3,−3, . . . .

It is obvious, but good to realize there are wrong ways to try writing such a list. For example, if
you list all the negative integers first, as −1,−2,−3, . . ., then you will never arrive at 0 or 1, and
hence the list is incomplete!

Example 32. The set N×N is countable. Rather than give a formula, we list the elements of Z×Z
as follows.

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), . . .

The pattern should be clear. Use this list to define a bijection from N onto N × N and hence show
that N× N is countable.

Example 33. The set Z × Z is countable. This follows from the first two examples. Indeed, we
have a bijection f : N→ Z and a bijection g : N×N→ N. Define a bijection F : N×N→ Z× Z by
composing them, i.e., F (n,m) = f(g(n)). Then, F is one-one and onto. This shows that Z × Z is
indeed countable.

Example 34. The set of rational numbers Q is countable. Recall that rational numbers other than
0 can be written uniquely in the form p/q where p is a non-zero integer and q is a strictly positive
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integer, and there are no common factors of p and q (this is called the lowest form of the rational
number r). Consider the map f : Q→ Z× Z defined by

f(r) =

(0, 1) if r = 0

(p, q) if r = p
q in the lowest form.

Clearly, f is injective and hence, it appears that Z × Z is a “bigger set” than Q. Next define the
function g : Z → Q by setting g(n) = n. This is also injective and hence we may say that “Q is a
bigger set than N.

But we have already seen that N and Z × Z are in bijection with each other, in that sense, they
are of equal size. Since Q is sandwiched between the two it ought to be true that Q has the same
size as N, and thus countable.

This reasoning is not incorrect, but an argument is needed to make it an honest proof. This
is indicated in the Schröder-Bernstein theorem stated later. Use that to fill the gap in the above
argument, or alternately, try to directly find a bijection between Q and N.

Example 35. The set of real numbers R is not countable. The extraordinarily proof of this fact is
due to Cantor, and the core idea, called the diagonalization trick is one that can be used in many
other contexts.

Consider any function f : N → [0, 1]. We show that it is not onto, and hence not a bijec-
tion. Indeed, use the decimal expansion to write a number x ∈ [0, 1] as 0.x1x2x3 . . . where
xi ∈ {0, 1, . . . , 9}. Write the decimal expansion for each of the numbers f(1), f(2), f(3), . . . . as
follows.

f(1) = 0.X1,1X1,2X1,3 . . .

f(2) = 0.X2,1X2,2X2,3 . . .

f(3) = 0.X3,1X3,2X3,3 . . .

· · · · · · · · · · · ·

Let Y1, Y2, Y3, . . . be any numbers in {0, 1, . . . , 9} with the only condition that Yi 6= Xi,i. Clearly it
is possible to choose Yi like this. Now consider the number y = 0.Y1Y2Y3 . . . which is a number
in [0, 1]. However, it does not occur in the above list. Indeed, y disagrees with f(1) in the first
decimal place, disagrees with f(2) in the second decimal place etc. Thus, y 6= f(i) for any i ∈ N
which means that f is not onto [0, 1].

Thus, no function f : N → [0, 1] is onto, and hence there is no bijection from N onto [0, 1] and
hence [0, 1] is not countable. Obviously, if there is no onto function onto [0, 1], there cannot be an
onto function onto R. Thus, R is also uncountable.
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Example 36. Let A1, A2, . . . be subsets of a set Ω. Suppose each Ai is countable (finite is allowed).
Then ∪iAi is also countable. We leave it as an exercise. [Hint: If each Ai is countably infinite and
pairwise disjoint, then ∪Ai can be thought of as N× N].

Lemma 37 (Schröder-Bernstein). Let A,B be two sets and suppose there exist injective functions f :
A→ B and g : B → A. Then, there exists a bijective function h : A→ B.

We omit the proof as it is irrelevant to the rest of the course7.

5. ON INFINITE SUMS

There were some subtleties in the definition of probabilities which we address now. The def-
inition of P(A) for an event A and E[X] for a random variable X involve infinite sums (when
Ω is countably infinite). In fact, in the very definition of probability space, we had the condition
that

∑
ω pω = 1, but what is the meaning of this sum when Ω is infinite? In this section, we make

precise the notion of infinite sums. In fact we shall give two methods of approach, it suffices to
consider only the first.

5.1. First approach. Let Ω be a countable set, and let f : Ω → R be a function. We want to give a
meaning to the infinite sum

∑
ω∈Ω f(ω). First we describe a natural attempt and then address the

issues that it leaves open.

The idea: By definition of countability, there is a bijection ϕ : N → Ω which allows us to list
the elements of Ω as ω1 = ϕ(1), ω2 = ϕ(2), . . .. Consider the partial sums xn = f(ω1) + f(ω2) +
. . . + f(ωn). Since f is non-negative, these numbers are non-decreasing, i.e., x1 ≤ x2 ≤ x3 ≤ . . ..
Hence, they converge to a finite number or to +∞ (which is just another phrase for saying that
the partial sums grow without bound). We would like to simply define the sum

∑
ω∈Ω f(ω) as the

limit L = limn→∞(f(ω1) + . . .+ f(ωn), which may be finite or +∞.
The problem is that this may depend on the bijection Ω chosen. For example, if ψ : N → Ω is

a different bijection, we would write the elements of Ω in a different sequence ω′1 = ψ(1), ω′2 =

ψ(2), . . ., the partial sums yn = f(ω′1) + . . . + f(ω′n) and then define
∑

ω∈Ω f(ω) as the limit L′ =

limn→∞(f(ω′1) + . . .+ f(ω′n).

7For those interested, we describe the idea of the proof somewhat informally. Consider the two sets A and B
(assumed to have no common elements) and draw a blue arrow from each x ∈ A to f(x) ∈ B and a red arrow from
each y ∈ B to g(y) ∈ A. Start at any x ∈ A or y ∈ B and follow the arrows in the forward and backward directions.
There are only three possibilities

(1) The search closes, and we discover a cycle of alternating blue and red arrows.

(2) The backward search ends after finitely many steps and the forward search continues forever.

(3) Both the backward and forward searches continue forever.

The injectivity of f and g is used in checking that these are the only possibilities. In the first and third case, just use the
blue arrows to define the function h. In the second case, if the first element of the chain is inA, use the blue arrows, and

if the first element is in B use the red arrows (but in reverse direction) to define the function h. Check that the resulting
function is a bijection!
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Is it necessarily true that L = L′?

Case I - Non-negative f : We claim that for any two bijections ϕ and ψ as above, the limits are the
same (this means that the limits are +∞ in both cases, or the same finite number in both cases).
Indeed, fix any n and recall that xn = f(ω1)+ . . .+f(ωn). Now, ψ is surjective, hence there is some

m (possibly very large) such that {ω1, . . . , ωn} ⊆ {ω′1, . . . , ω′m}. Now, we use the non-negativity of
f to observe that

f(ω1) + . . .+ f(ωn) ≤ f(ω′1) + . . .+ f(ω′m).

This is the same as xn ≤ ym. Since yk are non-decreasing, it follows that xn ≤ ym ≤ ym+1 ≤
ym+2 . . ., which implies that xn ≤ L′. Now let n → ∞ and conclude that L ≤ L′. Repeat the

argument with the roles of ϕ and ψ reversed to conclude that L′ ≤ L. Hence L = L′, as desired to
show.

In conclusion, for non-negative functions f , we can assign an unambiguous meaning to
∑

ω f(ω)

by setting it equal to limn→∞(f(ϕ(1) + . . .+ f(ϕ(n))), where ϕ : N→ Ω is any bijection (the point
being that the limit does not depend on the bijection chosen), and the limit here may be allowed
to be +∞ (in which case we say that the sum does not converge).

Case II - General f : Ω → R: The above argument fails if f is allowed to take both positive and

negative values (why?). In fact, the answers L and L′ from different bijections may be completely
different. An example is given later to illustrate this point. For now, here is how we deal with this
problem.

For a real number xwe introduce the notations, x+ = x∨0 and x− = (−x)∨0. Then x = x+−x−
while |x| = x+ + x−. Define the non-negative functions f+, f− : Ω→ R+ by f+(ω) = (f(ω))+ and
f−(ω) = (f(ω))−. Observe that f+(ω)− f−(ω) = f(ω) while f+(ω) + f−(ω) = |f(ω)|, for all ω ∈ Ω.

Example 38. Let Ω = {a, b, c, d} and let f(a) = 1, f(b) = −1, f(c) = −3, f(4) = −0.3. Then,
f+(a) = 1 and f+(b) = f+(c) = f+(d) = 0 while f−(1) = 0 and f−(b) = 1, f−(c) = 3, f−(d) = 0.3.

Since f+ and f− are non-negative functions, we know how to define their sums. Let S+ =∑
ω f+(ω) and S− =

∑
ω f−(ω). Recall that one or both of S+, S− could be equal to +∞, in which

case we say that
∑

ω f(ω) does not converge absolutely and do not assign it any value. If both S+ and

S− are finite, then we define
∑

ω f(ω) = S+−S−. In this case we say that
∑
f converges absolutely.

This completes our definition of absolutely convergent sums. A few exercises to show that
when working with absolutely convergent sums, the usual rules of addition remain valid. For
example, we can add the numbers in any order.

Exercise 39. Show that
∑

ω f(ω) converges absolutely if and only if
∑

ω |f(ω)| is finite (since |f(ω)|
is a non-negative function, this latter sum is always defined, and may equal +∞).
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For non-negative f , we can find the sum by using any particular bijection and then taking limits
of partial sums. What about general f?

Exercise 40. Let f : Ω→ R. Suppose
∑

ω∈Ω f(ω) be summable and let the sum be S. Then, for any

bijection ϕ : N→ Ω, we have limn→∞(f(ϕ(1)) + . . .+ f(ϕ(n))) = S.
Conversely, if limn→∞(f(ϕ(1)) + . . . + f(ϕ(n))) exists and is the same finite number for any

bijection ϕ : N→ R, then f must be absolutely summable and
∑

ω∈Ω f(ω) is equal to this common

limit.

The usual properties of summation without which life would not be worth living, are still valid.

Exercise 41. Let f, g : Ω→ R+ and a, b ∈ R. If
∑
f and

∑
g converge absolutely, then

∑
(af + bg)

converges absolutely and
∑

(af + bg) = a
∑
f + b

∑
g. Further, if f(ω) ≤ g(ω) for all ω ∈ Ω, then∑

f ≤
∑
g.

Example 42. This example will illustrate why we refuse to assign a value to
∑

ω f(ω) in some

cases. Let Ω = Z and define f(0) = 0 and f(n) = 1/n for n 6= 0. At first one may like to say
that

∑
n∈Z f(n) = 0, since we can cancel f(n) and f(−n) for each n. However, following our

definitions

f+(n) =

 1
n if n ≥ 1

0 if n ≤ 0,
f−(n) =

 1
n if n ≤ −1

0 if n ≥ 0.

Hence S+ and S− are both +∞ which means our definition does not assign any value to the sum∑
ω f(ω).
Indeed, by ordering the numbers appropriately, we can get any value we like! For example,

here is how to get 10. We know that 1 + 1
2 + . . .+ 1

n grows without bound. Just keep adding these

positive number till the sum exceeds 10 for the first time. Then start adding the negative numbers

−1− 1
2 − . . .−

1
m till the sum comes below 10. Then add the positive numbers 1

n+1 + 1
n+2 + . . .+ 1

n′

till the sum exceeds 10 again, and then negative numbers till the sum falls below 10 again, etc.
Using the fact that the individual terms in the series are going to zero, it is easy to see that the
partial sums then converge to 10. There is nothing special about 10, we can get any number we
want!

One last remark on why we assumed Ω to be countable.

Remark 43. What if Ω is uncountable? Take any f : Ω → R+. Define the sets An = {ω : f(ω) ≥
1/n}. For some n, if An has infinitely many elements, then clearly the only reasonable value that
we can assign to

∑
f(ω) is +∞ (since the sum over elements of An itself is larger than any finite

number). Therefore, for
∑
f(ω) to be a finite number it is essential that An is a finite set for each

set.
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Now, a countable union of finite sets is countable (or finite). ThereforeA =
⋃
nAn is a countable

set. But note that A is also the set {ω : f(ω) > 0} (since, if f(ω) > 0 it must belong to some An).
Consequently, even if the underlying set Ω is uncountable, our function will have to be equal to
zero except on a countable subset of Ω. In other words, we are reduced to the case of countable
sums!

5.2. Second approach. In the first approach, we assumed that you are already familiar with the
notion of limits and series and used them to define countable sums. In the second approach, we
start from scratch and define infinite sums. The end result is exactly the same. For the purposes
of this course, you may ignore the rest of the section.

Definition 44. If Ω is a countable set and f : Ω→ R+ is a non-negative function, then we define

∑
ω

f(ω) := sup

{∑
ω∈A

f(ω) : A ⊆ Ω is finite

}

where the supremum takes values in R̄+ = R+ ∪ {+∞}. We say that
∑
f(ω) converges if the

supremum has a finite value.

Exercise 45. Show that if f, g : Ω→ R+ and a, b ∈ R+, then
∑

(af + bg) = a
∑
f + b

∑
g. Further,

if f(ω) ≤ g(ω) for all ω ∈ Ω, then
∑
f ≤

∑
g.

Next, we would like to remove the condition of non-negativity. For a real number x we write
x+ = x ∨ 0 and x− = (−x) ∨ 0. Then x = x+ − x− while |x| = x+ + x−.

Definition 46. Now suppose f : Ω → R takes both positive and negative values. Then we first
define the non-negative functions f+, f− : Ω→ R+ by f+(ω) = (f(ω))+ and f−(ω) = (f(ω))− and
set S+ =

∑
ω f+(ω) and S− =

∑
ω f−(ω). If both S+ and S− are finite, then we define

∑
ω f(ω) =

S+ − S−.

Remark 47. The condition that S+ and S− are both finite is the same as the condition that
∑

ω |f(ω)|
is finite. If these happen, we say that the sum

∑
f(ω) converges absolutely.

Remark 48. Sometimes it is convenient to set
∑
f(ω) to +∞ if S+ = ∞ and S− < ∞ and set∑

f(ω) to −∞ if S+ <∞ and S− =∞. But there is no reasonable value to assign if both the sums
are infinite.

Exercise 49. Show that the two approaches give the same answers.
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6. BASIC RULES OF PROBABILITY

So far we have defined the notion of probability space and probability of an event. But most
often, we do not calculate probabilities from the definition. This is like in integration, where
one defined the integral of a function as a limit of Riemann sums, but that definition is used
only to find integrals of xn, sin(x) and a few such functions. Instead, integrals of complicated

expressions such as x sin(x) + 2 cos2(x) tan(x) are calculated by various rules, such as substitution
rule, integration by parts etc. In probability we need some similar rules relating probabilities of
various combinations of events to the individual probabilities.

Proposition 50. Let (Ω, p·) be a discrete probability space.

(1) For any event A, we have 0 ≤ P(A) ≤ 1. Also, P(∅) = 0 and P(Ω) = 1.

(2) Finite additivity of probability: If A1, . . . , An are pairwise disjoint events, then P(A1 ∪ . . . ∪
An) = P(A1) + . . .+ P(An). In particular, P(Ac) = 1−P(A) for any event A.

(3) Countable additivity of probability: If A1, A2, . . . is a countable collection of pairwise disjoint
events, then P(∪Ai) =

∑
iP(Ai).

All of these may seem obvious, and indeed they would be totally obvious if we stuck to finite
sample spaces. But the sample space could be countable, and then probability of events may
involve infinite sums which need special care in manipulation. Therefore we must give a proof.
In writing a proof, and in many future contexts, it is useful to introduce the following notation.

Notation: Let A ⊆ Ω be an event. Then, we define a function 1A : Ω → R, called the indicator
function of A, as follows.

1A(ω) =

1 if ω ∈ A,

0 if ω 6∈ A.

Since a function from Ω to R is called a random variable, the indicator of any event is a random
variable. All information about the event A is in its indicator function (meaning, if we know the
value of 1A(ω), we know whether or not ω belongs to A). For example, we can write P(A) =∑

ω∈Ω 1A(ω)pω.

Now we prove the proposition.

Proof. (1) By definition of probability space P(Ω) = 1 and P(∅) = 0. If A is any event, then
1∅(ω)pω ≤ 1A(ω)pω ≤ 1Ω(ω)pω. By Exercise 41, we get∑

ω∈Ω

1∅(ω)pω ≤
∑
ω∈Ω

1A(ω)pω ≤
∑
ω∈Ω

1Ω(ω)pω.

As observed earlier, these sums are just P(∅), P(A) and P(Ω), respectively. Thus, 0 ≤
P(A) ≤ 1.
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(2) It suffices to prove it for two sets (why?). Let A,B be two events such that A ∩ B = ∅. Let
f(ω) = pω1A(ω) and g(ω) = pω1B(ω) and h(ω) = pω1A∪B(ω). Then, the disjointness of A
and B implies that f(ω) + g(ω) = h(ω) for all ω ∈ Ω. Thus, by Exercise 41, we get∑

ω∈Ω

f(ω) +
∑
ω∈Ω

g(ω) =
∑
ω∈Ω

h(ω).

But the three sums here are precisely P(A), P(B) and P(A ∪B). Thus, we get P(A ∪B) =
P(A) + P(B).

(3) This is similar to finite additivity but needs a more involved argument. We leave it as an
exercise for the interested reader. �

Exercise 51. Adapt the proof to prove that for a countable family of events Ak in a common prob-
ability space (no disjointness assumed), we have

P(∪kAk) ≤
∑
k

P(Ak).

Definition 52 (Limsup and liminf of sets). If Ak, k ≥ 1, is a sequence of subsets of Ω, we define

lim supAk =
∞⋂
N=1

∞⋃
k=N

Ak, and lim inf Ak =
∞⋃
N=1

∞⋂
k=N

Ak.

In words, lim supAk is the set of all ω that belong to infinitely many of the Aks, and lim inf Ak is
the set of all ω that belong to all but finitely many of the Aks.

Two special cases are of increasing and decreasing sequences of events. This means A1 ⊆ A2 ⊆
A3 ⊆ . . . and A1 ⊇ A2 ⊇ A3 ⊇ . . .. In these cases, the limsup and liminf are the same (so we refer
to it as the limit of the sequence of sets). It is ∪kAk in the case of increasing events and ∩kAk in the
case of decreasing events.

Exercise 53. Events below are all contained in a discrete probability space. Use countable additiv-
ity of probability to show that

(1) If Ak are increasing events with limit A, show that P(A) is the increasing limit of P(Ak).

(2) If Ak are decreasing events with limit A, show that P(A) is the decreasing limit of P(Ak).

Now we re-write the basic rules of probability as follows.

The basic rules of probability:

(1) P(∅) = 0, P(Ω) = 1 and 0 ≤ P(A) ≤ 1 for any event A.
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(2) P
(⋃
k

Ak

)
≤
∑
k

P(Ak) for any countable collection of events Ak.

(3) P
(⋃
k

Ak

)
=
∑
k

P(Ak) if Ak is a countable collection of pairwise disjoint events.

7. INCLUSION-EXCLUSION FORMULA

In general, there is no simple rule for P(A∪B) in terms of P(A) and P(B). Indeed, consider the

probability space Ω = {0, 1} with p0 = p1 = 1
2 . If A = {0} and B = {1}, then P(A) = P(B) = 1

2

and P(A∪B) = 1. However, if A = B = {0}, then P(A) = P(B) = 1
2 as before, but P(A∪B) = 1

2 .

This shows that P(A ∪ B) cannot be determined from P(A) and P(B). Similarly for P(A ∩ B) or
other set constructions.

However, it is easy to see that P(A∪B) = P(A)+P(B)−P(A∩B). This formula is not entirely
useless, because in special situations we shall later see that the probability of the intersection is
easy to compute and hence we may compute the probability of the union. Generalizing this idea
to more than two sets, we get the following surprisingly useful formula.

Proposition 54 (Inclusion-Exclusion formula). Let (Ω, p) be a probability space and let A1, . . . , An be
events. Then,

P

(
n⋃
i=1

Ai

)
= S1 − S2 + S3 − . . .+ (−1)n−1Sn

where

Sk =
∑

1≤i1<i2<...<ik≤n
P(Ai1 ∩Ai2 ∩ . . . ∩Aik).

We give two proofs, but the difference is only superficial. It is a good exercise to reason out why
the two arguments are basically the same.

First proof. For each ω ∈ Ω we compute its contribution to the two sides. If ω 6∈
⋃n
i=1Ai, then pω

is not counted on either side. Suppose ω ∈
⋃n
i=1Ai so that pω is counted once on the left side. We

count the number of times pω is counted on the right side by splitting into cases depending on the
exact number of Ais that contain ω.

Suppose ω belongs to exactly one of the Ais. For simplicity let us suppose that ω ∈ A1 but
ω ∈ Aci for 2 ≤ i ≤ n. Then pω is counted once in S1 but not counted in S2, . . . , Sn.

Suppose ω belongs to A1 and A2 but not any other Ai. Then pω is counted twice in S1 (once
for P(A1) and once for P(A2)) and subtracted once in S2 (in P(A1 ∩ A2)). Thus, it is effectively
counted once on the right side. The same holds if ω belongs to Ai and Aj but not any other Aks.
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If ω belongs to A1, . . . , Ak but not any other Ai, then on the right side, pω is added k times in S1,

subtracted
(
k
2

)
times in S2, added

(
k
3

)
times in Sk and so on. Thus pω is effectively counted(

k

1

)
−
(
k

2

)
+
(
k

3

)
− . . .+ (−1)k−1

(
k

k

)
times. By the Binomial formula, this is just the expansion of 1− (1− 1)k which is 1. �

Second proof. Use the definition to write both sides of the statement. Let A = ∪ni=1Ai.

LHS =
∑
ω∈A

pω =
∑
ω∈Ω

1A(ω)pω.

Now we compute the right side. For any i1 < i2 < . . . < ik, we write

P (Ai1 ∩ . . . ∩Aik) =
∑
ω∈Ω

pω1Ai1∩...∩Aik (ω) =
∑
ω∈Ω

pω

k∏
`=1

1Ai` (ω).

Hence, the right hand side is given by adding over i1 < . . . < ik, multiplying by (−1)k−1 and then
summing over k from 1 to n.

RHS =
n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

∑
ω∈Ω

pω

k∏
`=1

1Ai` (ω)

=
∑
ω∈Ω

n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n
pω

k∏
`=1

1Ai` (ω)

= −
∑
ω∈Ω

pω

n∑
k=1

∑
1≤i1<...<ik≤n

k∏
`=1

(−1Ai` (ω))

= −
∑
ω∈Ω

pω

 n∏
j=1

(1− 1Aj (ω)) − 1


=

∑
ω∈Ω

pω1A(ω).

because the quantity
n∏
j=1

(1 − 1Aj (ω)) equals −1 if ω belongs to at least one of the Ais, and is zero

otherwise. Thus the claim follows. �

As we remarked earlier, it turns out that in many settings it is possible to compute the probabil-
ities of intersections. We give an example now.

Example 55. Let Ω = S52×S52 with pω = 1
(52!)2 for all ω ∈ Ω. Consider the eventA = {(π, σ) : π(i) 6=

σ(i) ∀i}. Informally, we imagine two shuffled decks of cards kept side by side (or perhaps one
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shuffled deck and another permutation denoting a “psychic’s predictions” for the order in which
the cards occur). Then A is the event that there are no matches (or correct guesses).

Let Ai = {(π, σ) : π(i) = σ(i)} so that Ac = A1 ∪ . . . ∪A52. It is easy to see that P(Ai1 ∩Ai2 . . . ∩
Aik) = 1

52(52−1)...(52−k+1) for any i1 < i2 < . . . < ik (why?). Therefore, by the inclusion-exclusion

formula, we get

P(Ac) =
(

52
1

)
1
52
−
(

52
2

)
1

(52)(51)
+ . . .+ (−1)51

(
52
52

)
1

(52)(51) . . . (1)

= 1− 1
2!

+
1
3!
− 1

4!
+ . . .− 1

52!

≈ 1− 1
e
≈ 0.6321

by the expansion e−1 = 1− 1
2! + 1

3! − . . .. Hence P(A) ≈ e−1 ≈ 0.3679.

Example 56. Place n distinguishable balls in r distinguishable urns at random. Let A be the event
that some urn is empty. The probability space is Ω = {ω = (ω1, . . . , ωn) : 1 ≤ ωi ≤ r} with

pω = r−n. Let A` = {ω : ωi 6= `} for ` = 1, 2 . . . , r. Then, A = A1 ∪ . . . ∪ Ar−1 (as Ar is empty, we

could include it or not, makes no difference).

It is easy to see that P(Ai1 ∩ . . . ∩ Aik) = (r − k)nr−n = (1 − k
r )n. We could use the inclusion-

exclusion formula to write the expression

P(A) = r

(
1− 1

r

)n
−
(
r

2

)(
1− 2

r

)n
+ . . .+ (−1)r−2

(
r

r − 1

)(
1− r − 1

r

)n
.

The last term is zero (since all urns cannot be empty). I don’t know if this expression can be
simplified any more.

We mention two useful formulas that can be proved on lines similar to the inclusion-exclusion
principle. If we say “at least one of the events A1, A2, . . . , An occurs”, we are talking about the
union, A1 ∪ A2 ∪ . . . ∪ An. What about “at least m of the events A1, A2, . . . , An occur”, how to
express it with set operations. It is not hard to see that this set is precisely

Bm =
⋃

1≤i1<i2<...<im≤n
(Ai1 ∩Ai2 ∩ . . . ∩Aim).

The event that “exactly m of the events A1, A2, . . . , An occur” can be written as

Cm = Bm \Bm+1 =
⋃
S⊆[n]

|S|=m

(⋂
i∈S

Ai

)⋂⋂
i 6∈S

Aci

 .
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Exercise 57. Let A1, . . . , An be events in a probability space (Ω, p) and let m ≤ n. Let Bm and Cm

be as above. Show that

P(Bm) =
n∑

k=m

(−1)k−m
(
k − 1
k −m

)
Sk

= Sm −
(
m

1

)
Sm+1 +

(
m+ 1

2

)
Sm+2 −

(
m+ 2

3

)
Sm+3 + . . .

P(Cm) =
n∑

k=m

(−1)k−m
(
k

m

)
Sk

= Sm −
(
m+ 1

1

)
Sm+1 +

(
m+ 2

2

)
Sm+2 −

(
m+ 3

3

)
Sm+3 + . . .

Exercise 58. Return to the setting of exercise 55 but with n cards in a deck, so that Ω = Sn × Sn
and p(π,σ) = 1

(n!)2 . Let Am be the event that there are exactly m matches between the two decks.

(1) For fixed m ≥ 0, show that P(Am)→ e−1 1
m! as n→∞.

(2) Assume that the approximations above are valid for n = 52 and m ≤ 10. Find the proba-
bility that there are at least 10 matches.

8. BONFERRONI’S INEQUALITIES

Inclusion-exclusion formula is nice when we can calculate the probabilities of intersections of
the events under consideration. Things are not always this nice, and sometimes that may be
very difficult. Even if we could find them, summing them with signs according to the inclusion-
exclusion formula may be difficult as the example 56 demonstrates. The idea behind the inclusion-
exclusion formula can however be often used to compute approximate values of probabilities, which
is very valuable in most applications. That is what we do next.

We know that P(A1 ∪ . . . ∪ An) ≤ P(A1) + . . . + P(An) for any events A1, . . . , An. This is an
extremely useful inequality, often called the union bound. Its usefulness is in the fact that there
is no assumption made about the events Ais (such as whether they are disjoint or not). The fol-
lowing inequalities generalize the union bound, and gives both upper and lower bounds for the
probability of the union of a bunch of events.
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Lemma 59 (Bonferroni’s inequalities). Let A1, . . . , An be events in a probability space (Ω, p) and let
A = A1 ∪ . . . ∪An. We have the following upper and lower bounds for P(A).

P(A) ≤
m∑
k=1

(−1)k−1Sk, for any odd m.

P(A) ≥
m∑
k=1

(−1)k−1Sk, for any even m.

Proof. We shall write out the proof for the cases m = 1 and m = 2. When m = 1, the inequality is
just the union bound

P(A) ≤ P(A1) + . . .+ P(An)

which we know. When m = 2, the inequality to be proved is

P(A) ≥
∑
k

P(Ak)−
∑
k<`

P(Ak ∩A`)

To see this, fix ω ∈ Ω and count the contribution of pω to both sides. Like in the proof of the
inclusion-exclusion formula, for ω 6∈ A1 ∪ . . . ∪ An, the contribution to both sides is zero. On the
other hand, if ω belongs to exactly r of the sets for some r ≥ 1, then it is counted once on the left

side and r−
(
r
2

)
times on the right side. Not that r−

(
r
2

)
= 1

2r(3− r) which is always non-positive

(one if r = 1, zero if r = 2 and non-positive if r ≥ 3). Hence we get LHS ≥ RHS.
Similarly, one can prove the other inequalities in the series. We leave it as an exercise. The key

point is that r −
(
r
2

)
+ . . . + (−1)k−1

(
r
k

)
is non-negative if k is odd and non-positive if k is even

(prove this). Here as always
(
x
y

)
is interpreted as zero if y > x. �

Here is an application of these inequalities.

Example 60. Return to Example 56. We obtained an exact expression for the answer, but that is
rather complicated. For example, what is the probability of having at least one empty urn when
n = 40 balls are placed at random in r = 10 urns? It would be complicated to sum the series.
Instead, we could use Bonferroni’s inequalities to get the following bounds.

r

(
1− 1

r

)n
−
(
r

2

)(
1− 2

r

)n
≤ P(A) ≤ r

(
1− 1

r

)n
.

If we take n = 40 and r = 10, the bounds we get are 0.1418 ≤ P(A) ≤ 0.1478. Thus, we get a
pretty decent approximation to the probability. By experimenting with other numbers you can
check that the approximations are good when n is large compared to r but not otherwise. Can you
reason why?
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9. INDEPENDENCE - A FIRST LOOK

We remarked in the context of inclusion-exclusion formulas that often the probabilities of inter-
sections of events is easy to find, and then we can use them to find probabilities of unions etc. In
many contexts, this is related to one of the most important notions in probability.

Definition 61. Let A,B be events in a common probability space. We say that A and B are inde-
pendent is P(A ∩B) = P(A)P(B).

Example 62. Toss a fair coin n times. Then Ω = {ω : ω = (ω1, . . . , ωn), ωi is 0 or 1} and pω =

2−n for each ω. Let A = {ω : ω1 = 0} and let B = {ω : ω2 = 0}. Then, from the definition of
probabilities, we can see that P(A) = 1/2, P(B) = 1/2 (because the elementary probabilities are

equal, and both the sets A and B contain exactly 2n−1 elements). Further, A ∩ B = {ω : ω1 =

1, ω2 = 0} has 2n−2 elements, whence P(A∩B) = 1/4. Thus, P(A∩B) = P(A)P(B) and hence A
and B are independent.

If two events are independent, then the probability of their intersection can be found from the
individual probabilities. How do we check if two events are independent? By checking if the
probability of the event is equal to the product of the individual probabilities! It seems totally
circular and useless! There are many reasons why it is not an empty notion as we shall see.

Firstly, in physical situationsdependence is related to a basic intuition we have about whether
two events are related or not. For example, suppose you are thinking of betting Rs.1000 on a
particular horse in a race. If you get the news that your cousin is getting married, it will perhaps
not affect the amount you plan to bet. However, if you get the news that one of the other horses
has been injected with undetectable drugs, it might affect the bet you want to place. In other
words, certain events (like marriage of a cousin) have no bearing on the probability of the event
of interest (the event that our horse wins) while other events (like the injection of drugs) do have
an impact. This intuition is often put into the very definition of probability space that we have.

For example, in the above example of tossing a fair coin n times, it is our intuition that a coin
does not remember how it fell previous times, and that chance of its falling head in any toss is

just 1/2, irrespective of how many heads or tails occured before8 And this intuition was used in

defining the elementary probabilities as 2−n each. Since we started with the intuitive notion of
independence, and put that into the definition of the probability space, it is quite expected that the
event that the first toss is a head should be independent of the event that the second toss is a tail.
That is the calculation shown in above.

But how is independence useful mathematically if the conditions to check independence are the
very conclusions we want?! The answer to this lies in the following fact (to be explained later).

8It may be better to attribute this to experience rather than intuition. There have been reasonable people in history
who believed that if a coin shows heads in ten tosses in a row, then on the next toss it is more likely to show tails
(to ‘compensate’ for the overabundance of heads)! Clearly this is also someone’s intuition, and different from ours.
Only experiment can decide which is correct, and any number of experiments with real coins show that our intuition
is correct, and coins have no memory.
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When certain events are independent, then many other collections of events that can be made out
of them also turn out to be independent. For example, if A,B,C,D are independent (we have not
yet defined what this means!), then A ∪ B and C ∪ D are also independent. Thus, starting from
independence of certain events, we get independence of many other events. For example, any
event depending on the first four tosses is independent of eny event depending on the next five
tosses.

10. CONDITIONAL PROBABILITY AND INDEPENDENCE

Definition 63. Let A,B be two events in the same probability space.

(1) If P(B) 6= 0, we define the conditional probability of A given B as

P
(
A
∣∣∣B) :=

P(A ∩B)
P(B)

.

(2) We say that A and B are independent if P(A ∩ B) = P(A)P(B). If P(B) 6= 0, then A and

B are independent if and only if P(A
∣∣∣∣∣∣ B) = P(A) (and similarly with the roles of A and

B reversed). If P(B) = 0, then A and B are necessarily independent since P(A ∩ B) must
also be 0.

What do these notions mean intuitively? In real life, we keep updating probabilities based on
information that we get. For example, when playing cards, the chance that a randomly chosen
card is an ace is 1/13, but having drawn a card, the probability for the next card may not be the
same - if the first card was seen to be an ace, then the chance of the second being an ace falls to
3/51. This updated probability is called a conditional probability. Independence of two events A
and B means that knowing whether or not A occured does not change the chance of occurrence
of B. In other words, the conditional probability of A given B is the same as the unconditional
(original) probability of A.

Example 64. Let Ω = {(i, j) : 1 ≤ i, j ≤ 6} with p(i,j) = 1
36 . This is the probability space corre-

sponding to a throw of two fair dice. Let A = {(i, j) : i is odd} and B = {(i, j) : j is 1 or 6} and
C = {(i, j) : i+ j = 4}. Then A∩B = {(i, j) : i = 1, 3, or 5, and j = 1 or 6}. Then, it is easy to see
that

P(A ∩B) =
6
36

=
1
6
, P(A) =

18
36

=
1
2
, P(B) =

12
36

=
1
3
.

In this case, P(A ∩B) = P(A)P(B) and hence A and B are independent. On the other hand,

P(A ∩ C) = P{(1, 3), (2, 2)} =
1
18
, P(C) = P{(1, 3), (2, 2), (3, 1)} =

1
12
.

Thus, P(A ∩ C) 6= P(A)P(C) and hence A and C are not independent.
This agrees with the intuitive understanding of independence, since A is an event that depends

only on the first toss and B is an event that depends only on the second toss. Therefore, A and B
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ought to be independent. However, C depends on both tosses, and hence cannot be expected to

be independent of A. Indeed, it is easy to see that P(C
∣∣∣∣∣∣ A) = 1

9 .

Example 65. Let Ω = S52 with pπ = 1
52! . Define the events

A = {π : π1 ∈ {10, 20, 30, 40}}, A = {π : π2 ∈ {10, 20, 30, 40}}.

Then both P(A) = P(B) = 1
13 . However, P(B

∣∣∣∣∣∣ A) = 3
51 . One can also see that P(B

∣∣∣∣∣∣ Ac) = 4
51 .

In words, A (respectively B) could be the event that the first (respectively second) card is an
ace. Then P(B) = 4/52 to start with. When we see the first card, we update the probability. If the

first card was not an ace, we update it to P(B
∣∣∣∣∣∣ Ac) and if the first card was an ace, we update it to

P(B
∣∣∣∣∣∣ A).

Caution: Independence should not be confused with disjointness! If A and B are disjoint, P(A ∩
B) = 0 and hence A and B can be independent if and only if one of P(A) or P(B) equals 0.
Intuitively, if A and B are disjoint, then knowing that A occurred gives us a lot of information
about B (that it did not occur!), so independence is not to be expected.

Exercise 66. IfA andB are independent, show that the following pairs of events are also indepen-
dent.

(1) A and Bc.

(2) Ac and B.

(3) Ac and Bc.

Total probability rule and Bayes’ rule: Let A1, . . . , An be pairwise disjoint and mutually exhaus-
tive events in a probability space. Assume P(Ai) > 0 for all i. This means that Ai ∩Aj = ∅ for any
i 6= j and A1 ∪ A2 ∪ . . . ∪ An = Ω. We also refer to such a collection of events as a partition of the
sample space.

Let B be any other event.

(1) (Total probability rule). P(B) = P(A1)P(B
∣∣∣∣∣∣ A1) + . . .+ P(An)P(B

∣∣∣∣∣∣ An).

(2) (Bayes’ rule). Assume that P(B) > 0. Then, for each k = 1, 2, . . . , n, we have

P(Ak
∣∣∣∣∣∣ B) =

P(Ak)P(B
∣∣∣∣∣∣ Ak)

P(A1)P(B
∣∣∣∣∣∣ A1) + . . .+ P(An)P(B

∣∣∣∣∣∣ An)
.

Proof. The proof is merely by following the definition.

(1) The right hand side is equal to

P(A1)
P(B ∩A1)

P(A1)
+ . . .+ P(An)

P(B ∩An)
P(An)

= P(B ∩A1) + . . .+ P(B ∩An)
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which is equal to P(B) since Ai are pairwise disjoint and exhaustive.

(2) Without loss of generality take k = 1. Note that P(A1 ∩B) = P(A1)P(B ∩A1). Hence

P(A1

∣∣∣∣∣∣ B) =
P(A1 ∩B)

P(B)

=
P(A1)P(B

∣∣∣∣∣∣ A1)
P(A1)P(B

∣∣∣∣∣∣ A1) + . . .+ P(An)P(B
∣∣∣∣∣∣ An)

where we used the total probability rule to get the denominator. �

Exercise 67. Suppose Ai are events such that P(A1 ∩ . . . ∩An) > 0. Then show that

P(A1 ∩ . . . ∩An) = P(A1)P(A2

∣∣∣∣∣∣ A1)P(A3

∣∣∣∣∣∣ A1 ∩A2) . . .P(An
∣∣∣∣∣∣ A1 ∩ . . . ∩An−1).

Example 68. Consider a rare disease X that affects one in a million people. A medical test is used
to test for the presence of the disease. The test is 99% accurate in the sense that if a person has no
disease, the chance that the test shows positive is 1% and if the person has disease, the chance that
the test shows negative is also 1%.

Suppose a person is tested for the disease and the test result is positive. What is the chance that
the person has the disease X?

Let A be the event that the person has the disease X . Let B be the event that the test shows
positive. The given data may be summarized as follows.

(1) P(A) = 10−6. Of course P(Ac) = 1− 10−6.

(2) P(B
∣∣∣∣∣∣ A) = 0.99 and P(B

∣∣∣∣∣∣ Ac) = 0.01.

What we want to find is P(A
∣∣∣∣∣∣ B). By Bayes’ rule (the relevant partition is A1 = A and A2 = Ac),

P(A
∣∣∣∣∣∣ B) =

P(B
∣∣∣∣∣∣ A)P(A)

P(B
∣∣∣∣∣∣ A)P(A) + P(B

∣∣∣∣∣∣ Ac)P(Ac)
=

0.99× 10−6

0.99× 10−6 + 0.01× (1− 10−6)
= 0.000099.

The test is quite an accurate one, but the person tested positive has a really low chance of actu-
ally having the disease! Of course, one should observe that the chance of having disease is now

approximately 10−4 which is considerably higher than 10−6.
A calculation-free understanding of this surprising looking phenomenon can be achieved as

follows: Let everyone in the population undergo the test. If there are 109 people in the population,

then there are only 103 people with the disease. The number of true positives is approximately

103 × 0.99 ≈ 103 while the number of false positives is (109 − 103) × 0.01 ≈ 107. In other words,
among all positives, the false positives are way more numerous than true positives.

The surprise here comes from not taking into account the relative sizes of the sub-populations
with and without the disease. Here is another manifestation of exactly the same fallacious reason-
ing.
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Question: A person X is introverted, very systematic in thinking and somewhat absent-minded.
You are told that he is a doctor or a mathematician. What would be your guess - doctor or mathe-
matician?

As we saw in class, most people answer “mathematician”. Even accepting the stereotype that a
mathematician is more likely to have all these qualities than a doctor, this answer ignores the fact
that there are perhaps a hundred times more doctors in the world than mathematicians! In fact,

the situation is identical to the one in the example above, and the mistake is in confusing P(A
∣∣B)

and P(B
∣∣A).

11. INDEPENDENCE OF THREE OR MORE EVENTS

Definition 69. Events A1, . . . , An in a common probability space are said to be independent if
P (Ai1 ∩Ai2 ∩ . . . ∩Aim) = P(Ai1)P(Ai2) . . .P(Aim) for every choice of m ≤ n and every choice
of 1 ≤ i1 < i2 < . . . < im ≤ n.

The independence of n events requires us to check 2n equations (that many choices of i1, i2, . . .).
Should it not suffice to check that each pair of Ai and Aj are independent? The following example
shows that this is not the case!

Example 70. Let Ω = {0, 1}n with pω = 2−n for each ω ∈ Ω. Define the events A = {ω : ω1 = 0},
A = {ω : ω2 = 0} and C = {ω : ω1 + ω2 = 0 or 2}. In words, we toss a fair coin n times and A

denotes the event that the first toss is a tail, B denotes the event that the second toss is a tail and C
denotes the event that out of the first two tosses are both heads or both tails. Then P(A) = P(B) =

P(C) = 1
4 . Further,

P(A ∩B) =
1
4
, P(B ∩ C) =

1
4
, P (A ∩ C) =

1
4
, P(A ∩B ∩ C) =

1
4
.

Thus, A,B,C are independent pairwise, but not independent by our definition because P(A∩B ∩
C) 6= 1

8 = P(A)P(B)P(C).

Intuitively this is right. Knowing A does not given any information about C (similarly with A
and B or B and C), but knowing A and B tells us completely whether or not C occurred! Thus is
is right that the definition should not declare them to be independent.

Exercise 71. Let A1, . . . , An be events in a common probability space. Then, A1, A2, . . . , An are
independent if and only if the following equalities hold.

For each i, define Bi as Ai and Aci . Then

P(B1 ∩B2 ∩ . . . ∩Bn) = P(B1)P(B2) . . .P(Bn).

Note: This should hold for any possible choice of Bis. In other words, the system of 2n equalities
in the definition of independence may be replaced by this new set of 2n equalities. The latter
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system has the advantage that it immediately tells us that if A1, . . . , An are independent, then
A1, A

c
2, A3, . . . (for each i choose Ai or its complement) are independent.

12. DISCRETE PROBABILITY DISTRIBUTIONS

Let (Ω, p) be a probability space and X : Ω → R be a random variable. We define two objects
associated to X .

Probability mass function (pmf). The range ofX is a countable subset of R, denote it by Range(X) =
{t1, t2, . . .}. Then, define fX : R→ [0, 1] as the function

fX(t) =

P{ω : X(ω) = t} if t ∈ Range(X).

0 if t 6∈ Range(X).

One obvious property is that
∑

t∈R fX(t) = 1. Conversely, any non-negative function f that is

non-zero on a countable set S and such that
∑

t∈R f(t) = 1 is a pmf of some random variable.

Cumulative distribution function (CDF). Define FX : R→ [0, 1] by

FX(t) = P{ω : X(ω) ≤ t}.

Example 72. Let Ω = {(i, j) : 1 ≤ i, j ≤ 6} with p(i,j) = 1
36 for all (i, j) ∈ Ω. Let X : Ω → R be the

random variable defined by X(i, j) = i + j. Then, Range(X) = {2, 3, . . . , 12}. The pmf and CDF
of X are given by

fX(k) =



1/36 if k = 2.

2/36 if k = 3.

3/36 if k = 4.

4/36 if k = 5.

5/36 if k = 6.

6/36 if k = 7.

5/36 if k = 8.

4/36 if k = 9.

3/36 if k = 10.

2/36 if k = 11.

1/36 if k = 12.

FX(t) =



0 if t < 2.

1/36 if t ∈ [2, 3).

3/36 if t ∈ [3, 4).

6/36 if t ∈ [4, 5).

10/36 if t ∈ [5, 6).

15/36 if t ∈ [6, 7).

21/36 if t ∈ [7, 8).

26/36 if t ∈ [8, 9).

30/36 if t ∈ [9, 10).

33/36 if t ∈ [10, 11).

35/36 if t ∈ [11, 12).

1 if t ≥ 12.

A picture of the pmf and CDF for a Binomial distribution are shown in Figure ??.

Basic properties of a CDF: The following observations are easy to make.
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(1) F is an increasing function on R.

(2) lim
t→+∞

F (t) = 1 and lim
t→−∞

F (t) = 0.

(3) F is right continuous, that is, lim
h↘0

F (t+ h) = F (t) for all t ∈ R.

(4) F increases only in jumps. This means that if F has no jump discontinuities (an increasing
function has no other kind of discontinuity anyway) in an interval [a, b], then F (a) = F (b).

Since F (t) is the probability of a certain event, these statements can be proved using the basic rules
of probability that we saw earlier.

Proof. Let t < s. Define two events, A = {ω : X(ω) ≤ t} and B = {ω : X(ω) ≤ s}. Clearly A ⊆ B

and hence F (t) = P(A) ≤ P(B) = F (s). This proves the first property.
To prove the second property, let An = {ω : X(ω) ≤ n} for n ≥ 1. Then, An are increasing in n

and
⋃∞
n=1An = Ω. Hence, F (n) = P(An)→ P(Ω) = 1 as n→∞. Since F is increasing, it follows

that limt→+∞ F (t) = 1. Similarly one can prove that limt→−∞ F (t) = 0.
Right continuity of F is also proved the same way, by considering the events Bn = {ω : X(ω) ≤

t+ 1
n}. We omit details. �

Remark 73. It is easy to see that one can recover the pmf from the CDF and vice versa. For
example, given the pmf f , we can write the CDF as F (t) =

∑
u:u≤t f(u). Conversely, given the

CDF, by looking at the locations of the jumps and the sizes of the jumps, we can recover the pmf.

The point is that probabilistic questions about X can be answered by knowing its CDF FX .
Therefore, in a sense, the probability space becomes irrelevant. For example, the expected value
of a random variable can be computed using its CDF only. Hence, we shall often make statements
like “X is a random variable with pmf f” or “X is a random variable with CDF F”, without
bothering to indicate the probability space.

Some distributions (i.e., CDF or the associated pmf) occur frequently enough to merit a name.

Example 74. Let f and F be the pmf, CDF pair

f(t) =

p if t = 1,

q if t = 0,
FX(t) =


1 if t ≥ 1,

q if t ∈ [0, 1),

0 if t < 0.

A random variable X having this pmf (or equivalently the CDF) is said to have Bernoulli distribu-
tion with parameter p and write X ∼ Ber(p). For example, if Ω = {1, 2, . . . , 10} with pi = 1/10,
and X(ω) = 1ω≤3, then X ∼ Ber(0.3). Any random variable taking only the values 0 and 1, has
Bernoulli distribution.
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Example 75. Fix n ≥ 1 and p ∈ [0, 1]. The pmf defined by f(k) =
(
n
k

)
pkqn−k for 0 ≤ k ≤ n is called

the Binomial distribution with parameters n and p and is denoted Bin(n, p). The CDF is as usual
defined by F (t) =

∑
u:u≤t f(u), but it does not have any particularly nice expression.

For example, if Ω = {0, 1}n with pω = p
P
i ωiqn−

P
i ωi , and X(ω) = ω1 + . . . + ωn, then X ∼

Bin(n, p). In words, the number of heads in n tosses of a p-coin has Bin(n, p) distribution.

Example 76. Fix p ∈ (0, 1] and let f(k) = qk−1p for k ∈ N+. This is called the Geometric distribution
with parameter p and is denoted Geo(p). The CDF is

F (t) =

0 if t < 1,

1− qk if k ≤ t < k + 1, for some k ≥ 1.

For example, the number of tosses of a p-coin till the first head turns up, is a random variable with
Geo(p) distribution.

Example 77. Fix λ > 0 and define the pmf f(k) = e−λ λ
k

k! . This is called the Poisson distribution

with parameter λ and is denoted Pois(λ).
In the problem of a psychic (randomly) guessing the cards in a deck, we have seen that the

number of matches (correct guesses) had an approximately Pois(1) distribution.

Example 78. Fix positive integers b, w and m ≤ b + w. Define the pmf f(k) = (bk)(
w

m−k)
(b+wm ) where the

binomial coefficient
(
x
y

)
is interpreted to be zero if y > x (thus f(k) > 0 only for max{m− w, 0} ≤

k ≤ b). This is called the Hypergeometric distribution with parameters b, w,m and we shall denote it
by Hypergeo(b, w,m).

Consider a population with b men and w women. The number of men in a random sample
(without replacement) of size m, is a random variable with the Hypergeo(b, w,m) distribution.

Computing expectations from the pmf Let X be a random variable on (Ω, p) with pmf f . Then
we claim that

E[X] =
∑
t∈R

tf(t).

Indeed, let Range(X) = {x1, x2, . . .}. Let Ak = {ω : X(ω) = xk}. By definition of pmf we have
P(Ak) = f(xk). Further, Ak are pairwise disjoint and exhaustive. Hence

E[X] =
∑
ω∈Ω

X(ω)pω =
∑
k

∑
ω∈Ak

X(ω)pω =
∑
k

xkP(Ak) =
∑
k

xkf(xk).

Similarly, E[X2] =
∑

k x
2
kf(xk). More generally, if h : R → R is any function, then the random

variable h(X) has expectation E[h(X)] =
∑

k h(xk)f(xk). Although this sounds trivial, there is a

very useful point here. To calculate E[X2] we do not have to compute the pmf of X2 first, which
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can be done but would be more complicated. Instead, in the above formulas, E[h(X)] has been
computed directly in terms of the pmf of X .

Exercise 79. Find E[X] and E[X2] in each case.

(1) X ∼ Bin(n, p).

(2) X ∼ Geo(p).

(3) X ∼ Pois(λ).

(4) X ∼ Hypergeo(b, w,m).

13. GENERAL PROBABILITY DISTRIBUTIONS

We take the first three of the four properties of CDF proved in the previous section as the defini-
tion of a CDF or distribution function, in general.

Definition 80. A (cumulative) distribution function (or CDF for short) is any function F : R →
[0, 1] be a non-decreasing, right continuous function such that F (t)→ 0 as t→ −∞ and F (t)→ 1
as t→ +∞.

If (Ω, p) is a discrete probability space and X : Ω 7→ R is any random variable, then the function
F (t) = P{ω : X(ω) ≤ t} is a CDF, as discussed in the previous section. However, there are
distribution functions that do not arise in this manner.

Example 81. Let

F (t) =


0 if t ≤ 0,

t if 0 < t < 1,

1 if t ≥ 1.

Then it is easy to see that F is a distribution function. However, it has no jumps and hence it does
not arise as the CDF of any random variable on a discrete probability space.

There are two ways to rectify this issue.

(1) The first way is to learn the notion of uncountable probability spaces, which poses many
subtleties. It requires a semester or so of real analysis and measure theory. But after that
one can define random variables on uncountable probability spaces and the above example
will turn out to be the CDF of some random variable on some (uncountable) probability
space.

(2) Just regard CDFs such as in the above example as reasonable approximations to CDFs
of some discrete random variables. For example, if Ω = {ω0, ω1, . . . , ωN} and p(ωk) =
1/(N + 1) for all 0 ≤ k ≤ N , and X : Ω 7→ R is defined by X(ωk) = k/n, then it is easy to

38



check that the CDF of X is the function G given by

G(t) =


0 if t ≤ 0,
k

N+1 if k−1
N ≤ t < k

N for some k = 1, 2, . . . , N

1 if t ≥ 1.

Now, if N is very large, then the function G looks approximately like the function F . Just
as it is convenient to regard water as a continuous medium in some problems (although
water is made up of molecules and is discrete at small scales), it is convenient to use the
continuous function F as a reasonable approximation to the step function G.

We shall take the second option out. Whenever we write continuous distribution functions such
as in the above example, at the back of our mind we have a discrete random variable (taking a
large number of closely placed values) whose CDF is approximated by our distribution function.
The advantage of using continuous objects instead of discrete ones is that the powerful tools of
Calculus become available to us.

14. UNCOUNTABLE PROBABILITY SPACES - CONCEPTUAL DIFFICULTIES

The following two “random experiments” are easy to imagine, but difficult to fit into the frame-

work of probability spaces9.

(1) Toss a p-coin infinitely many times: Clearly the sample space is Ω = {0, 1}N. But what
is pω for any ω ∈ Ω? The only reasonable answer is pω = 0 for all ω. But then how to

define P(A) for any A? For example, if A = {ω : ω1 = 0, ω2 = 0, ω3 = 1}, then everyone

agrees that P(A) “ought to be” q2p, but how does that come about? The basic problem is
that Ω is uncountable, and probabilities of events are not got by summing probabilities of
singletons.

(2) Draw a number at random from [0, 1]: Again, it is clear that Ω = [0, 1], but it also seems
reasonable that px = 0 for all x. Again, Ω is uncountable, and probabilities of events are
not got by summing probabilities of singletons. It is “clear” that ifA = [0.1, 0.4], then P(A)
“ought to be” 0.3, but it gets confusing when one tries to derive this from something more
basic!

The resolution: Let Ω be uncountable. There is a class of basic subsets (usually not singletons)
of Ω for which we take the probabilities as given. We also take the rules of probability, namely,
countable additivity, as axioms. Then we use the rules to compute the probabilities of more com-
plex events (subsets of Ω) by expressing those events in terms of the basic sets using countable
intersections, unions and complements and applying the rules of probability.

9This section should be omitted by everyone other than those who are keen to know what we meant by the concep-
tual difficulties of uncountable probability spaces
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Example 82. In the example of infinite sequence of tosses, Ω = {0, 1}N. Any set of the form
A = {ω : ω1 = ε1, . . . , ωk = εk} where k ≥ 1 and εi ∈ {0, 1} will be called a basic set and its

probability is defined to be P(A) =
∏k
j=1 p

εjq1−εj where we assume that p > 0. Now consider a

more complex event, for example,B = {ω : ωk = 1 for some k}. We can writeB = A1∪A2∪A3∪. . .
where Ak = {ω : ω1 = 0, . . . , ωk−1 = 0, ωk = 1}. Since Ak are pairwise disjoint, the rules of

probability demand that P(B) should be
∑

k P(Ak) =
∑

k q
k−1p which is in fact equal to 1.

Example 83. In the example of drawing a number at random from [0, 1], Ω = [0, 1]. Any interval
(a, b) with 0 ≤ a < b ≤ 1 is called a basic set and its probability is defined as P(a, b) = b − a.
Now consider a non-basic event B = [a, b]. We can write B = A1 ∪ A2 ∪ A3 . . . where Ak =
(a+ (1/k), b− (1/k)). Then Ak is an increasing sequence of events and the rules of probability say
that P(B) must be equal to limk→∞P(Ak) = limk→∞(b−a−(2/k)) = b−a. Another example could
be C = [0.1, 0.2) ∪ (0.3, 0.7]. Similarly argue that P({x}) = 0 for any x ∈ [0, 1]. A more interesting
one is D = Q ∩ [0, 1]. Since it is a countable union of singletons, it must have zero probability!
Even more interesting is the 1/3-Cantor set. Although uncountable, it has zero probability!

Consistency: Is this truly a solution to the question of uncountable spaces? Are we assured of
never running into inconsistencies? Not always.

Example 84. Let Ω = [0, 1] and let intervals (a, b) be open sets with their probabilities defined as

P(a, b) =
√
b− a. This quickly leads to problems. For example, P(0, 1) = 1 by definition. But

(0, 1) = (0, 0.5) ∪ (0.5, 1) ∪ {1/2} from which the rules of probability would imply that P(0, 1)

must be at least P(0, 1/2) + P(1/2, 1) = 1√
2

+ 1√
2

=
√

2 which is greater than 1. Inconsistency!

Exercise 85. Show that we run into inconsistencies if we define P(a, b) = (b−a)2 for 0 ≤ a < b ≤ 1.

Thus, one cannot arbitrarily assign probabilities to basic events. However, if we use the notion
of distribution function to assign probabilities to intervals, then no inconsistencies arise.

Theorem 86. Let Ω = R and let intervals of the form (a, b] with a < b be called basic sets. Let F be any
distribution function. Define the probabilities of basic sets as P{(a, b]} = F (b) − F (a). Then, applying
the rules of probability to compute probabilities of more complex sets (got by taking countable intersections,
unions and complements) will never lead to inconsistency.

Let F be any CDF. Then, the above consistency theorem really asserts that there exists (a possi-
bly uncountable) probability space and a random variable such that F (t) = P{X ≤ t} for all t. We
say that X has distribution F . However, it takes a lot of technicalities to define what uncountable
probability spaces look like and what random variables mean in this more general setting, we
shall never define them.
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The job of a probabilist consists in taking a CDF F (then the probabilities of intervals are already
given to us as F (b) − F (a) etc.) and find probabilities of more general subsets of R. Here are the
working rules. Instead we can use the following simple working rules to answer questions about
the distribution of a random variable.

(1) For an a < b, we set P{a < X ≤ b} := F (b)− F (a).

(2) If Ij = (aj , bj ] are countably many pairwise disjoint intervals, and I =
⋃
j Ij , then we

define P{X ∈ I} :=
∑

j F (bj)− F (aj).

(3) For a general set A ⊆ R, here is a general scheme: Find countably many pairwise disjoint
intervals Ij = (aj , bj ] such that A ⊆ ∪jIj . Then we define P{X ∈ A} as the infimum (over

all such coverings by intervals) of the quantity
∑

j F (bj)− F (aj).

All of probability in another line: Take an (interesting) random variable X with a given CDF F

and an (interesting) set A ⊆ R. Find P{X ∈ A}.

There are loose threads here but they can be safely ignored for this course. We just remark about
them for those who are curious to know.

Remark 87. The above method starts from a CDF F and defines P{X ∈ A} for all subsets A ⊆
R. However, for most choices of F , the countable additivity property turns out to be violated!
However, the sets which do violate them rarely arise in practice and hence we ignore them for the
present.

Exercise 88. Let X be a random variable with distribution F . Use the working rules to find the
following probabilities.

(1) Write P{a < X < b}, P{a ≤ X < b}, P{a ≤ X ≤ b} in terms of F .

(2) Show that P{X = a} = F (a)− F (a−). In particular, this probability is zero unless F has a
jump at a.

We now illustrate how to calculate the probabilities of rather non-trivial sets in a special case. It
is not always possible to get an explicit answer as here.

Example 89. Let F be the CDF defined in example 81. We calculate P{X ∈ A} for two sets A.

1. A = Q ∩ [0, 1]. Since A is countable, we may write A = ∪n{rn} and hence A ⊆ ∪nIn where

In = (rn, rn + δ2−n] for any fixed δ > 0. Hence P{X ∈ A} ≤
∑

n F (rn + δ2−n)−F (rn) ≤ 2δ. Since

this is true for every δ > 0, we must have P{X ∈ A} = 0. (We stuck to the letter of the recipe
described earlier. It would have been simpler to say that any countable set is a countable union
of singletons, and by the countable additivity of probability, must have probability zero. Here we
used the fact that singletons have zero probability since F is continuous).

41



2. A = Cantor’s set10 How to find P{X ∈ A}? Let An be the set of all x ∈ [0, 1] which do not
have 1 in the first n digits of their ternary expansion. Then A ⊆ An. Further, it is not hard to see

that An = I1 ∪ I2 ∪ . . . ∪ I2n where each of the intervals Ij has length equal to 3−n. Therefore,

P{X ∈ A} ≤ P{X ∈ An} = 2n3−n which goes to 0 as n→∞. Hence, P{X ∈ A} = 0.

15. EXAMPLES OF CONTINUOUS DISTRIBUTIONS

Cumulative distributions will also be referred to as simply distribution functions or distribu-
tions. We start by giving two large classes of CDFs. There are CDFs that do not belong to either of
these classes, but for practical purposes they may be ignored (for now).

(1) (CDFs with pmf). Let f be a pmf, i.e., let t1, t2, . . . be a countable subset of reals and let
f(ti) be non-negative numbers such that

∑
i f(ti) = 1. Then, define F : R→ R by

F (t) :=
∑
i:ti≤t

f(ti).

Then, F is a CDF. Indeed, we have seen that it is the CDF of a discrete random variable. A
special feature of this CDF is that it increases only in jumps (in more precise language, if F
is continuous on an interval [s, t], then F (s) = F (t)).

(2) (CDFs with pdf). Let f : R → R+ be a function (convenient to assume that it is a piece-

wise continuous function) such that
∫ +∞
−∞ f(u)du = 1. Such a function is called a probability

density function or pdf for short. Then, define F : R→ R by

F (t) :=
∫ t

−∞
f(u)du.

Again, F is a CDF. Indeed, it is clear that F has the increasing property (if t > s, then

F (t) − F (s) =
∫ t
s f(u)du which is non-negative because f(u) is non-negative for all u),

and its limits at ±∞ are as they should be (why?). As for right-continuity, F is in-fact
continuous. Actually F is differentiable except at points where f is discontinuous and

F ′(t) = f(t).

Remark 90. We understand the pmf. For example if X has pmf f , then f(ti) is just the probability
that X takes the value ti. How to interpret the pdf? If X has pdf f , then as we already remarked,
the CDF is continuous and hence P{X = t} = 0. Therefore f(t) cannot be interpreted as P{X = t}
(in fact, pdf can take values greater than 1, so it cannot be a probability!).

10To define the Cantor set, recall that any x ∈ [0, 1] may be written in ternary expansion as x = 0.u1u2 . . . :=P∞
n=1 un3−n where un ∈ {0, 1, 2}. This expansion is unique except if x is a rational number of the form p/3m for

some integers p,m (these are called triadic rationals). For triadic rationals, there are two possible ternary expansions,
a terminating one and a non-terminating one (for example, x = 1/3 can be written as 0.100 . . . or as 0.0222 . . .). For
definiteness, for triadic rationals we shall always take the non-terminating ternary expansion. With this preparation,
the Cantor set is defined as the set of all x which do not have the digit 1 in their ternary expansion.
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To interpret f(a), take a small positive number δ and look at

F (a+ δ)− F (a) =

a+δ∫
a

f(u)du ≈ δf(a).

In other words, f(a) measures the chance of the random variable taking values near a. Higher the
pdf, greater the chance of taking values near that point.

Among distributions with pmf, we have seen the Binomial, Poisson, Geometric and Hypergeo-
metric families of distributions. Now we give many important examples of distributions (CDFs)
with densities.

Example 91. Uniform distribution on the interval [a, b]:, denoted Unif([a, b]) where a < b is the
distribution with density and distribution given by

PDF: f(t) =

 1
b−a if t ∈ (a, b)

0 otherwise
CDF: F (t) =


0 if t ≤ a
t−a
b−a if t ∈ (a, b)

1 if t ≥ b.

Example 92. Exponential distribution with parameter λ:, denoted Exp(λ) where λ > 0 is the
distribution with density and distribution given by

PDF: f(t) =

λe−λt if t > 0

0 otherwise
CDF: F (t) =

0 if t ≤ 0

1− e−λt if t > 0.

Example 93. Normal distribution with parameters µ, σ2:, denoted N(µ, σ2) where µ ∈ R and

σ2 > 0 is the distribution with density and distribution given by

PDF: ϕµ,σ2(t) =
1√
2π
e−

1
2σ2 (t−µ)2

CDF: Φµ,σ2(t) =

t∫
−∞

ϕµ,σ2(u)du.

There is no closed form expression for the CDF. It is standard notation to write ϕ and Φ to denote

the normal density and CDF when µ = 0 and σ2 = 1. N(0, 1) is called the standard normal

distribution. By a change of variable one can check that Φµ,σ2(t) = Φ( t−µσ ).

We said that the normal CDF has no simple expression, but is it even clear that it is a CDF?! In

other words, is the proposed density a true pdf? Clearly ϕ(t) = 1√
2π
e−t

2/2 is non-negative. We

need to check that its integral is 1.
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Lemma 94. Fix µ ∈ R and σ > 0 and let ϕ(t) = 1√
2π
e−

1
2σ2 (t−µ)2

. Then,
∞∫
−∞

ϕ(t)dt = 1.

Proof. It suffices to check the case µ = 0 and σ2 = 1 (why?). To find its integral is quite non-trivial.

Let I =
∫∞
−∞ ϕ(t)dt. We introduce the two-variable function h(t, s) := ϕ(t)ϕ(s) = (2π)−1e−(t2+s2)/2.

On the one hand, ∫ ∞
−∞

∫ ∞
−∞

h(t, s)dtds =
(∫ +∞

−∞
ϕ(t)dt

)(∫ +∞

−∞
ϕ(s)ds

)
= I2.

On the other hand, using polar co-ordinates t = r cos θ, s = r sin θ, we see that∫ ∞
−∞

∫ ∞
−∞

h(t, s)dtds =
∫ ∞

0

∫ 2π

0
(2π)−1e−r

2/2rdθdr =
∫ ∞

0
re−r

2/2dr = 1

since d
dre
−r2/2 = −re−r2/2. Thus I2 = 1 and hence I = 1. �

Example 95. Gamma distribution with shape parameter ν and scaler parameter λ:, where ν > 0
and λ > 0, denoted Gamma(ν, λ) is the distribution with density and distribution given by -

PDF: f(t) =

 1
Γ(ν)λ

νtν−1e−λt if t > 0

0 otherwise
CDF: F (t) =

0 if t ≤ 0∫ t
0 f(u)du if t > 0.

Here Γ(ν) :=
∫∞

0 tν−1e−tdt. Firstly, f is a density, that is, that it integrates to 1. To see this, make

the change of variable λt = u to see that∫ ∞
0

λνe−λttν−1dt =
∫ ∞

0
e−uuν−1dν = Γ(ν).

Thus,
∫∞

0 f(t)dt = 1.

When ν = 1, we get back the exponential distribution. Thus, the Gamma family subsumes the
exponential distributions. For positive integer values of ν, one can actually write an expression
for the CDF of Gamma(ν, λ) as (this is a homework problem)

Fν,λ(t) = 1− e−λt
ν−1∑
k=0

(λt)k

k!
.

Once the expression is given, it is easy to check it by induction (and integration by parts). A
curious observation is that the right hand side is exactly P(N ≥ ν) where N ∼ Pois(λt). This is
in fact indicating a deep connection between Poisson distribution and the Gamma distributions.
The function Γ(ν), also known as Euler’s Gamma function, is an interesting and important one

and occurs all over mathematics. 11

11The Gamma function: The function Γ : (0,∞)→ R defined by Γ(ν) =
R∞

0
e−ttν−1dt is a very important function

that often occurs in mathematics and physics. There is no simpler expression for it, although one can find it explicitly
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Example 96. Beta distributions: Let α, β > 0. The Beta distribution with parameters α, β, denoted
Beta(α, β), is the distribution with density and distribution given by -

PDF: f(t) =

 1
B(α,β) t

α−1(1− t)β−1 if t ∈ (0, 1)

0 otherwise
CDF: F (t) =


0 if t ≤ 0∫ t

0 f(u)du if t ∈ (0, 1)

0 if t ≥ 1.

Here B(α, β) :=
∫ 1

0 t
α−1(1 − t)β−1dt. Again, for special values of α, β (eg., positive integers), one

can find the value of B(α, β), but in general there is no simple expression. However, it can be
expressed in terms of the Gamma function!

Proposition 97. For any α, β > 0, we have B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

Proof. For β = 1 we see that B(α, 1) =
∫ 1

0 t
α−1 = 1

α which is also equal to Γ(α)Γ(1)
Γ(α+1) as required.

Similarly (or by the symmetry relation B(α, β) = B(β, α)), we see that B(1, β) also has the desired
expression.

for special values of ν. One of its most important properties is that Γ(ν + 1) = νΓ(ν). To see this, consider

Γ(ν + 1) =

Z ∞
0

e−ttνdt = −e−ttν
˛̨̨∞
0

+ ν

Z ∞
0

e−ttν−1dt = νΓ(ν).

Starting with Γ(1) = 1 (direct computation) and using the above relationship repeatedly one sees that Γ(ν) = (ν − 1)!
for positive integer values of ν. Thus, the Gamma function interpolates the factorial function (which is defined only for
positive integers). Can we compute it for any other ν? The answer is yes, but only for special values of ν. For example,

Γ(1/2) =

Z ∞
0

x−1/2e−xdx =
√

2

Z ∞
0

e−y
2/2dy

by substituting x = y2/2. The last integral was computed above in the context of the normal distribution and equal top
π/2. Hence we get Γ(1/2) =

√
π. From this, using again the relation Γ(ν + 1) = νΓ(ν), we can compute Γ(3/2) =

1
2

√
π, Γ(5/2) = 3

4

√
π, etc. Yet another useful fact about the Gamma function is its asymptotics as ν →∞.

Stirling’s approximation: Γ(ν+1)

ν
ν+ 1

2 e−ν
√

2π
→ 1 as ν →∞.

A small digression: It was Euler’s idea to observe that n! =
R∞

0
xne−xdx and that on the right side n could be replaced

by any real number greater than −1. But this was his second approach to defining the Gamma function. His first
approach was as follows. Fix a positive integer n. Then for any ` ≥ 1 (also a positive integer), we may write

n! =
(n+ `)!

(n+ 1)(n+ 2) . . . (n+ `)
=
`!(`+ 1) . . . (`+ n)

(n+ 1) . . . (n+ `)
=

`! `n

(n+ 1) . . . (n+ `)
· (`+ 1) . . . (`+ n)

`n

The second factor approaches 1 as `→∞. Hence,

n! = lim
`→∞

`! `n

(n+ 1) . . . (n+ `)
.

Euler then showed (by a rather simple argument that we skip) that the limit on the right exists if we replace n by any
complex number other than {−1,−2,−3, . . .} (negative integers are a problem as they make the denominator zero).
Thus, he extended the factorial function to all complex numbers except negative integers! It is a fun exercise to check
that this agrees with the definition by the integral given earlier. In other words, for ν > −1, we have

lim
`→∞

`! `ν

(ν + 1) . . . (ν + `)
=

Z ∞
0

xνe−xdx.
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Now for any other positive integer value of α and real β > 0 we can integrate by parts and get

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

= − 1
β
tα−1(1− t)β

∣∣∣1
0

+
α− 1
β

∫ 1

0
tα−2(1− t)βdt

=
α− 1
β

B(α− 1, β + 1).

Note that the first term vanishes because α > 1 and β > 0. When α is an integer, we repeat this for
α times and get

B(α, β) =
(α− 1)(α− 2) . . . 1

β(β + 1) . . . (β + α− 2)
B(1, β + α− 1).

But we already checked that B(1, β + α− 1) = Γ(1)Γ(α+β−1)
Γ(α+β) from which we get

B(α, β) =
(α− 1)(α− 2) . . . 1

β(β + 1) . . . (β + α− 2)
Γ(1)Γ(α+ β − 1)

Γ(α+ β)
=

Γ(α)Γ(β)
Γ(α+ β)

by the recursion property of the Gamma function. Thus we have proved the proposition when α
is a positive integer. By symmetry the same is true when β is a positive integer (and α can take
any value). We do not bother to prove the proposition for general α, β > 0 here. �

Example 98. The standard Cauchy distribution: is the distribution with density and distribution
given by

PDF: f(t) =
1

π(1 + t2)
CDF: F (t) =

1
2

+
1
π

tan−1 t.

One can also make a parametric family of Cauchy distributions with parameters λ > 0 and a ∈ R
denoted Cauchy(a, λ) and having density and CDF

f(t) =
λ

π(λ2 + (t− a)2)
F (t) =

1
2

+
1
π

tan−1

(
t− a
λ

)
.

Remark 99. Does every CDF come from a pdf? Not necessarily. For example any CDF that is
not continuous (for example, CDFs of discrete distributions such as Binomial, Poisson, Geometric
etc.). In fact even continuous CDFs may not have densities (there is a good example manufactured
out of the 1/3-Cantor set, but that would take us out of the topic now). However, suppose F
is a continuous CDF and suppose F is differentiable except at finitely many points and that the

derivative is a continuous function. Then f(t) := F ′(t) defines a pdf which by the fundamental

theorm of Calculus satisfies F (t) =
∫ t
−∞ f(u)du.
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16. SIMULATION

As we have emphasized, probability is applicable to many situations in the real world. As such
one may conduct experiments to verify the extent to which theorems are actually valid. For this
we need to be able to draw numbers at random from any given distribution.

For example, take the case of Bernoulli(1/2) distribution. One experiment that can give this is
that of physically tossing a coin. This is not entirely satisfactory for several reasons. Firstly, are
real coins fair? Secondly, what if we change slightly and want to generate from Ber(0.45)? In this
section, we describe how to draw random numbers from various distributions on a computer. We
do not fully answer this question. Instead what we shall show is
If one can generate random numbers from Unif([0, 1]) distribution, then one can draw random numbers
from any other distribution. More precisely, suppose U is a random variable with Unif([0, 1]) distribution.
We want to simulate random numbers from a given distribution F . Then, we shall find a function ψ :
[0, 1]→ R so that the random variable X := ψ(U) has the given distribution F .

The question of how to draw random numbers from Unif([0, 1]) distribution is a very difficult
one and we shall just make a few superficial remarks about that.

Drawing random numbers from a discrete pmf: First start with an example.

Example 100. Suppose we want to draw random numbers from Ber(0.4) distribution. Let ψ :
[0, 1] → R be defined as ψ(t) = 1t≤0.4. Let X = ψ(U), i.e., X = 1 if U ≤ 0.4 and X = 0 otherwise.
Then

P{X = 1} = P{U ≤ 0.4} = 0.4, P{X = 0} = P{U > 0.4} = 0.6.

Thus, X has Ber(0.4) distribution.

It is clear how to generalize this.

General rule: Suppose we are given a pmf f

(
t1 t2 t3 . . .

f(t1) f(t2) f(t3) . . .

)
.

Then, define ψ : [0, 1]→ R as

ψ(u) =



t1 if u ∈ [0, f(t1)]

t2 if u ∈ (f(t1), f(t1) + f(t2)]

t3 if u ∈ (f(t1) + f(t2), f(t1) + f(t2) + f(t3)]
...

...

.
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Then define X = f(U). Clearly X takes the values t1, t2, . . . and

P{X = tk} = P


k−1∑
j=1

f(tj) < U ≤
k∑
j=1

f(tj)

 = f(tk).

Thus X has pmf f .

Exercise 101. Draw 100 random numbers from each of the following distributions and draw the
histograms. Compare with the pmf.

(1) Bin(n, p) for n = 10, 20, 40 and p = 0.5, 0.3, 0.9.

(2) Geo(p) for p = 0.9, 0.5, 0.3.

(3) Pois(λ) with λ = 1, 4, 10.

(4) Hypergeo(N1, N2,m) with N1 = 100, N2 = 50,m = 20, N1 = 1000, N2 = 1000,m = 40.

Drawing random numbers from a pdf: Clearly the procedure used for generating from a pmf is
inapplicable here. First start with two examples. As before U is a Unif([0, 1]) random variable.

Example 102. Suppose we want to draw from the Unif([3, 7]) distribution. SetX = 4U+3. Clearly

P{X ≤ t} = P{U ≤ t− 3
4
} =


0 if t < 0

(t− 3)/4 if 3 ≤ t ≤ 7

1 if t > 7

.

This is precisely the CDF of Unif([3, 7]) distribution.

Example 103. Here let us do the opposite, just take some function of a uniform variable and see

what CDF we get. Let ψ(t) = t3 and let X = ϕ(U) = U3. Then,

F (t) := P{X ≤ t} = P{U ≤ t1/3} =


0 if t < 0

t1/3 if 0 ≤ t ≤ 1

1 if t > 1

.

Differentiating the CDF, we get the density

f(t) = F ′(t) =

1
3 t
−2/3 if 0 < t < 1

0 otherwise.

The derivative does not exist at 0 and 1, but as remarked earlier, it does not matter if we change
the value of the density at finitely many points (as the integral over any interval will remain the
same). Anyway, we notice that the density is that of Beta(1/3, 1). Hence X ∼ Beta(1/3, 1).

48



This gives us the idea that to generate random number from a CDF F , we should find a function
ψ : [0, 1]→ R such that X := ψ(U) has the distribution F . How to find the distribution of X?

Lemma 104. Let ψ : (0, 1) → R be a strictly increasing function with a = ψ(0+) and b = ψ(1−). Let
X = ψ(U). Then X has CDF

F (t) =


0 if t ≤ a

ψ−1(t) if a < t < b

1 if t ≥ b.

If is ψ also differentiable and the derivative does not vanish anywhere (or vanishes at finitely many points
only), then X has pdf

f(t) =


(
ψ−1

)′ (t) if a < t < b

0 if t 6∈ (a, b).

Proof. Since ψ is strictly increasing, ψ(u) ≤ t if and only if u ≤ ψ−1(t). Hence,

F (t) = P{X ≤ t} = P{U ≤ ψ−1(t)} =


0 if t ≤ a

ψ−1(t) if a < t < b

1 if t ≥ b.

If ψ is differentiable at and ψ(u) 6= 0, then ψ−1 is differentiable at t = ψ(u) (and indeed, (ψ−1)′(t) =
1

ψ′(u) ). Thus we get the formula for the density. �

From this lemma, we immediately get the following rule for generating random numbers from
a density.

How to simulate from a CDF: Let F be a CDF that is strictly increasing on an interval [A,B]
where F (A) = 0 and F (B) = 1 (it is allowed to take A = −∞ and/or B = +∞). Then define

ψ : (0, 1) → (A,B) as ψ(u) = F−1(u). Let U ∼ Unif([0, 1]) and let X = ψ(U). Then X has CDF
equal to F .

This follows from the lemma because ψ is define as the inverse of F and hence F (restricted to
(A,B)) is the inverse of ψ. Further, as the inverse of a strictly increasing function, the function ψ
is also strictly increasing.

Example 105. Consider the Exponential distribution with parameter λ whose CDF is

F (t) =

0 if t ≤ 0

1− e−λt if t > 0
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Take A = 0 and B = +∞. Then F is increasing on (0,∞) and its inverse is the function ψ(u) =

− 1
λ log(1−u). Thus to simulate a random number from Exp(λ) distribution, we setX = − 1

λ log(1−
U).

When the CDF is not explicitly available as a function we can still adopt the above procedure
but only numerically. Consider an example.

Example 106. Suppose F = Φ, the CDF of N(0, 1) distribution. Then we do not have an explicit

form for either Φ or for its inverse Φ−1. With a computer we can do the following. Pick a large
number of closely placed points, for example divide the interval [−5, 5] into 1000 equal intervals
of length 0.01 each. Let the endpoints of these intervals be labelled t0 < t1 < . . . < t1000. For each

i, calculate Φ(ti) =
∫ ti
−∞

1√
2π
e−x

2/2dx using numerical methods for integration, say the numerical

value obtained is wi. This is done only once and create the table of values

t0 t1 t2 . . . . . . t1000

w0 w1 w2 . . . . . . w1000

.

Now draw a uniform random number U . Look up the table and find the value of i for which
wi < U < wi+1. Then set X = ti. If it so happens that U < w0, set X = t0 = −5 and if U > w1000

set X = t1000 = 5. But since Φ(−5) < 0.00001 and Φ(5) > 0.99999, it is highly unlikely that the last
two cases will occur. The random variable X has a distribution close to N(0, 1).

Exercise 107. Give an explicit method to draw random numbers from the following densities.

(1) Cauchy distribution with density 1
π(1+x2)

.

(2) Beta(1
2 ,

1
2 ) density 1

π
1√

x(1−x)
on [0, 1] (and zero elsewhere).

(3) Pareto(α) distribution which by definition has the density

f(t) =

αt−α−1 if t ≥ 1,

0 if t < 1.

We have described a general principle. When we do more computations with random variables
and understand the relationships between different distributions, better tricks can be found. For
example, we shall see later that we can generate twoN(0, 1) random numbers as follows: Pick two

uniform random numbersU, V and setX =
√
−2 log(1− U) cos(2πV ) and Y =

√
−2 log(1− U) sin(2πV ).

Then it turns out thatX and Y have exactlyN(0, 1) distribution! As another example, suppose we
need to generate from Gamma(3, 1) distribution, we can first generate three uniforms U1, U2, U3

and set ξi = − log(1 − Ui) (so ξi have exponential distribution) and then define X = ξ1 + ξ2 + ξ3.
It turns out that X has Gamma(3, 1) distribution!
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Remark 108. We have conveniently skipped the question of how to draw random numbers from
uniform distribution in the first place. This is a difficult topic and various results, proved and
unproved, are used in generating such numbers. For example,

17. JOINT DISTRIBUTIONS

In many situations we study several random variables at once. In such a case, knowing the
individual distributions is not sufficient to answer all relevant questions. This is like saying that
knowing P(A) and P(B) is insufficient to calculate P(A ∩B) or P(A ∪B) etc.

Definition 109 (Joint distribution). LetX1, X2, . . . , Xm be random variables on the same probabil-
ity space. We call X = (X1, . . . , Xm) a random vector, as it is just a vector of random variables. The
CDF of X, also called the joint CDF of X1, . . . , Xm is the function F : Rm → R defined as

F (t1, . . . , tm) = P{X1 ≤ t1, . . . , Xm ≤ tm} = P

{
m⋂
i=1

{Xi ≤ ti}

}
.

.

Example 110. Consider two events A and B in the probability space and let X = 1A and Y = 1B
be their indicator random variables. Their joint CDF is given by

F (s, t) =



0 if s < 0 or t < 0

P(Ac ∩Bc) if s ≥ 0, t < 1 or t ≥ 0, s < 1

P(A) if 0 ≤ s < 1 and t ≥ 1

P(B) if 0 ≤ t < 1 and s ≥ 1

P(A ∩B) if s ≥ 1, t ≥ 1

Properties of joint CDFs: The following properties of the joint CDF F : Rm → [0, 1] are analogous
to those of the 1-dimensional CDF and the proofs are similar.

(1) F is increasing in each co-ordinate. That is, if s1 ≤ t1, . . . , sm ≤ tm, then F (s1, . . . , sm) ≤
F (t1, . . . , tm).

(2) limF (t1, . . . , tm) = 0 if max{t1, . . . , tm} → −∞ (i.e., one of the ti goes to −∞).

(3) limF (t1, . . . , tm) = 1 if min{t1, . . . , tm} → +∞ (i.e., all of the ti goes to +∞).

(4) F is right continuous in each co-ordinate. That is F (t1 + h1, . . . , tm + hm) → F (t1, . . . , tm)
as hi → 0+.

Conversely any function having these four properties is the joint CDF of some random variables.
From the joint CDF, it is easy to recover the individual CDFs. Indeed, if F : Rm → R is

the CDF of X = (X1, . . . , Xm), then the CDF of X1 is given by F1(t) := F (t,+∞, . . . ,+∞) :=
limF (t, s2, . . . , sm) as si → +∞ for each i = 2, . . . ,m. This is true because if An := {X1 ≤
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t}∩ {X2 ≤ n}∩ . . .∩{Xm ≤ n}, then as n→∞, the events An increase to the event A = {X1 ≤ t}.
Hence P(An) → P(A). But P(An) = F (t, n, n, . . . , n) and P(A) = F1(t). Thus we see that
F1(t) := F (t,+∞, . . . ,+∞).

More generally, we can recover the joint CDF of any subset of X1, . . . , Xn, for example, the joint
CDF of X1, . . . , Xk is just F (t1, . . . , tk,+∞, . . . ,+∞).

Joint pmf and pdf: Just like in the case of one random variable, we can consider the following
two classes of random variables.

(1) Distributions with a pmf. These are CDFs for which there exist points t1, t2, . . . in Rm and
non-negative numbers wi such that

∑
iwi = 1 (often we write f(ti) in place of wi) and such

that for every t ∈ Rm we have

F (t) =
∑

i : ti≤t

wi

where s ≤ t means that each co-ordinate of s is less than or equal to the corresponding
co-ordinate of t.

(2) Distributions with a pdf. These are CDFs for which there is a non-negative function (may
assume piecewise continuous for convenience) f : Rm → R+ such that for every t ∈ Rm

we have

F (t) =

t1∫
−∞

. . .

tm∫
−∞

f(u1, . . . , um)du1 . . . dum.

We give two examples, one of each kind.

Example 111. (Multinomial distribution). Fix parameters r,m (two positive integers) and p1, . . . , pm

(positive numbers that add to 1). The multinomial pmf with these parameters is given by

f(k1, . . . , km−1) =
r!

k1!k2! . . . km−1!(r −
∑m−1

i=1 ki)!
pk1

1 . . . p
km−1

m−1 p
r−

Pm−1
i=1 ki

m ,

if ki ≥ 0 are integers such that k1 + . . .+ km−1 ≤ r. One situation where this distribution arises is
when r balls are randomly placed in m bins, with each ball going into the jth bin with probability
pj , and we look at the random vector (X1, . . . , Xm−1) whereXk is the number of balls that fell into

the kth bin. This random vector has the multinomial pmf12

In this case, the marginal distribution ofXk is Bin(r, pk). More generally, (X1, . . . , X`) has multi-
nomial distribution with parameters r, `, p1, . . . , p`, p0 where p0 = 1 − (p1 + . . . + p`). This is easy

12In some books, the distribution of (X1, . . . , Xm) is called the multinomial distribution. This has the pmf

g(k1, . . . , km)
r!

k1!k2! . . . km−1!km!
pk11 . . . p

km−1
m−1 p

km
m

where ki are non-negative integers such that k1 + . . . + km = r. We have chosen our convention so that the binomial
distribution is a special case of the multinomial. . .
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to prove, but even easier to see from the balls in bins interpretation (just think of the last n− ` bins
as one).

Example 112. (Bivariate normal distribution). This is the density on R2 given by

f(x, y) =
√
ab− c2

2π
e−

1
2 [a(x−µ)2+b(y−ν)2+2c(x−µ)(y−ν)],

where µ, ν, a, b, c are real parameters. We shall impose the conditions that a > 0, b > 0 and

ab− c2 > 0 (otherwise the above does not give a density, as we shall see).
The first thing is to check that this is indeed a density. We recall the one-dimensional Gaussian

integral

(1)

+∞∫
−∞

e−
τ
2

(x−a)2
dx =

√
2π

1√
τ

for any τ > 0 and any a ∈ R.

We shall take µ = ν = 0 (how do you compute the integral if they are not?). Then, the exponent in
the density has the form

ax2 + by2 + 2cxy = b
(
y +

c

b

)2
+
(
a− c2

b

)
x2.

Therefore,

∞∫
−∞

e−
1
2 [ax2+by2+2cxy]dy = e−

1
2

(a− c
2

b
)x2

∞∫
−∞

e−
b
2

(y+ c
b
)2

= e−
1
2

(a− c
2

b
)x2

√
2π√
b

by (1) but ony if b > 0. Now we integrate over x and use (1) again (and the fact that a− c2

b > 0) to
get

∞∫
−∞

∞∫
−∞

e−
1
2 [a(x−µ)2+b(y−ν)2+2c(x−µ)(y−ν)]dydx =

√
2π√
b

∞∫
−∞

e−
1
2

(a− c
2

b
)x2
dx

=
√

2π√
b

√
2π√

a− c2

b

=
2π

ab− c2
.

This completes the proof that f(x, y) is indeed a density. Note that b > 0 and ab − c2 > 0 also
implies that a > 0.
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Matrix form of writing the density: Let Σ−1 =

[
a c

c b

]
. Then, det(Σ) = 1

det(Σ−1)
= 1

ab−c2 . Hence,

we may re-write the density above as (let u be the column vector with co-ordinates x, y)

f(x, y) =
1

2π
√

det(Σ)
e−

1
2
utΣ−1u.

This is precisely in the form in which we wrote for general n in the example earlier. The conditions

a > 0, b > 0, ab− c2 > 0 translate precisely to what is called positive-definiteness. One way to say
it is that Σ is a symmetric matrix and all its eigenvalues are strictly positive.

Final form: We can now introduce an extra pair of parameters µ1, µ2 and define a density

f(x, y) =
1

2π
√

det(Σ)
e−

1
2

(u−µ)tΣ−1(u−µ).

where µ is a column vector with co-ordinates µ1, µ2. This is the full bi-variate normal density.

Example 113. (A class of examples). Let f1, f2, . . . , fm be one-variable densities. In other words,

fi : R → R+ and
∫∞
−∞ fi(x)dx = 1. Then, we can make a multivariate density as follows. Define

f : Rm → Rm
+ by f(x1, . . . , xm) = f1(x1) . . . fm(xm). Then f is a density.

IfXi are random variables on a common probability space and the joint density of (X1, . . . , Xm)
if f(x1, . . . , xm), then we say that Xi are independent random variables. It is easy to see that the
marginal density of Xi if fi. It is also the case that the joint CDF factors as FX(x1, . . . , xm) =
FX1(x1) . . . FXm(xm).

18. CHANGE OF VARIABLE FORMULA

Let X = (X1, . . . , Xm) be a random vector with density f(t1, . . . , tm). Let T : Rm → Rm be a
one-one function which is continuously differentiable (many exceptions can be made as remarked
later).

Let Y = T (X). In co-ordinates we may write Y = (Y1, . . . , Ym) and Y1 = T1(X1, . . . , Xm). . .Ym =
Tm(X1, . . . , Xm) where Ti : Rm → R are the components of T .

Question: What is the joint density of Y1, . . . , Ym?

The change of variable formula: In the setting described above, the joint density of Y1, . . . , Ym is
given by

g(y) = f
(
T−1y

) ∣∣∣∣∣∣ J [T−1](y)
∣∣∣∣∣∣

where J [T−1](y) is the Jacobian determinant of the function T−1 at the point y = (y1, . . . , ym).

Justification: We shall not prove this formula, but give a imprecise but convincing justification

that can be made into a proof. There are two factors on the right. The first one, f(T−1y) is easy to
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understand - if Y is to be close to y, then X must be close to T−1y. The second factor involving
the Jacobian determinant comes from the volume change. Let us explain with analogy with mass
density which is a more familiar quantity.

Consider a solid cube with non-uniform density. If you rotate it, the density at any point now
is the same as the original density, but at a different point (the one which came to the current
position). Instead of rotating, suppose we uniformly expand the cube so that the center stays
where it is and the side of the cube becomes twice what it is. What happens to the density at the
center? It goes down by a factor of 8. This is simply because of volume change - the same mass
spreads over a larger volume. More generally, we can have non-uniform expansion, we may cool
some parts of the cube, heat some parts and to varying degrees. What happens to the density? At
each point, the density changes by a factor given by the Jacobian determinant.

Now for a slightly more mathematical justification. We use the language for two variables
(m = 2) but the same reasoning works for any m. Fix twp point x = (x1, x2) and y = (y1, y2) such

that y = T (x) (and hence x = T−1(y)). The density of Y at y is given by

g(y) ≈ 1
area(N )

P{Y ∈ N}

whereN is a small neighbourhood of the point y (for example a disk of small radius δ centered at
y). By the one-one nature of T and the relationship Y = T (X), we see that

P{Y ∈ N} = P{X ∈ T−1(N )}

where T−1(N ) is the image of N after mapping by T−1. Now, T−1(N ) is a small neighbourhood

of x (if N is a disk, then T−1(N ) would be an approximate ellipse) and hence, by the same inter-
pretation of density we see that

P{X ∈ T−1(N )} ≈ area(T−1(N ))f(x)

Putting the three displayed equations together, we arrive at the formula

g(y) ≈ f(x)
area(T−1(N ))

area(N )

Thus the problem boils down to how areas change under transformations. A linear map S(y) =
Ay where A is a 2× 2 matrix changes area of any region by a factor of | det(A)|, i.e., area(S(R)) =
|det(A)|area(R).

The differentiability of T means that in a small neighbourhood of y, the mapping T−1 looks

like a linear map, T−1(y + h) ≈ x + DT−1(y)h. Therefore, the areas of small neighbourhoods of

y change by a factor equal to | det(DT−1(y))| which is the Jacobian determinant. In other words,

area(T−1(N )) ≈ |JT−1(y)|area(N ). Consequently g(y) = f(T−1y)|JT−1(y)|.

Enlarging the applicability of the change of variable formula: The change of variable formula is
applicable in greater generality than we stated above.
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(1) Firstly, T does not have to be defined on all of Rm. It is sufficient if it is defined on the range
of X (i.e., if f(t1, . . . , tm) = 0 for (t1, . . . , tm) = Rm \ A, then it is enough if T is defined on
A.

(2) Even within the range of X, we can allow T to be undefined, but X must have zero prob-
ability to fall in the set where it is undefined. For example, it can happen at finitely many
points, or on a line (if m ≥ 2) or on a plane (if m ≥ 3) etc.

(3) Similarly, the differentiability of T is required only on a subset outside of which X has
probability 0 of falling.

(4) One-one property of T is important, but there are special cases which can be dealt with by

a slight modification. For example, if T (x) = x2 or T (x1, x2) = (x2
1, x

2
2) where we can split

the space into parts on each of which T is one-one.

Example 114. LetX1, X2 be independent Exp(λ) random variables. Let T (x1, x2) = (x1+x2,
x1

x1+x2
).

This is well-defined on R2
+ (and note that P{(X1, X2) ∈ R2

+} = 1) and its range is R+ × (0, 1). The

inverse function is T−1(y1, y2) = (y1y2, y1(1− y2)). Its Jacobian determinant is

J [T−1](y1, y2) = det

[
y2 y1

1− y2 −y1

]
= −y1.

(X1, X2) has density f(x1, x2) = λ2e−λ(x1+x2) for x1, x2 > 0 (henceforth it will be a convention that
the density is zero except where we specify it). Hence, the random variables Y1 = X1 + X2 and

Y2 = X1
X1+X2

have joint density

g(y1, y2) = f(y1y2, y1(1− y2))|J [T−1](y1, y2)| = λ2e−λ(y1y2+y1(1−y2))y1 = λ2y1e
−λy1

for y1 > 0 and y2 ∈ (0, 1).

In particular, we see that Y1 = X1 + X2 has density h1(t) =
∫ 1

0 λ
2te−λtds = λ2te−λt (for t > 0)

which means that Y1 ∼ Gamma(2, λ). Similarly, Y2 = X1
X1+X2

has density h2(s) =
∫∞

0 λ2te−λtdt = 1

(for s ∈ (0, 1)) which means that Y2 has Unif(0, 1) distribution. In fact, Y1 and Y2 are also indepen-
dent since g(u, v) = h1(u)h2(v).

Exercise 115. Let X1 ∼ Gamma(ν1, λ) and X2 ∼ Gamma(ν2, λ) (note that the shape parameter
is the same) and assume that they are independent. Find the joint distribution of X1 + X2 and
X1

X1+X2
.

Example 116. Suppose we are given that X1 and X2 are independent and each has Exp(λ) distri-
bution. What is the distribution of the random variable X1 +X2?

The change of variable formula works for transformations from Rm to Rm whereas here we
have two random variables X1, X2 and our interest is in one random variable X1 + X2. To use
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the change of variable formula, we must introduce an auxiliary variable. For example, we take
Y1 = X1 + X2 and Y2 = X1/(X1 + X2). Then as in the first example, we find the joint density of
(Y1, Y2) using the change of variable formula and then integrate out the second variable to get the
density of Y1.

Let us emphasize the point that if our interest is only in Y1, then we have a lot of freedom in
choosing the auxiliary variable. The only condition is that from Y1 and Y2 we should be able to
recover X1 and X2. Let us repeat the same using Y1 = X1 + X2 and Y2 = X2. Then, T (x1, x2) =

(x1 +x2, x2) maps R2
+ ontoQ := {(y1, y2) : y1 > y2 > 0} in a one-one manner. The inverse function

is T−1(y1, y2) = (y1 − y2, y2). It is easy to see that JT−1(y1, y2) = 1 (check!). Hence, by the change
of variable formula, the density of (Y1, Y2) is given by

g(y1, y2) = f(y1 − y2, y2) · 1

= λ2e−λ(y1−y2)e−λy2 (if y1 > y2 > 0)

= λ2e−λy11y1>y2>0.

To get the density of Y1, we integrate out the second variable. The density of Y1 is

h(u) =

∞∫
−∞

λ2e−λy11y1>y2>0dy2

= λ2e−λy1

y1∫
0

dy2

= λ2y1e
−λy1

which agrees with what we found before.

Example 117. Suppose R ∼ Exp(λ) and Θ ∼ Unif(0, 2π) and the two are independent. Define

X =
√
R cos(Θ) and Y =

√
R sin(Θ). We want to find the distribution of (X,Y ). For this, we first

write the joint density of (R,Θ) which is given by

f(r, θ) =
1

2π
λe−λr for r > 0, θ ∈ (0, 2π).

Define the transformation T : R+ × (0, 2π) → R2 by T (r, θ) = (
√
r cos θ,

√
r sin θ). The image of

T consists of all (x, y) ∈ R2 with y 6= 0. The inverse is T−1(x, y) = (x2 + y2, arctan(y/x)) where
arctan(y/x) is defined so as to take values in (0, π) when y > 0 and to take values in (π, 2π) when
y < 0. Thus

JT−1(x, y) = det

[
2x 2y
−y

x2+y2
x

x2+y2

]
= 2.
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Therefore, (X,Y ) has joint density

g(x, y) = 2f(x2 + y2, arctan(y/x)) =
λ

π
e−λ(x2+y2).

This is for (x, y) ∈ R2 with y 6= 0, but as we have remarked earlier, the value of a pdf in R2 on a
line does not matter, we may define g(x, y) as above for all (x, y) (main point is that the CDF does
not change). Since g(x, y) separates into a function of x and a function of y, X,Y are independent

N(0, 1
2λ).

Remark 118. Relationships between random variables derived by the change of variable formulas
can be used for simulation too. For instance, the CDF of N(0, 1) is not explicit and hence simu-
lating from that distribution is difficult (must resort to numerical methods). However, we can
easily simulate it as follows. Simulate an Exp(1/2) random variable R (easy, as the distribution
function can be inverted) and simulate an independent Unif(0, 2π) random variable Θ. Then set

X =
√
R cos(Θ) and Y =

√
R sin(Θ). These are two independentN(0, 1) random numbers. Here it

should be noted that the random numbers in (0, 1) given by a random number generator are sup-
posed to be independent uniform random numbers (otherwise, it is not acceptable as a random
number generator).

19. INDEPENDENCE AND CONDITIONING OF RANDOM VARIABLES

Definition 119. Let X = (X1, . . . , Xm) be a random vector (this means that Xi are random vari-
ables on a common probability space). We say thatXi are independent ifFX(t1, . . . , tm) = F1(t1) . . . Fm(tm)
for all t1, . . . , tm.

Remark 120. Recalling the definition of independence of events, the equality FX(t1, . . . , tm) =
F1(t1) . . . Fm(tm) is just saying that the events {X1 ≤ t1}, . . . {Xm ≤ tm} are independent. More
generally, it is true that X1, . . . , Xm are independent if and only if {X1 ∈ A1}, . . . , {Xm ∈ Am} are
independent events for any A1, . . . , Am ⊆ R.

Remark 121. In caseX1, . . . , Xm have a joint pmf or a joint pdf (which we denote by f(t1, . . . , tm)),
the condition for independence is equivalent to

f(t1, . . . , tm) = f1(t1)f2(t2) . . . fm(tm)
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where fi is the marginal density (or pmf) of Xi. This fact can be derived from the definition easily.
For example, in the case of densities, observe that

f(t1, . . . , tm) =
∂m

∂t1 . . . ∂tm
F (t1, . . . , tm) (true for any joint density)

=
∂m

∂t1 . . . ∂tm
F1(t1) . . . Fm(tm) (by independence)

= F ′1(t1) . . . F ′m(tm)

= f1(t1) . . . fm(tm).

When we turn it around, this gives us a quicker way to check independence.

Fact: Let X1, . . . , Xm be random variables with joint pdf f(t1, . . . , tm). Suppose we can write this
pdf as f(t1, . . . , tm) = cg1(t1)g2(t2) . . . gm(tm) where c is a constant and gi are some functions of
one-variable. Then, X1, . . . , Xm are independent. Further, the marginal density of Xk is ckgk(t)

where ck = 1R +∞
−∞ gk(s)ds

. An analogous statement holds when X1, . . . , Xm have a joint pmf instead

of pdf.

Example 122. Let Ω = {0, 1}n with pω = p
P
ωkqn−

P
ωk . Define Xk : Ω → R by Xk(ω) = ωk. In

words, we are considering the probability space corresponding to n tosses of a fair coin and Xk

is the result of the kth toss. We claim that X1, . . . , Xn are independent. Indeed, the joint pmf of
X1, . . . , Xn is

f(t1, . . . , tn) = p
P
tkqn−

P
tk where ti = 0 or 1 for each i ≤ n.

Clearly f(t1, . . . , tm) = g(t1)g(t2) . . . g(tn) where g(s) = psq1−s for s = 0 or 1 (this is just a terse
way of saying that g(s) = p if s = 1 and g(s) = q if s = 0). Hence X1, . . . , Xn are independent and
Xk has pmf g (i.e., Xk ∼ Ber(p)).

Example 123. Let (X,Y ) have the bivariate normal density

f(x, y) =
√
ab− c2

√
2π

e−
1
2

(a(x−µ1)2+b(y−µ2)2+2c(x−µ1)(y−µ2)).

If c = 0, we observe that

f(x, y) = C0e
−a(x−µ1)2

2 e−
b(y−µ2)2

2 (C0 is a constant, exact value unimportant)

from which we deduce that X and Y are independent and X ∼ N(µ1,
1
a) while Y ∼ N(µ2,

1
b ).

Can you argue that if c 6= 0, then X and Y are not independent?

Example 124. Let (X,Y ) be a random vector with density f(x, y) = 1
π1x2+y2≤1 (i.e., it equals 1 if

x2 + y2 ≤ 1 and equals 0 otherwise). This corresponds to picking a point at random from the disk
of radius 1 centered at (0, 0). We claim that X and Y are not independent. A quick way to see this
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is that if I = [0.8, 1], then P{(X,Y ) ∈ [0.8, 1]×[0.8, 1]} = 0 whereas P{(X,Y ) ∈ [0.8, 1]}P{(X,Y ) ∈
[0.8, 1]} 6= 0 (If X,Y were independent, we must have had P{(X,Y ) ∈ [a, b] × [c, d]} = P{X ∈
[a, b]}P{Y ∈ [c, d]} for any a < b and c < d).

A very useful (and intuitively acceptable!) fact about independence is as follows.

Fact: Suppose X1, . . . , Xn are independent random variables. Let k1 < k2 < . . . < km = n. Let
Y1 = h1(X1, . . . , Xk1), Y2 = h2(Xk1+1, . . . , Xk2), . . . Ym = hm(Xkm−1 , . . . , Xkm). Then, Y1, . . . , Ym

are also independent.

Remark 125. In the previous section we defined independence of events and now we have defined
independence of random variables. How are they related? We leave it to you to check that events
A1, . . . , An are independent (according the definition of the previous section) if and only if the
random variables 1A1 , . . . ,1Am are independent (according the definition of this section)

The next part, about conditioning on random variables and conditional densities was not cov-
ered in class and is not included in syllabus.

Conditioning on random variables: Let X1, . . . , Xk+` be random variables on a common prob-
ability space. Let f(t1, . . . , tk+`) be the pmf of (X1, . . . , Xk+`) and let g(t1, . . . , t`) be the pmf of
(Xk+1, . . . , Xk+`) (of course we can compute g from f by summing over the first k indices). Then,
for any s1, . . . , s` such that P{Xk+1 = s1, . . . Xm = s`} > 0, we can define
(2)

hs1,...,s`(t1, . . . , tk) = P{X1 = t1, . . . , Xk = tk

∣∣∣Xk+1 = s1, . . . Xm = s`} =
f(t1, . . . , tk, s1, . . . , s`)

g(s1, . . . , s`)
.

It is easy to see that hs1,...,s`(·) is a pmf on Rk. It is called the conditional pmf of (X1, . . . , Xk) given
that Xk+1 = s1, . . . Xm = s`.

Its interpretation is as follows. Originally we had random observables X1, . . . , Xk which had a
certain joint pmf. Then we observe the values of the random variables Xk+1, . . . , Xk+`, say they
turn out to be s1, . . . , s`, respectively. Then we update the distribution (or pmf) of X1, . . . , Xk

according to the above recipe. The conditional pmf is the new function hs1,...,s`(·).

Exercise 126. Let (X1, . . . , Xn−1) be a random vector with multinomial distribution with param-
eters r, n, p1, . . . , pn. Let k < n − 1. Given that Xk+1 = s1, . . . , Xn−1 = sn−k+1, show that
the conditional distribution of (X1, . . . , Xk) is multinomial with parameters r′, n′, q1, . . . , qk+1

where r′ = r − (s1 + . . . + sn−k+1), n′ = k + 1, qj = pj/(p1 + . . . + pk + pn) for j ≤ k and

qk+1 = pn/(p1 + . . .+ pk + pn).
This looks complicated, but is utterly obvious if you think in terms of assigning r balls into

n urns by putting each ball into the urns with probabilities p1, . . . , pn and letting Xj denote the

number of balls that end up in the jth urn.
60



Conditional densities Now supposeX1, . . . , Xk+` have joint density f(t1, . . . , tk+`) and let g(s1, . . . , s`)
by the density of (Xk+1, . . . , Xk+`). Then, we define the conditional density of (X1, . . . , Xk) given
Xk+1 = s1, . . . , Xk+` = s` as

(3) hs1,...,s`(t1, . . . , tk) =
f(t1, . . . , tk, s1, . . . , s`)

g(s1, . . . , s`)
.

This is well-defined whenever g(s1, . . . , s`) > 0.

Remark 127. Note the difference between (2) and (3). In the latter we have left out the middle
term because P{Xk+1 = s1, . . . , Xk+` = s`} = 0. In (2) the definition of pmf comes from the defi-
nition of conditional probability of events but in (3) this is not so. We simply define the conditional
density by analogy with the case of conditional pmf. This is similar to the difference between in-
terpretation of pmf (f(t) is actually the probability of an event) and pdf (f(t) is not the probability
of an event but the density of probability near t).

Example 128. Let (X,Y ) have bivariate normal density f(x, y) =
√
ab−c2
2π e−

1
2

(ax2+by2+2cxy) (so we

assume a > 0, b > 0, ab − c2 > 0). In the mid-term you showed that the marginal distribution of

Y is N(0, a
ab−c2 ), that is it has density g(y) =

√
ab−c2√
2πa

e−
ab−c2

2a
y2

. Hence, the conditional density of X

given Y = y is

hy(x) =
f(x, y)
g(y)

=
√
a√

2π
e−

a
2

(x+ c
a
y)2
.

Thus the conditional distribution of X given Y = y is N(− cy
a ,

1
a). Compare this with marginal

(unconditional) distribution of X which is N(0, b
ab−c2 ).

In the special case when c = 0, we see that for any value of y, the conditional distribution of
X given Y = y is the same as the unconditional distribution of X . What does this mean? It is
just another way of saying that X and Y are independent! Indeed, when c = 0, the joint density
f(x, y) splits into a product of two functions, one of x alone and one of y alone.

Exercise 129. Let (X,Y ) have joint density f(x, y). Let the marginal densities of X and Y be g(x)
and h(y) respectively. Let hx(y) be the conditional density of Y given X = x.

(1) If X and Y are independent, show that for any x, we have hx(y) = h(y) for all y.

(2) If hx(y) = h(y) for all y and for all x, show that X and Y are independent.

Analogous statements hold for the case of pmf.
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20. MEAN AND VARIANCE

LetX be a random variable with distribution F . We shall assume that it has pmf or pdf denoted
by f .

Definition 130. The expected value (also called mean) of X is defined as the quantity E[X] =∑
t tf(t) if f is a pmf and E[X] =

∫ +∞
−∞ tf(t)dt if f is a pdf (provided the sum or the integral

converges absolutely).

Note that this agrees with the definition we gave earlier for random variables with pmf. it is
possible to define expect value for distributions without pmf or pdf, but we shall not do it here.

Properties of expectation: Let X,Y be random variables both having pmf f, g or pdf f, g, respec-
tively.

(1) Then, E[aX + bY ] = aE[X] + bE[Y ] for any a, b ∈ R. In particular, for a constant random
variable (i.e., X = a with probability 1 for some a, E[X] = a). This is called linearity of
expectation.

(2) If X ≥ Y (meaning, X(ω) ≥ Y (ω) for all ω), then E[X] ≥ E[Y ]

(3) If ϕ : R→ R, then

E[ϕ(X)] =


∑
t
ϕ(t)f(t) if f is a pmf.∫ +∞
−∞ ϕ(t)f(t)dt if f is a pdf.

(4) More generally, if (X1, . . . , Xn) has joint pdf f(t1, . . . , tn) and V = T (X1, . . . , Xn) (here

T : Rn → R), then E[V ] =
∫∞
−∞ . . .

∫∞
−∞ T (x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn.

For random variables on a discrete probability space (then they have pmf), we have essentially
proved all these properties (or you can easily do so). For random variables with pmf, a proper
proof require a bit of work. So we shall just take these for granted. We state one more property of
expectations, its relationship to independence.

Lemma 131. Let X,Y be random variables on a common probability space. If X and Y are indepen-
dent, then E[H1(X)H2(Y )] = E[H1(X)]E[H2(Y )] for any functions H1, H2 : R → R (for which the
expectations make sense). In particular, E[XY ] = E[X]E[Y ].

Proof. Independence means that the joint density (analogous statements for pmf omitted) of (X,Y )
is f the form f(t, s) = g(t)h(s) where g(t) is the density of X and h(s) is the density of Y . Hence,

E[H1(X)H2(Y )] =
∫∫

H1(t)H2(s)f(t, s)dtds =

 ∞∫
−∞

H1(t)g(t)dt

 ∞∫
−∞

H2(s)g(s)ds


which is precisely E[H1(X)]E[H2(Y )]. �
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Expectation is a very important quantity. Using it, we can define several other quantities of
interest.

Discussion: For simplicity let us take random variables to have densities in this discussion. You
may adapt the remarks to the case of pmf easily. The density has all the information we need about
a random variable. However, it is a function, which means that we have to know f(t) for every
t. In real life often we have random variables whose pdf is unknown or impossible to determine.
It would be better to summarize the main features of the distribution (i.e., the density) in a few
numbers. That is what the quantities defined below try to do.

Mean: Mean is another term for expected value.

Quantiles: Let us assume that the CDF F of X is strictly increasing and continuous. Then F−1(t)

is well defined for every t ∈ (0, 1). For each t ∈ (0, 1), the number Qt = F−1(t) is called the

t-quantile. For example, the 1/2-quantile, also called median is the number x such that F (x) = 1
2

(unique when the CDF is strictly increasing and continuous). Similarly one defines 1/4-quantile

and 3/4-quantile and these are sometimes called quartiles.13

Moments: The quantity E[Xk] (if it exists) is called the kth moment of X .

Variance: Let µ = E[X] and define σ2 := E
[
(X − µ)2

]
. This is called the variance of X , also

denoted by Var(X). It can be written in other forms. For example,

σ2 = E[X2 + µ2 − 2µX] (by expanding the square)

= E[X2] + µ2 − 2µE[X] (by property (1) above)

= E[X2]− µ2.

That is Var(X) = E[X2]− (E[X])2.

Standard deviation: The standard deviation of X is defined as s.d.(X) :=
√

Var(X).

Mean absolute deviation: The mean absolute deviation of X is defined as the E[|X −med(X)|].

Coefficient of variation: The coefficient of variation of X is defined as c.v.(X) = s.d.(X)
|E[X]| .

13Another familiar quantity is the percentile, frequently used in reporting performance in competitive exams. For
each x, the x-percentile is nothing but F (x). For exam scores, it tells the proportion of exam-takers who scored less
than or equal to x.
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Covariance: Let X,Y be random variables on a common probability space. The covariance of X
and Y is defined as Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])]. It can also be written as Cov(X,Y ) =
E[XY ]−E[X]E[Y ].

Correlation: Let X,Y be random variables on a common probability space. Their correlation is

defined as Corr(X,Y ) = Cov(X,Y )√
Var(X)

√
Var(Y )

.

Entropy: The entropy of a random variable X is defined as

Ent(X) =

−
∑

i f(t) log(f(ti)) if X has pmf f.

−
∫
f(t) log(f(t)) if X has pdff.

If X = (X1, . . . , Xn) is a random vector, we can define its entropy exactly by the same expressions,
except that we use the joint pmf or pdf of X and the sum or integral is over points in Rn.

Discussion: What do these quantities mean?

Measures of central tendency Mean and median try to summarize the distribution of X by a
single number. Of course one number cannot capture the whole distribution, so there are many
densities and mass functions that have the same mean or median. Which is better - mean or
median? This question has no unambiguous answer. Mean has excellent mathematical properties
(mainly linearity) which the median lacks (med(X+Y ) bears no general relationship to med(X)+
med(Y )). In contrast, mean is sensitive to outliers, while the median is far less so. For example,
if the average income in a village of 50 people is 1000 Rs. per month, the immigration of multi-
millionaire to the village will change the mean drastically but the median remains about the same.
This is good, if by giving one number we are hoping to express the state of a typical individual in
the population.

Measures of dispersion: Suppose the average height of people in a city is 160 cm. This could be
because everyone is 160 cm exactly or because half the people are 100 cm. while the other half are
220 cm., or alternately the heights could be uniformly spread over 150-170 cm., etc. How widely
the distribution is spread is measured by standard deviation and mean absolute deviation. Since
we want deviation from mean, E[X −E[X]] looks natural, but this is zero because of cancellation
of positive and negative deviations. To prevent cancellation, we may put absolute values (getting
to the m.a.d, but that is usually taken around the median) or we may square the deviations before
taking expectation (giving the variance, and then the standard deviation). Variance and standard
deviation have much better mathematical properties (as we shall see) and hence are usually pre-
ferred.

The standard deviation has the same units as the quantity. Fo example, if mean height is 160cm
measured in centimeters with a standard deviation of 10cm, and the mean weight is 55kg with a
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standard deviation of 5kg, then we cannot say which of the two is less variable. To make such a
comparison we need a dimension free quantity (a pure number). Coefficient of variation is such
a quantity, as it measure the standard deviation per mean. For the height and weight data just
described, the coefficients of variation are 1/16 and 1/11, respectively. Hence we may say that
height is less variable than weight in this example.

Measures of association: The marginal distributions do not determine the joint distribution. For
example, if (X,Y ) is a point chosen at random from the unit square (with vertices (0, 0), (1, 0), (0, 1), (1, 1))
then X,Y both have marginal distribution that is uniform on [0, 1]. If (U, V ) is a point picked at
random from the diagonal line (the line segment from (0, 0) to (1, 1), then again U and V have
marginals that are uniform on [0, 1]. But the two joint distributions are completely different. In
particular, giving the means and standard deviations of X and Y does not tell anything about
possible relationships between the two.

Covariance is the quantity that is used to measure the “association” of Y and X . Correlation
is a dimension free quantity that measures the same. For example, we shall see that if Y = X ,
then Corr(X,Y ) = +1, if Y = −X then Corr(X,Y ) = −1. Further, if X and Y are independent,
then Corr(X,Y ) = 0. In general, if an increase in X is likely to mean an increase in Y , then the
correlation is positive and if an increase in X is likely to mean a decrease in Y then the correlation
is negative.

Example 132. Let X ∼ N(µ, σ2). Recall that its density is 1
σ
√

2π
e−

(x−µ)2

2σ2 . We can compute

E[X] =
1

σ
√

2π

+∞∫
−∞

xe−
(x−µ)2

2σ2 dx = µ.

On the other hand

Var(X) =
1

σ
√

2π

+∞∫
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx = σ2 1√
2π

+∞∫
−∞

u2e−
u2

2 du (substitute x = µ+ σu)

= σ2 2√
2π

+∞∫
0

u2e−
u2

2 du = σ2 2
√

2√
2π

+∞∫
0

√
te−tdt (substitute t = u2/2)

= σ2 2
√

2√
2π

Γ(3/2) = σ2.

To get the last line, observe that Γ(3/2) = 1
2Γ(1/2) and Γ(1/2) =

√
π. Thus we now have a

meaning for the parameters µ and σ2 - they are the mean and variance of theN(µ, σ2) distribution.

Again note that the mean is the same for all N(0, σ2) distributions but the variances are different,
capturing the spread of the distribution.
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Exercise 133. Let X ∼ N(0, 1). Show that E[Xn] = 0 if n is odd and if n is even then E[Xn] =
(n− 1)(n− 3) . . . (3)(1) (product of all odd numbers up to and including n− 1). What happens if

X ∼ N(0, σ2)?

Exercise 134. Calculate the mean and variance for the following distributions.

(1) X ∼ Geo(p). E[X] = 1
p and Var(X) = q

p2 .

(2) X ∼ Bin(n, p). E[X] = np and Var(X) = npq.

(3) X ∼ Pois(λ). E[X] = λ and Var(X) = λ.

(4) X ∼ Hypergeo(N1, N2,m). E[X] = mN1
N1+N2

and Var(X) =??.

Exercise 135. Calculate the mean and variance for the following distributions.

(1) X ∼ Exp(λ). E[X] = 1
λ and Var(X) = 1

λ2 .

(2) X ∼ Gamma(ν, λ). E[X] = ν
λ and Var(X) = ν

λ2 .

(3) X ∼ Unif[0, 1]. E[X] = 1
2 and Var(X) = 1

12 .

(4) X ∼ Beta(p, q). E[X] = p
p+q and Var(X) = pq

(p+q)2(p+q+1)
.

Properties of covariance and variance: Let X,Y,Xi, Yi be random variables on a common proba-
bility space. Small letters a, b, c etc will denote scalars.

(1) (Bilinearity): Cov(aX1 + bX2, Y ) = aCov(X1, Y ) + bCov(X2, Y ) and Cov(Y, aX1 + bX2) =
aCov(Y,X1) + bCov(Y,X2)

(2) (Symmetry): Cov(X,Y ) = Cov(Y,X).

(3) (Positivity): Cov(X,X) ≥ 0 with equality if and only if X is a constant random variable.
Indeed, Cov(X,X) = Var(X).

Exercise 136. Show that Var(cX) = c2Var(X) (hence sd(cX) = |c|sd(X)). Further, if X and Y are
independent, then Var(X + Y ) = Var(X) + Var(Y ).

Note that the properties of ovariance are very much like properties of inner-products in vector
spaces. In particular, we have the following analogue of the well-known inequality for vectors

(u · v)2 ≤ (u · u)(v · v).
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Cauchy-Schwarz inequality: IfX and Y are random variables with finite variances, then (Cov(X,Y ))2 ≤
Var(X)Var(Y ) with equality if and only if Y = aX + b for some scalars a, b.

If not convinced, follow the proof of Cauchy-Schwarz inequality that you have seen for vectors
(basically, note that Var(X + tY ) ≥ 0 for any scalar t and choose an appropriate t to get the
Cauchy-Schwarz’s inequality.

21. MAKOV’S AND CHEBYSHEV’S INEQUALITIES

Let X be a non-negative integer valued random variable with pmf f(k), k = 0, 1, 2, . . .. Fix any
number m, say m = 10. Then

E[X] =
∞∑
k=1

kf(k) ≥
∞∑

k=10

kf(k) ≥
∞∑

k=10

10f(k) = 10P{X ≥ 10}.

More generally mP{X ≥ m} ≤ E[X]. This shows that if the expected value is finite This idea is
captured in general by the following inequality.

Markov’s inequality: Let X be a non-negative random variable with finite expectation. Then, for

any t > 0, we have P{X ≥ t} ≤ 1
tE[X].

Proof. Fix t > 0 and let Y = X1X<t and Z = X1X≥t so that X = Y + Z. Both Y and Z are non-
negative random variable and hence E[X] = E[Y ] + E[Z] ≥ E[Z]. On the other hand, Z ≥ t1X≥t
(why?). Therefore E[Z] ≥ tE[1X≥t] = tP{X ≥ t}. Putting these together we get E[X] ≥ tP{X ≥
t} as desired to show. �

Markov’s inequality is simple but surprisingly useful. Firstly, one can apply it to functions of
our random variable and get many inequalities. Here are some.

Variants of Markov’s inequality:

(1) If X is a non-negative random variable with finite pth moment, then P{X ≥ t} ≤ t−pE[Xp]
for any t > 0.

(2) If X is a random variable with finite second moment, then E[|X − µ| ≥ t] ≤ 1
t2

Var(X).

[Chebyshev’s inequality]

(3) IF X is a random variable with finite exponential moments, then P(X > t) ≤ e−λtE[eλX ]
for any λ > 0.

Thus, if we only know that X has finite mean, the tail probability P(X > t) must decay at least as
fast as 1/t. But if we knew that the second moment was finite we could assert that the decay must

be at least as fast as 1/t2, which is better. If E[eλX ] <∞, then we get much faster decay of the tail,

like e−λt.
Chebyshev’s inequality captures again the intuitive notion that variance measures the spread

of the distribution about the mean. The smaller the variance, lesser the spread. An alternate way
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to write Chebyshev’s inequality is

P(|X − µ| > rσ) ≤ 1
r2

where σ = s.d.(X). This measures the deviations in multiples of the standard deviation. This is

a very general inequality. In specific cases we can get better bounds than 1/r2 (just like Markov
inequality can be improved using higher moments, when they exist).

One more useful inequality we have already seen is the Cauchy-Schwarz inequality: (E[XY ])2 ≤
E[X2]E[Y 2] or (Cov(X,Y ))2 ≤ Var(X)Var(Y ).

22. WEAK LAW OF LARGE NUMBERS

Let X1, X2, . . . be i.i.d random variables (independent random variables each having the same
marginal distribution). Assume that the second moment of X1 is finite. Then, µ = E[X1] and

σ2 = Var(X1) are well-defined.

Let Sn = X1 + . . . + Xn (partial sums) and X̄n = Sn
n = X1+...+Xn

n (sample mean). Then, by the

properties of expectation and variance, we have

E[Sn] = nµ, Var(Sn) = nσ2
1, E[X̄n] = µ, Var(X̄n) =

σ2

n
.

In particular, s.d.(X̄n) = σ/
√
n decreases with n. If we apply Chebyshev’s inequality to X̄n, we

get for any δ > 0 that

P{|X̄n − µ| ≥ δ} ≤
σ2

δ2n
.

This goes to zero as n→∞ (with δ > 0 being fixed). This means that for large n the sample mean
is unlikely to be far from µ (sometimes called “population mean”). This is consistent with our
intuitive idea that if we toss a p-coin many times, we can get a better guess of what the value of p
is.

Weak law of large numbers (Jacob Bernoulli): With the above notations, for any δ > 0, we have

P{|X̄n − µ| ≥ δ} ≤
σ2

δ2n
→ 0 as n→∞.

This is very general, in that we only assume the existence of variance. If Xk are assumed to
have more moments, one can get better bounds. For example, when Xk are i.i.d. Ber(p), we have
the following theorem.

Hoeffding’s inequality: Let X1, . . . , Xn be i.i.d. Ber(p). Then

P{|X̄n − p| ≥ δ} ≤ 2e−nδ
2/2.
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23. MONTE-CARLO INTEGRATION

In this section we give a simple application of WLLN. Let ϕ : [0, 1] → R be a continuous

function. We would like to compute I =
∫ 1

0 ϕ(x)dx. Most often we cannot compute the integral

explicitly and for an approximate value we resort to numerical methods. Here is an idea to use
random numbers.

Let U1, U2, . . . , Un be i.i.d. Unif[0, 1] random variables and let X1 = ϕ(U1), . . . , Xn = ϕ(Un).
Then, Xk are i.i.d. random variables with common mean and variance

µ =

1∫
0

ϕ(x)dx = I, σ2 := Var(X1) =

1∫
0

(ϕ(x)− I)2dx.

This gives the following method of finding I . Fix a large number N appropriately and pick N

uniform random numbers Uk, 1 ≤ k ≤ N . Then define ÎN := 1
N

∑N
k=1 ϕ(Uk). Present ÎN as an

approximate value of I .

In what sense is this an approximation of I and why? Indeed, by WLLN P{|În − I| ≥ δ} → 0

and hence we expect În to be close to I . How large should n be? For this, we fix two numbers
ε = 0.01 and δ = 0.001 (you may change the numbers). By Chebyshev’s inequality, observe that

P{|În − I| ≥ δ} → σ2/Nδ2.

First find N so that σ2/Nδ2 < ε, i.e., N = dσ2

δ2 e. Then, the random variable ÎN is within δ of I

with probability greater than 1 − ε. This is a probabilistic method, hence there is a possibility of
large error, but with a small probability. Observe that N grows proportional to square of 1/δ. To
increase the accuracy by 10, you must increase the number of samples by a factor of 100.

One last point. To find N we need σ2 which involves computing another integral involving ϕ
which we do not know how to compute! Here we do not need the exact value of the integral. For
example, if our functions satisfies −M ≤ ϕ(x) ≤ M for all x ∈ [0, 1], then also −M ≤ I ≤ M and

hence (ϕ(x) − 12
) ≤ 4M2. This means that σ2 ≤ 4M2. Therefore, if we take N = d4M2

δ2 e then the

value of N is larger than required for the desired accuracy. We can work with this N . Note that
the dependence of of N on δ does not change.

Exercise 137. We know that
∫ 1

0
1

1+x2dx = π
4 . Based on this, devise a method to find an approximate

value of π. Use any software you like to implement your method and see how many sample you
need to get an approximation to 1, 2 and 3 decimal places consistently (consistently means with a
large enough probability, say 0.9).

Exercise 138. Devise a method to approximate e and π (there are many possible integrals).
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This method can be used to evaluate integrals over any interval. For instance, how would

you find
∫ b
a ϕ(t)dt or

∫∞
0 ϕ(t)e−tdt or

∫∞
−∞ ϕ(t)e−t

2
dt where ϕ is a function on the appropriate

interval? It can also be used to evaluate multiple integrals (and consequently to find the areas and
volumes of sets). The only condition is that it should be possible to evaluate the given function
ϕ at a point x on the computer. To illustrate, consider the problem of finding the area of a region

{(x, y) : 0 ≤ x, y,≤ 1, 2x3y2 ≥ 1, x2 + 2y2 ≤ 2.3}. It is complicated to work with such regions
analytically, but given a point (x, y), it is easy to check on a computer whether all the constraints
given are satisfied.

As a last remark, how do Monte-Carlo methods compare with the usual numerical methods?
In the latter, usually a number N and a set of points x1, . . . , xN are fixed along with some weights

w1, . . . , wN that sum to 1. Then one presents Ĩ :=
∑N

k=1wkϕ(xk) as the approximate value of I .
Lagrange’s method, Gauss quadrature etc are of this type. Under certain assumptions on ϕ, the

accuracy of these integrals can be like 1/N as opposed to 1/
√
N in Monte-Carlo. But when those

assumptions are not satisfied, Ĩ can be way off I . One may regard this as a game of strategy as
follows.

I present a function ϕ (say bounded between−1 and 1) and you are expected to give an approx-
imation to ϕ. Quadrature methods do a good job generically, but if I knew the procedure you use,
then I can give a function for which your result is entirely wrong (for example, I pick a function ϕ
which vanishes at each of the quadrature points!). However, with Monte-Carlo methods, even if
I know the procedure, there is no way to prevent you from getting an approximation of accuracy

1/
√
N . This is because neither of us know where the points Uk will fall!

24. CENTRAL LIMIT THEOREM

Let X1, X2, . . . be i.i.d. random variables with expectation µ and variance σ2. We saw that X̄n

has mean µ and standard deviation σ/
√
n.

This roughly means that X̄n is close to µ, within a few multiples of σ/
√
n (as shown by Cheby-

shev’s inequality). Now we look at X̄n with a finer microscope. In other words, we ask for the

probability that X̄n is within the tiny interval [µ+ a√
n
, µ+ b√

n
] for any a < b. The answer turns out

to be surprising and remarkable!

Central limit theorem: Let X1, X2, . . . be i.i.d. random variables with expectation µ and variance

σ2. We assume that 0 < σ2 <∞. Then, for any a < b, we have

P
{
µ+ a

σ√
n
≤ X̄n ≤ µ+ b

σ√
n

}
→ Φ(b)− Φ(a) =

1√
2π

b∫
a

e−t
2/2dt.
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What is remarkable about this? The end result does not depend on the distribution of Xis at all!
Only the mean and variance of the distribution were used! As this is one of the most important
theorems in all of probability theory, we restate it in several forms, all equivalent to the above.

Restatements of central limit theorem: Let Xk be as above. Let Sn = X1 + . . . + Xn. Let Z be a
N(0, 1) random variable. Then of course P{a < Z < b} = Φ(b)− Φ(a).

(1) P{a <
√
n
σ (X̄n − µ) ≤ b} → Φ(b) − Φ(a) = P{a < Z < b}. Put another way, this says

that for large n, the random variable
√
n(X̄n−µ)

σ has N(0, 1) distribution, approximately.

Equivalently,
√
n(X̄n − µ) has N(0, σ2) distribution, approximately.

(2) Yet another way to say the same is that Sn has approximately normal distribution with

mean nµ and variance nσ2. That is,

P{a ≤ Sn − nµ
σ
√
n
≤ b} → P{a < Z < b}.

The central limit theorem so deep and surprising and useful. The following example gives a
hint as to why.

Example 139. Let U1, . . . , Un be i.i.d. Uniform([−1, 1]) random variables. Let Sn = U1+. . .+Un, let

Ūn = Sn/n (sample mean) and let Yn = Sn/
√
n. Consider the problem of finding the distribution

of any of these. Since they are got from each other by scaling, finding the distribution of one is the

same as finding that of any other. For uniform [−1, 1], we know that µ = 0 and σ2 = 1/3. Hence,
CLT tells us that

P{ a√
3
< Yn <

b√
3
} → Φ(b)− Φ(a).

or equivalently, P{a < Yn < b} → Φ(b
√

3) − Φ(a
√

3). For large n (practically, n = 50 is large
enough) we may use this limit as a good aproximation to the probability we want.

Why is this surprising? The way to find the distribution of Yn would be this. Using the convo-
lution formula n times successively, one can find the density of Sn = U1 + . . . + Un (in principle!
the actual integration may be intractable!). Then we can find the density of Yn by another change
of variable (in one dimension). Having got the density of Yn, we integrate it from a to b to get
P{a < Yn < b}. This is clearly a daunting task (if you don’t feel so, just try it for n = 5).

The CLT cuts short all this and directly gives an approximate answer! And what is even more
surprising is that the original distribution does not matter - we only need to know the mean and
variance of the original distribution!

We shall not prove the central limit theorem in general. But we indicate how it is done when
Xk come from Exp(λ) distribution. This is optional and may be skipped.
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CLT for Exponetials. Let Xk be i.i.d. Exp(1) random variables. They have mean µ = 1 and variance

σ2 = 1. We know that (this was an exercise), Sn = X1 + . . . + Xn has Gamma(n, 1) distribution.

Its density is given by fn(t) = e−ttn−1/(n− 1)! for t > 0.

Now let Yn = Sn−nµ
σ
√
n

= Sn−n√
n

. By a change of variable (in one-dimension) we see that the density

of Yn is given by gn(t) =
√
nfn(n+ t

√
n). Let us analyse this.

gn(t) =
√
n

1
(n− 1)!

e−(n+t
√
n)(n+ t

√
n)n−1

=
√
n

nn−1

(n− 1)!
e−n−t

√
n

(
1 +

t√
n

)n−1

≈
√
n

nn−1

√
2π(n− 1)n−

1
2 e−n+1

e−n−t
√
n

(
1 +

t√
n

)n−1

(by Stirling’s formula)

=
1

√
2π(1− 1

n)n−
1
2 e1

e−t
√
n

(
1 +

t√
n

)n−1

.

To find the limit of this, first observe that (1 − 1
n)n−

1
2 → e−1. It remains to find the limit of wn :=

e−t
√
n
(

1 + t√
n

)n−1
. Easiest to do this by taking logarithms. Recall that log(1+t) = t− t2

2 + t3

3 − . . ..

Hence

logwn = −t
√
n+ (n− 1) log

(
1 +

t√
n

)

= −t
√
n+ (n− 1)

[
t√
n
− t2

2n
+

t3

3n3/2
− . . .

]

= − t
2

2
+ [. . .]

where in [. . .] we have put all terms which go to zero as n → ∞. Since there are infinitely many,
we should argue that even after adding all of them, the total goes to zero as n → ∞. Let us skip

this step and simply conclude that logwn → −t2/2. Therefore, gn(t)→ ϕ(t) := 1√
2π
e−t

2/2 which is

the standard normal density.

What we wanted was P{a < Yn < b} =
b∫
a
gn(t)dt. Since gn(t) → ϕ(t) for each t, it is believable

that
b∫
a
gn(t)dt→

b∫
a
ϕ(t)dt. This too needs justification but we skip it. Thus,

P{a < Yn < b} →
b∫
a

ϕ(t)dt = Φ(b)− Φ(a).

This proves CLT for the case of exponential random variables. �
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25. POISSON LIMIT FOR RARE EVENTS

Let Xk ∼ Ber(p) be independent random variables. Central limit theorem says that if p is fixed

and n is large, the distribution of (Xn − np)/
√
np(1− p) is close to the N(0, 1) distribution.

Now we consider a slightly different situation. Let X1, . . . , Xn have Ber(n, pn) distribution

where pn = λ
n , where λ > 0 is fixed. Then, we shall show that the distribution of X1 + . . . + Xn

is close to that of Pois(λ). Note that the distribution of X1 changes with n and hence it would be
more correct to write Xn,1, . . . , Xn,n.

Theorem 140. Let λ > 0 be fixed and let Xn,1, . . . , Xn,n be i.i.d. Ber(λ/n). Let Sn = Xn,1 + . . .+Xn,n.
Then, for every k ≥ 0

P{Sn = k} → e−λ
λk

k!
.

Proof. Fix k and observe that

P{Sn = k} =
(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=
n(n− 1) . . . (n− k + 1)

k!
λk

nk

(
1− λ

n

)n−k
.

Note that n(n−1)...(n−k+1)
nk

→ 1 as n→∞ (since k is fixed). Also, (1− λ
n)n−k → e−λ (if not clear, note

that (1 − λ
n)n → e−λ and (1 − λ

n)−k → 1). Hence, the right hand side above converges to e−λ λ
k

k!

which is what we wanted to show. �

What is the meaning of this? Bernoulli random variables may be thought of as indicators of
events, i.e., think of Xn,1 as 1A1 etc. The theorem considers n events which are independent

and each of them is “rare” (since the probability of it occurring is λ/n which becomes small as n
increases). The number of events increases but the chance of each events decreases in such a way
that the expected number of events that occur stays constant. Then, the total number of events
that actually occur has an approximately Poisson distribution.

Example 141. (A physical example). A large amount of custard is made in the hostel mess to serve
100 students. The cook adds 300 raisins and mixes the custard so that on an average they get 3
raisins per student. But the number of raisins that a given student gets is random and the above
theorem says that it has approximately Pois(3) distribution. How so? Let Xk be the indicator of
the event that the kth raisin ends up in your cup. Since there are 100 cups, the chance of this
happening is 1/100. The number of raisins in your cup is precisely X1 + X2 + . . . + X300. Appy
the theorem (take n = 100 and λ = 3).

Example 142. Place r balls in m bins at random. If m = 1000 and r = 500, then the number of
balls in the first bin has approximately Pois(1/2) distribution. Work out how this comes from the
theorem.
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The Poisson limit is a much more general phenomenon than what the theorem above captures.
For example, consider the problem of a psychic guessing a deck of cards. If X is the number
of correct guesses, we saw (by direct calculation and approximation) that P{X = k} is close to

e−1/k!. In other wordsX has approximately Pois(1) distribution. Does it follows from the theorem
above. Let us try.

Set Xk to be the indicator of the event that the kth guess is correct. Then Xk ∼ Ber(1/52) and
X = X1 + . . .+X52. It looks like the theorem tells us that X should have Pois(1) distribution (by
taking n = 52 and λ = 1). But note that Xi are not independent random variables and hence the
theorem does not strictly apply. The theorem should be thought of as one of many theorems that
capture the theme “in a large collection of rare events that are nearly independent, the actual number of
events that occur is approximately Poisson”.

26. ENTROPY, GIBBS DISTRIBUTION

Definition 143. LetX be a random variable that takes values inA = {a1, . . . , ak} such that P(X =
ai) = pi. The entropy of X is defined as

H(X) := −
k∑
i=1

pi log pi.

If X is a real-valued random variable with density f , its entropy is defined

H(X) := −
∫
f(t) log f(t)dt.

Example 144. Let X ∼ Ber(p). Then H(X) = p log(1/p) + (1− p) log(1/(1− p)).

Example 145. Let X ∼ Geo(p). Then H(X) = −
∞∑
k=0

(log p+ k log q)pqk = − log p− q2 log q.

Example 146. Let X ∼ Exp(λ). Then H(X) =
∫∞

0 (log λ− t)λe−λtdt = log λ− 1
λ .

Example 147. Let X ∼ N(µ, σ2)

Entropy is a measure of the randomness. For example, among the Ber(p) distributions, the
entropy is maximized at p = 1/2 and minimized at p = 0 or 1. It quantifies the intuitive feeling
that Ber(1/2) is more random than Ber(1/4).

Lemma 148. (1) If |A| = k, then 0 ≤ H(X) ≤ log k. H(X) = 0 if and only if X is degenerate and
H(X) = log k if and only if X ∼ Unif(A).

(2) Let f : A → B and let Y = f(X). Then H(Y ) ≤ H(X).

(3) Let X take values in A and Y take values in B and let Z = (X,Y ). Then H(Z) ≤ H(X) +H(Y )
with equality if and only if X and Y are independent.
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Gibbs measures: Let A be a countable set and let H : A → R be a given function. For any E ∈ R,
consider the set of PE of all probability mass functions on Ω under which H has expected value
E. In other words,

PE := {p = (pi)i∈A :
∑
i∈A

p(i)H(i) = E}.

PE is non-empty if and only ifHmin ≤ E ≤ Hmax.

Lemma 149. Assume that Hmin ≤ E ≤ Hmax. Then, there is a unique pmf in PE with maximal entropy
and it is given by

pβ(i) =
1
Zβ

e−βH(i)

where Zβ =
∑
i∈A

e−βH(i) and the value of β is chosen to satisfy 1
Zβ

∂Zβ
∂β = E.

This minimizing pmf is called the Boltzmann-Gibbs distribution. An analogous theorem holds
for densities.

Example 150. Let A = {1, 2, . . . , n} and H(i) = 1 for all i. Let E = 1 so that PE is the same as all

pmfs on A. Clearly pβ(i) = 1
n for all i ≤ n. Indeed, we know that the maximal entropy is attained

by the uniform distribution.

Example 151. Let A = {0, 1, 2, . . .} and let H(i) = i for all i. Fix any E > 0. The Boltzmann-Gibbs

distribution is given by pβ(i) = 1
Zβ
e−βi. This is just the Geometric distribution with parameter

chosen to have mean E.

Example 152. Let us blindly apply the lemma to densities.

(1) A = R+ andH(x) = λx

(2) A = R andH(x) = x2.
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1. INTRODUCTION

In statistics we are faced with data, which could be measurements in an experiment, responses
in a survey etc. There will be some randomness, which may be inherent in the problem or due
to errors in measurement etc. The problem in statistics is to make various kinds of inferences
about the underlying distribution, from realizations of the random variables. We shall consider
a few basic types of problems encountered in statistics. We shall mostly deal with examples, but
sufficiently many that the general ideas should become clear too. It may be remarked that we stay
with the simplest “textbook type problems” but we shall also see some real data. Unfortunately
we shall not touch upon the problems of current interest, which typically involve very huge data
sets etc. Here are the kinds of problems we study.

General setting: We shall have data (measurements perhaps), usually of the form X1, . . . , Xn

which are realizations of independent random variables from a common distribution. The under-
lying distribution is not known. In the problems we consider, typically the distribution is known,
except for the values of a few parameters. Thus, we may write the data as X1, . . . , Xn i.i.d. fθ(x)
where fθ(x) is a pdf or pmf for each value of the parameter(s) θ. For example, the density could

be of N(µ, σ2) (two unknown parameters µ and σ2) or of Pois(λ) (one unknown parameter λ).

(1) Estimation: Here, the question is to guess the value of the unknown θ from the sample
X1, . . . , Xn. For example, if Xi are i.i.d. from Ber(p) distribution (p is unknown), then a rea-

sonable guess for θ would be the sample mean X̄n (an estimator). Is this the only one? Is it the
“best” one? Such questions are addressed in estimation.

(2) Confidence intervals: Here again the problem is of estimating the value of a parameter, but
instead of giving one value as a guess, we instead give an interval and quantify how sure we
are that the interval will contain the unknown parameter. For example, a coin with unknown
probability p of turning up head, is tossed n times. Then, a confidence interval for p could be of

the form [X̄n − 3√
n

√
X̄n(1− X̄n), X̄n + − 3√

n

√
X̄n(1− X̄n)] where X̄n is the proportion of heads

in n tosses. The reason for such an interval will come later. It turns out that if n is large, one can
say that with probability 0.99 (“confidence level”), this interval will contain the true value of the
parameter.

(3) Hypothesis testing: In this type of problem we are required to decide between two competing
choices (“hypotheses”). For example, it is claimed that one batch of students is better than a second
batch of students in mathematics. One way to check this is to give the same exam to students in
both exams and record the scores. Based on the scores, we have to decide whether the first batch is
better than the second (one hypothesis) or whether there is not much difference between the two
(the other hypothesis). One can imagine that this can be done by comparing the sample means
etc., but that will come later.
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A good analogy for testing problems is from law, where the judge has to decide whether an
accused is guilty or not guilty. Evidence presented by lawyers take the role of data (but of course
one does not really compute any probabilities quantitatively here!).

(4) Regression: Consider two measurements, such as height and weight. It is reasonable to say
that weight and height are positively correlated (if the height is larger, the weight tends to be larger
too), but is there a more quantitative relationship? Can we predict the weight (roughly) from the
height? One could try to see if a linear function fits: wt. = a ht. + b for some a, b. Or perhaps a

more complicated fit such as wt. = a ht. + b ht.2 + c, etc. To see if this is a good fit, and to know
what values of a, b, c to take, we need data. Thus, the problem is that we have some data (Hi,Wi),
i = 1, 2, . . . , n, and based on this data we try to find the best linear fit (or the best quadratic fit) etc.

As another example, consider the approximate law that the resistivity of a material is propor-
tional to the temperature. What is the constant of proportionality (for a given material). Here we
have a law that says R = aT where a is not known. By taking many measurements at various
temperatures we get data (Ti, Ri), i = 1, 2, . . . , n. From this we must find the best possible a (if all
the data points were to lie on a line y = ax, there would be no problem. In reality they never will,
and that is why the choice is an issue!).

2. ESTIMATION PROBLEMS

Consider the following examples.

(1) A coin has an unknown probability p of turning up head. We wish to determine the value
of p. For this, we toss the coin 100 times and observe the outcomes. How to give a guess
for the value of p based on the data?

(2) A factory manufacture light bulbs whose lifetimes may be assumed to be exponential ran-
dom variables with a mean life-time µ. We take a sample of 50 bulbs at random and mea-
sure their life-timesX1, . . . , X50. Based on this data, how can we present a reasonable guess
for µ? We may want to do this so that the specifications can be printed on the product when
sold.

(3) Can we guess the average height µ of all people in India by taking a random sample of 100
people and measuring their heights?

In such questions, there is an unknown parameter µ (there could be more than one unknown
parameter too) whose value we are trying to guess based on the data. The data consists of i.i.d.
random variables from a family of distributions. We assume that the family of distributions is
known and the only unknown is (are) the value of the parameter(s). Rather than present the ideas
in abstract let us see a few examples.
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Example 153. Let X1, . . . , Xn be i.i.d. random variables with Exponential density fµ(x) = 1
µe
−x/µ

(fro x > 0) where the value of µ > 0 is unknown. How to estimate it using the data X =
(X1, . . . , Xn)?

This is the framework in which we would study the second example above, namely the lie-
time distribution of light bulbs. Observe that we have parameterized the exponential family of

distributions differently from usual. We could equivalently have considered gλ(x) = λe−λx but
the interest is then in estimating 1/λ (which is the expected value) rather than λ. Here are two
methods.

Method of moments: We observe that µ = Eµ[X1], the mean of the distribution (also called

population mean). Hence it seems reasonable to take the sample mean X̄n as an estimate. On

second thought, we realize that Eµ[X2
1 ] = 2µ2 and hence µ =

√
1
2Eµ[X2

1 ]. Therefore it also seems

reasonable to take the corresponding sample quantity, Tn :=
√

1
2n(X2

1 + . . .+X2
n) as an estimate

for µ. One can go further and write µ in various ways as µ =
√

Varµ(X1), µ = 3

√
1
6Eµ[X3

1 ] etc.

Each such expression motivates an estimate, just by substituting sample moments for population
moments.

This is called estimating by the method of moments because we are equating the sample moments
to population moments to obtain the estimate.

We can also use other features of the distribution, such as quantiles (we may call this the
“method of quantiles”). In other words, obtain estimates by equating the sample quantiles to
population quantiles. For example, the median of X1 is µ log 2, hence a reasonable estimate for µ
is Mn/ log 2, where Mn is a sample median. Alternately, the 25% quantile of Exponential(1/µ) dis-
tribution is µ log(4/3) and hence another estimate for µ is Qn/ log(4/3) where Qn is a 25% sample
quantile.

Maximum likelihood method: The joint density of X1, . . . , Xn is

gµ(x1, . . . , xn) = µ−ne−µ(x1+...+xn) if all xi > 0

(since Xi are independent, the joint density is a product). We evaluate the joint density at the
observed data values. This is called the likelihood function. In other words, define,

LX(µ) := µ−ne
− 1
µ

Pn
i=1Xi .

Two points: This is the joint density of X1, . . . , Xn, evaluated at the observed data. Further, we
like to think of it as a function of µ with X := (X1, . . . , Xn) being fixed.

When µ is the actual value, then LX(µ) is the “likelihood” of seeing the data that we have
actually observed. The maximum likelihood estimate is that value of µ that maximizes the likelihood
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function. In our case, by differentiating and setting equal to zero we get,

0 =
d

dµ
LX(µ) = −nµ−n−1e

− 1
µ

Pn
i=1Xi + µ−n

(
1
µ2

n∑
i=1

Xi

)
e
− 1
µ

Pn
i=1Xi

which is satisfied when µ = 1
n

∑n
i=1Xi = X̄n. To distinguish this from the true value of µ which

is unknown, it is customary to put a hat on the leter µ. We write µ̂MLE = X̄n. We should really
verify whether L(µ) is maximized or minimized (or neither) at this point, but we leave it to you to
do the checking (eg., by looking at the second derivative).

Let us see the same methods at work in two more examples.

Example 154. Let X1, . . . , Xn be i.i.d. Ber(p) random variables where the value of p is unknown.
How to estimate it using the data X = (X1, . . . , Xn)?

Method of moments: We observe that p = Ep[X1], the mean of the distribution (also called popu-

lation mean). Hence, a method of moments estimator would be the sample mean X̄n. In this case,

Ep[X2
1 ] = p again but we don’t get any new estimate because X2

k = Xk (as Xk is 0 or 1)

Maximum likelihood method: Now we have a probability mass function instead of density. The

joint pmf of of X1, . . . , Xn is fp(x1, . . . , xn = p
Pn
i=1 xi(1 − p)n−

Pn
i=1 xi when each xi is 0 or 1. The

likelihood function is

LX(p) := p
Pn
i=1 xi(1− p)n−

Pn
i=1 xi = pnX̄n(1− p)n(1−X̄n).

We need to find the value of p that maximizes LX(p). Here is a trick that almost always simplifies
calculations (try it in the previous example too!). Instead of maximizing LX(p), maximize `X(p) =
logLX(p) (called the log-likelihood function). Since “log” is an increasing function, the maximizer
will remain the same. In our case,

`X(p) = X̄n log p+ n(1− X̄n) log(1− p).

Differentiating and setting equal to 0, we get p̂MLE = X̄n. Again the sample mean is the maximum
likelihood estimate.

A last example.

Example 155. Consider the two-parameter Laplace-density fθ,α(x) = 1
2αe
− |x−θ|

α for all x ∈ R.

Check that fθ,α is indeed a density for all θ ∈ R and α > 0.
Now suppose we have data X1, . . . , Xn i.i.d. from fθ,α where we do not know the values of θ

and α. How to estimate the parameters?
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Method of moments: We compute

Eθ,α[X1] =
1

2α

+∞∫
−∞

te−
|t−θ|
α dt =

1
2

+∞∫
−∞

(αs+ θ)e−|s|ds = θ.

Eθ,α[X2
1 ] =

1
2α

+∞∫
−∞

t2e−
|t−θ|
α dt =

1
2

+∞∫
−∞

(αs+ θ)2e−|s|ds = 2α2 + θ2.

Thus the variance is Varθ,α(X1) = 2α2. Based on this, we can take the method of moments estimate

to be θ̂n = X̄n (sample mean) and α̂n = 1√
2
sn where s2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. At the moment

the ideas of defining sample variance as s2
n may look strange and it might be more natural to take

Vn := 1
n

∑n
i=1(Xi − X̄n)2 as an estimate for the population variance. As we shall see later, s2

n has

some desirable properties that Vn lacks. Whenever we say sample variance, we mean s2
n, unless

stated otherwise.

Maximum likelihood method: The likelihood function of the data is

LX(θ, α) =
n∏
k=1

1
2α

exp
{
−|Xk − θ|

α

}
= 2−nα−n exp

{
−

n∑
k=1

|Xk − θ|
α

}
.

The log-likelihood function is

`X(θ, α) = logL(θ, α) = −n log 2− n logα− 1
α

n∑
k=1

|Xk − θ|.

We know that14 for fixed X1, . . . , Xn, the value of
∑n

k=1 |Xk − θ| is minimized when θ = Mn,
the median of X1, . . . , Xn (strictly speaking the median may have several choices, all of them are

equally good). Thus we fix θ̂ = Mn and then we maximize `(θ̂, α) over α by differentiating. We

get α̂ = 1
n

∑n
k=1 |Xk − θ| (the sample mean-absolute deviation about the median). Thus the MLE

of (θ, α) is (θ̂, α̂).

In homeworks and tutorials you will see several other estimation problems which we list in the
exercise below.

Exercise 156. Find an estimate for the unknown parameters by the method of moments and the
maximum likelihood method.

14If you do not know here is an argument. Let x1 < x2 < . . . < xn be n distinct real numbers and let a ∈ R. RewritePn
k=1 |xk − a| as (|x1 − a|+ |xn − a|) + (|x2 − a|+ |xn−1 − a|) + . . .. By triangle inequality, we see that

|x1 − a|+ |xn − a| ≥ xn − x1, |x2 − a|+ |xn−1 − a| ≥ xn−1 − x2, |x3 − a|+ |xn−2 − a| ≥ xn−2 − x3 . . . .

Further the first inequality is an equality if and only if x1 ≤ a ≤ xn, the second inequality is an equality if and only if
x2 ≤ a ≤ xn−1 etc. In particular, if a is a median, then all these inequalities become equalities and shows that a median
minimizes the given sum.
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(1) X1, . . . , Xn are i.i.d. N(µ, 1). Estimate µ. How do your estimates change if the distribution
is N(µ, 2)?

(2) X1, . . . , Xn are i.i.d. N(0, σ2). Estimate σ2. How do your estimates change if the distribu-

tion is N(7, σ2)?

(3) X1, . . . , Xn are i.i.d. N(µ, σ2). Estimate µ and σ2.

[Note: The first case is when σ2 is known and µ is unknown. Then the known value of σ2 may be

used to estimate µ. In the second case it is similar, now µ is known and σ2 is not known. In the
third case, both are unknown].

Exercise 157. X1, . . . , Xn are i.i.d. Geo(p) Estimate µ = 1/p.

Exercise 158. X1, . . . , Xn are i.i.d. Pois(λ) Estimate λ.

Exercise 159. X1, . . . , Xn are i.i.d. Beta(a, b) Estimate a, b.

The following exercise is approachable by the same methods but requires you to think a little.

Exercise 160. X1, . . . , Xn are i.i.d. Uniform[a, b] Estimate a, b.

3. PROPERTIES OF ESTIMATES

We have seen that there may be several competing estimates that can be used to estimate a pa-
rameter. How can one choose between these estimates? In this section we present some properties
that may be considered desirable in an estimator. However, having these properties does not lead
to an unambiguous choice of one estimate as the best for a problem.

The setting: Let X1, . . . , Xn be i.i.d random variables with a common density fθ(x). The parame-
ter θ is unknown and the goal is to estimate it. Let Tn be an estimator for θ, this just means that Tn
is a function of X1, . . . , Xn (in words, if we have the data at hand, we should be able to compute
the value of Tn).

Bias: Define the bias of the estimator as biasTn(θ) := Eθ[Tn] − θ. If BiasTn(θ) = 0 for all values of
the parameter θ then we say that Tn is unbiased for θ. Here we write θ in the subscript of Eθ to
remind ourself that in computing the expectation we use the density fθ. However we shall often
omit the subscript for simplicity.
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Mean-squared error: The mean squared error of Tn is defined as m.s.e.Tn(θ) = Eθ[(Tn− θ)2]. This is
a function of θ. Smaller it is, better our estimate.

In computing mean squared error, it is useful to observe the formula

m.s.e.Tn(θ) = VarTn(θ) + (BiasTn(θ))2 .

To prove this, consider and random variable Y with mean µ and observe that for any real number
a we have

E[(Y − a)2] = E[(Y − µ+ µ− a)2] = E[(Y − µ)2] + (µ− a)2 + 2(µ− a)E[Y − µ]

= E[(Y − µ)2] + (µ− a)2 = Var(Y ) + (µ− a)2.

Use this identity with Tn in place of Y and θ in place of a.

Example 161. Let X1, . . . , Xn be i.i.d. N(µ, σ2). Let Vn = 1
n

∑n
k=1(Xk− X̄n)2 be an estimate for σ2.

By expanding the squares we get

Vn = X̄2
n +

1
n

n∑
k=1

X2
k −

2
n
X̄n

n∑
k=1

Xk =

(
1
n

n∑
k=1

X2
k

)
− X̄2

n.

It is given that E[Xk] = µ and Var(Xk) = σ2. Hence E[X2
k ] = µ2 + σ2. We have seen before that

Var(X̄n) = σ2 and E[X̄n] = µ. Hence E[X̄2
n] = µ2 + σ2

n . Putting all this together, we get

E [Vn] =

(
1
n

n∑
k=1

µ2 + σ2

)
−
(
µ2 +

σ2

n

)
=
n− 1
n

σ2.

Thus, the bias of Vn is n−1
n σ2 − σ2 = − 1

nσ
2.

Example 162. For the same setting as the previous example, suppose Wn = 1
n

∑n
k=1(Xk − µ)2.

Then it is easy to see that E[Wn] = σ2. Can we say that Wn is an unbiased estimate for σ2? There
is a hitch!

If the value of µ is unknown, then Wn is not an estimate (cannot compute it using X1, . . . , Xn!).
However if µ is known, then it is an unbiased estimate. For example, if we knew that µ = 0, then

Wn = 1
n

∑n
k=1X

2
k is an unbiased estimate for σ2.

When µ is unknown, we define s2
n = 1

n−1

∑n
k=1(Xk − X̄n)2. Clearly s2

n = n
n−1Vn and hence

E[s2
n] = n

n−1E[Vn] = σ2. Thus, s2
n is an unbiased estimate for σ2. Note that s2

n depends only on the

data and hence it is an estimate, whether µ is known or unknown.

All the remarks in the above two examples apply for any distribution, i.e.,

(1) The sample mean is unbiased for the population mean.

(2) The sample variance s2
n = 1

n−1

∑n
k=1(Xk − X̄n)2 is unbiased for the population variance.

But Vn = 1
n

∑n
k=1(Xk − X̄n)2 is not, in fact E[Vn] = n−1

n σ2.
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It appears that s2
n is better, but the following remark says that one should be cautious in making

such a statement.

Remark 163. In case of N(µ, σ2) data, it turns out that although s2
n is unbiased and Vn is biased,

the mean squared error of Vn is smaller! Further Vn is the maximum likelihood estimate of σ2!
Overall, unbiasedness is not so important as having smaller mean squared error, but for estimating

variance (when the mean is not known), we always use s2
n. The computation of the m.s.e is a bit

tedious, so we skip it here.

Example 164. Let X1, . . . , Xn be i.i.d. Ber(p). Then X̄n is an estimate for p. It is unbiased since

E[X̄n] = p. Hence, the m.s.e of X̄n is just the variance which is equal to p(1− p)/n.

A puzzle: A coin C1 has probability p of turning up head and a coin C2 has probability 2p of

turning up head. All we know is that 0 < p < 1
2 . You are given 20 tosses. You can choose all

tosses from C1 or all tosses from C2 or some tosses from each (the total is 20). If the objective is to
estimate p, what do you do?

Solution: If we choose to have all n = 20 tosses from C1, then we get X1, . . . , Xn that are i.i.d.

Ber(p). An estimate for p is X̄n which is unbiased and hence MSEX̄n(p) = Var(X̄n) = p(1 − p)/n.

On the other hand if we choose to have all 20 tosses from C2, then we get Y1, . . . , Yn that are i.i.d.

Ber(2p). The estimate for p is now Ȳn/2 which is also unbiased and has MSEȲn/2(p) = Var(Ȳn) =

2p(1 − 2p)/4 = p(1 − 2p)/2. It is not hard to see that for all p < 1/2, MSEȲn/2(p) < MSEX̄n(p)

and hence choosing C2 is better, at least by mean-squared criterion! It can be checked that if we
choose to have k tosses from C1 and the rest from C2, the MSE of the corresponding estimate will

be between the two MSEs found above and hence not better than Ȳn/2.

Another puzzle: A factory produces light bulbs having an exponential distribution with mean µ.
Another factory produces light bulbs having an exponential distribution with mean 2µ. Your goal
is to estimate µ. You are allowed to choose a total of 50 light bulbs (all from the first or all from the
second or some from each factory). What do you do?

Solution: If we pick all n = 50 bulbs from the first factory, we see X1, . . . , Xn i.i.d. Exp(1/µ). The

estimate for µ is X̄n which has MSEX̄n(µ) = Var(X̄n) = µ2/n. If we choose all bulbs from factory

2 we get Y1, . . . , Yn i.i.d. Exp(1/2µ). The estimate for µ is Ȳn/2. But MSEȲn/2(µ) = Var(Ȳn/2) =

(2µ)2/4n = µ2/n. The two mean-squared errors are exactly the same!

Probabilistic thinking: Is there any calculation-free explanation why the answers to the two puz-
zles are as above? Yes, and it is illustrative of what may be called probabilistic thinking. Take the
second puzzle. Why are the two estimates same by mean-squared error? Is one better by some
other criterion?
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Recall that if X ∼ Exp(1/µ) then X/2 ∼ Exp(1/2µ) and vice versa. Therefore, if we have data
from Exp(1/µ) distribution, then we can divided all the numbers by 2 and convert it into data
from Exp(1/2µ) distribution. Conversely if we have data from Exp(1/2µ) distribution, then we
can convert it into data from Exp(1/µ) distribution by multiplying each number by 2. Hence there
should be no advantage in choosing either factory. We leave it for you to think in analogous ways
why in the first puzzle C2 is better than C1.

4. CONFIDENCE INTERVALS

So far, in estimating of an unknown parameter, we give a single number as our guess for the
known parameter. It would be better to give an interval and say with what confidence we expect
the true parameter to lie within it. As a very simple example, suppose we have one random
variable X with N(µ, 1) distribution. How do we estimate µ? Suppose the observed value of X is
2.7. Going by any method, the guess for µ would be 2.7 itself. But of course µ is not equal to X , so
we would like to give an interval in which µ lies. How about [X−1, X+1]? Or [X−2, X+2]? Using
normal tables, we see that P(X−1 < µ < X+1) = P(−1 < (X−µ) < 1) = P(−1 < Z < 1) ≈ 0.68
and similarly P(X − 2 < µ < X + 2) ≈ 0.95. Thus, by making the interval longer we can be more
confident that the true parameter lies within. But the accuracy of our statement goes down (if
you want to know the average height of people in India, and the answer you give is “between
100cm and 200cm”, it is very probably correct, but of little use!). The probability with which our
CI contains the unknown parameter is called the level of confidence. Usually we fix the level of
confidence, say as 0.90 and find an interval as short as possible but subject to the condition that it
should have a confidence level of 0.90.

In this section we consider the problem of confidence intervals in Normal population. In the
next we see a few other examples.

The setting: Let X1, . . . , Xn be i.i.d. N(µ, σ2) random variables. We consider four situations.

(1) Confidence interval for µ when σ2 is known.

(2) Confidence interval for σ2 when µ is known.

(3) Confidence interval for µ when σ2 is unknown.

(4) Confidence interval for σ2 when µ is unknown.

A starting point in finding a confidence interval for a parameter is to first start with an estimate

for the parameter. For example, in finding a CI for µ, we may start with X̄n and enlarge it to an

interval [X̄n− a, X̄n + a]. Similarly, in finding a CI for σ2 we use the estimate s2
n = 1

n−1

∑n
i=1(Xi−

X̄n)2 if µ is unknown and Wn = 1
n

∑n
i=1(Xi − µ)2 if the value of µ is known.
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4.1. Estimating µ when σ2 is known. We look for a confidence interval of the form In = [X̄n −
a, X̄n + a]. Then,

P (In 3 µ) = P
(
−a ≤ X̄n − µ ≤ a

)
= P

(
−a
√
n

σ
≤
√
n(X̄n − µ)

σ
≤ a
√
n

σ

)
Now we use two facts about normal distribution that we have seen before.

(1) If Y ∼ N(µ, σ2) then aX + b ∼ N(aµ+ b, a2σ2).

(2) If Y1 ∼ N(µ, σ2) and Y2 ∼ N(ν, τ2) and they are independent, then X + Y ∼ N(µ+ ν, σ2 +

τ2).

Consequently, X̄n ∼ N(0, σ2/n) and
√
n(X̄n−µ)

σ ∼ N(0, 1). Therefore,

P (In 3 µ) = P(−a
√
n

σ
≤ Z ≤ −a

√
n

σ
)

where Z ∼ N(0, 1). Fix any 0 < α < 1 and denote by zα the number such that P(Z > zα) = α

(in other words, zα is the (1−α)-quantile of the standard normal distribution). For example, from
normal tables we find that z0.05 ≈ 1.65 and z0.005 ≈ 2.58 etc.

If we set a = zα/2σ/
√
n, we get

P
([
X̄n −

σ√
n
zα/2, X̄n +

σ√
n
zα/2

]
3 µ
)

= 1− α.

This is our confidence interval.

4.2. Estimating σ2 when µ is known. Since µ is known, we useWn = 1
n

∑n
i=1(Xi−µ)2 to estimate

σ2. Here is an exercise.

Exercise 165. LetZ1, . . . , Zn be i.i.d. N(0, 1) random variables. Then,Z2
1+. . .+Z2

n ∼ Gamma(n/2, 1/2).

Solution: For t > 0 we have

P{Z2
1 ≤ t} = P{−

√
t ≤ Z1 ≤

√
t} = 2

√
t∫

0

1√
2π
e−u

2/2du =
1√
2π

t∫
0

e−s/2s−1/2ds.

Differentiate w.r.t t to see that the density of Z2
1 is h(t) = 1√

π
e−t/2t−1/2

√
(1/2), which is just the

Gamma(1
2 ,

1
2) density.

Now, each Z2
k has the same Gamma(1

2 ,
1
2) density, and they are independent. Earlier we have

seen that when we add independent Gamma random variables with the same scale parameter, the
sum has a Gamma distribution with the same scale but whose shape parameter is the sum of the

shape parameters of the individual summands. Therefore, Z2
1 + . . . + Z2

n has Gamma(n/2, 1/2)
distribution. This completes the solution to the exercise.
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In statistics, the distribution Gamma(1/2, 1/2) is usually called the chi-squared distribution with

n degrees of freedom. Let χ2
n (α) denote the 1 − α quantile of this distribution. Similarly, χ2

n (1− α)

is the α quantile (i.e., the probability for the chi-squared random variable to fall below χ2
n (1− α)

is exactly α).

When Xi are i.i.d. N(µ, σ2), we know that (Xi − µ)/σ are i.i.d. N(0, 1). Hence, by the above
fact, we see that

nWn

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

has chi-squared distribution with n degrees of freedom. Hence

P

{
nWn

χ2
n

(
α
2

) ≤ σ2 ≤ nWn

χ2
n

(
1− α

2

)} = P
{
χ2
n

(
1− α

2

)
≤ nWn

σ2
≤ χ2

n

(α
2

)}
= 1− α.

Thus,
[

ns2n
χ2
n−1(α2 ) ,

ns2n
χ2
n−1(1−α

2 )

]
is a (1− α)-confidence interval for σ2.

An important result: Before going to the next two confidence interval problems, let us try to
understand the two examples already covered. In both cases, we came up with a random variable

(
√
n(X̄n − µ)/σ and Wn/σ

2, respectively) which involved the data and the unknown parameter

whose distributions we knew (standard normal and χ2
n, respectively) and these distributions do

not depend on any parameters. This is generally the key step in any confidence interval problem.
For the next two problems, we cannot use the same two random variables as above as they depend

on the other unknown parameter too (i.e.,
√
n(X̄n−µ)/σ uses σ which will be unknown andWn/σ

2

uses µ which will be unknown). Hence, we need a new result that we state without proof.

Theorem 166. Let Z1, . . . , Zn be i.i.d. N(µ, σ2) random variables. Let Z̄n and s2
n be the sample mean and

the sample variance, respectively. Then,

Z̄n ∼ N(µ,
σ2

n
),

(n− 1)s2
n

σ2
∼ χ2

n−1,

and the two are independent.

This is not too hard to prove (a muscle-flexing exercise in change of variable formula) but we
skip the proof. Note two important features. First, the surprising independence of the sample

mean and the sample variance. Second, the sample variance (appropriately scaled) has χ2 distri-
bution, just like Wn in the previous example, but the degree of freedom is reduced by 1. Now we
use this theorem in computing confidence intervals.

4.3. Estimating σ2 when µ is unknown. The estimate s2
n must be used asWn depends on µwhich

is unknown. Theorem thm:indepofsamplemeanandvar tells us that (n−1)s2n
σ2 ∼ χ2

n−1. Hence, by the
87



same logic as before we get

P

{
(n− 1)s2

n

χ2
n−1

(
α
2

) ≤ σ2 ≤ (n− 1)s2
n

χ2
n−1

(
1− α

2

)} = P
{
χ2
n−1

(
1− α

2

)
≤ (n− 1)s2

n

σ2
≤ χ2

n−1

(α
2

)}
= 1− α.

Thus,
[

(n−1)s2n
χ2
n−1(α2 ) ,

(n−1)s2n
χ2
n−1(1−α

2 )

]
is a (1− α)-confidence interval for σ2.

If µ is known, we could use the earlier confidence interval using Wn, or simply ignore the

knowledge of µ and use the above confidence interval using s2
n. What is the difference? The

cost of ignoring the knowledge of µ is that the second confidence interval will be typically larger,
although for large n the difference is slight. On the other hand, if our knowledge of µ was inaccu-
rate, then the first confidence interval is invalid (we have no idea what its level of confidence is!)
which is more serious. In realistic situations it is unlikely that we will know one of the parameters

but not the other - hence, most often one just uses the confidence interval based on s2
n.

4.4. Estimating µ when σ2 is unknown. The earlier confidence interval We look for a confidence

interval [X̄n − σ√
n
zα/2, X̄n + σ√

n
zα/2] cannot be used as we do not know the value of σ.

A natural idea would be to use the estimate s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 in place of σ2. However,

recall that the earlier confidence interval (in particular, the cut-off values zα/2 in the CI) was an

outcome of the fact that √
n(X̄n − µ)

σ
∼ N(0, 1).

Is it true if σ is replaced by sn? Actually no, but we have a different distribution called Student’s
t-distribution.

Exercise 167. Let Z ∼ N(0, 1) and S2 ∼ χ2
n be independent. Then, the density of Z

S/
√
n

is given by

1√
n− 1Beta(1

2 ,
n−1

2 )
1(

1 + t2

n−1

)n
2

for all t ∈ R. This is known as Student’s t-distribution.

The exact density of t-distribution is not important to remember, so the above exercise is op-
tional. The point is that it can be computed from the change of variable formula and that by
numerical integration its CDF can be tabulated.

How does this help us? From Theorem 166 we know that
√
n(X̄n−µ)

σ ∼ N(0, 1), (n−1)s2n
σ2 ∼ χ2

n−1,

and the two are independent. Take these random variables in the above exercise to conclude that
√
n(X̄n−µ)
sn

has tn−1 distribution.

The t-distribution is symmetric about zero (the density at t and at −t are the same). Further,
as the number of degrees of freedom goes to infinity, the t-density converges to the standard
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normal density. What we need to know is that there are tables from which we can read off specific
quantiles of the distribution. In particular, by tn(α) we mean the 1−α quantile of the t-distribution
with n degrees of freedom. Then of course, the α quantile is −tn(α).

Returning to the problem of the confidence interval, from the fact stated above, we see that (use
Tn to indicate a random variable having t-distribution with n degrees of freedom).

P
(
X̄n −

sn√
n
tn−1

(α
2

)
≤ µ ≤ X̄n +

sn√
n
tn−1

(α
2

))

= P
(
−tn−1

(α
2

)
≤
√
n(X̄n − µ)

sn
≤ tn−1

(α
2

))
= P

(
−tn−1

(α
2

)
≤ Tn−1 ≤ tn−1

(α
2

))
= 1− α.

Hence, our (1− α)-confidence interval is
[
X̄n − sn√

n
tn−1

(
α
2

)
, X̄n + sn√

n
tn−1

(
α
2

)]
.

Remark 168. We remarked earlier that as n→∞, the tn−1 density approaches the standard normal
density. Hence, tn−1(α) approaches zα for any α (this can be seen by looking at the t-table for large
degree of freedom). Therefore, when n is large, we may as well use[

X̄n −
sn√
n
zα/2, X̄n +

sn√
n
zα/2

]
.

Strictly speaking the level of confidence is smaller than for the one with tn−1(α/2). However for
n large the level of confidence is quite close to 1− α.

5. CONFIDENCE INTERVAL FOR THE MEAN

Now suppose X1, . . . , Xn are i.i.d. random variables from some distribution with mean µ and

variance σ2, both unknown. How can we construct a confidence interval for µ?
In case of normal distribution, recall that the (1− α)-CI that we gave was[

X̄n −
sn√
n
tn−1

(α
2

)
, X̄n +

sn√
n
tn−1

(α
2

)]
or

[
X̄n −

sn√
n
zα/2, X̄n +

sn√
n
zα/2

]
Is this a valid confidence interval in general? The answer is “No” for both. If Xi are from some

general distribution then the distributions of
√
n(X̄n − µ)/sn and

√
n(X̄n − µ)/σ are very com-

plicated to find. Even if Xi come from binomial or exponential family, these distributions will
depend on the parameters in a complex way (in particular, the distributions are not free from the
parameters, which is important in constructing confidence intervals).

But suppose n is large. Then the sample variance is close to population variance and hence

sn ≈ σ. Further, by CLT, we know that
√
n(X̄n − µ)/σ has approximately N(0, 1) distribution.
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Hence, we see that

P
{
−zα/2 ≤

√
n(X̄n − µ)

sn
≤ zα/2

}
≈ Φ(zα/2)− Φ(−zα/2) = 1− α.

Consequently, we may say that

P
{
X̄n −

sn√
n
zα/2 ≤ µ ≤ X̄n +

sn√
n
zα/2

}
≈ 1− α.

Thus,
[
X̄n − sn√

n
zα/2, X̄n + sn√

n
zα/2

]
is an approximate (1 − α)-confidence interval. Further, when

n is large, the difference between s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 and ŝ2

n := 1
n

∑n
i=1(Xi − X̄n)2 is small

(indeed, s2
n = (n/(n − 1))ŝ2

n). Hence it is also okay to use
[
X̄n − ŝn√

n
zα/2, X̄n + ŝn√

n
zα/2

]
as an

approximate (1− α)-confidence interval.

Example 169. Let X1, . . . , Xn be i.i.d. Ber(p). Consider the problem of finding a confidence inter-
val for p. Since each Xi is 0 or 1, observe that

ŝ2
n =

1
n

n∑
i=1

X2
i − X̄2

n = X̄n − (X̄n)2 = X̄n(1− X̄n).

Hence, an approximate (1− α)-CI for p is given by[
X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

6. ACTUAL CONFIDENCE BY SIMULATION

Suppose we have a candidate confidence interval whose confidence we do not know. For ex-
ample, let us take the confidence interval[

X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

for the parameter p of i.i.d. Ber(p) samples. We saw that for large n this has approximately (1−α)
confidence. But how large is large? One way to check this is by simulation. We explain how.

Take p = 0.3 and n = 10. Simulate n = 10 independent Ber(p) random variables and compute
the confidence interval given above. Check whether it contains the true value of p (i.e., 0.3) or not.
Repeat this exercise 10000 times and see what proportion of times it contains 0.3. That proportion
is the true confidence, as opposed to 1−α (which is valid only for large n). Repeat this experiment
with n = 20, n = 30 etc. See how close the actual confidence is to 1 − α. Repeat this experiment
with different value of p. The n you need to get close to 1 − α will depend on p (in particular, on
how close p is to 1/2).
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This was about checking the validity of a confidence interval that was specified. In a real situ-
ation, it may be that we can only get n = 20 samples. Then what can we do? If we have an idea
of the approximate value of p, we can first simulate Ber(p) random numbers on a computer. We
compute the sample mean each time, and repeat 10000 times to get so many values of the sample
mean. Note that the histogram of these 10000 values tells us (approximately) the actual distribu-

tion of X̄n. Then we can find t (numerically) such that [X̄n − t, X̄n + t] contains the true value of p

in (1 − α)-proportion of the 10000 trials. Then, [X̄n − t, X̄n + t] is a (1 − α)-CI for p. Alternately,
we may try a CI of the form[

X̄n − t
√
X̄n(1− X̄n)

n
, X̄n + t

√
X̄n(1− X̄n)

n

]
.

where we choose t numerically to get (1− α) confidence.

Summary: The gist of this discussion is this. In the neatly worked out examples of the previous
sections, we got explicit confidence intervals. But we assumed that we knew the data came from

N(µ, σ2) distribution. What if that is not quite right? What if it is not any of the nicely studied dis-
tributions? The results also become invalid in such cases. For large n, using law of large numbers
and CLT we could overcome this issue. But for small n? The point is that using simulations we
can calculate probabilities, distributions, etc, numerically and approximately. That is often better,
since it is more robust to assumptions.
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7. TESTING PROBLEMS - FIRST EXAMPLE

Earlier in the course we discussed the problem of how to test whether a “psychic” can make
predictions better than a random guesser. This is a prototype of what are called testing problems.
We start with this simple example and introduce various general terms and notions in the context
of this problem.

Question 170. A “psychic” claims to guess the order of cards in a deck. We shuffle a deck of cards,
ask her to guess and count the number of correct guesses, say X .

One hypotheses (we call it the null hypothesis and denote it byH0) is that the psychic is guessing
randomly. The alternate hypothesis (denoted H1) is that his/her guesses are better than random
guessing (in itself this does not imply existence of psychic powers. It could be that he/she has
managed to see some of the cards etc.). Can we decide between the two hypotheses based on X?

What we need is a rule for deciding which hypothesis is true. A rule for deciding between the
hypotheses is called a test. For example, the following are examples of rules (the only condition is
that the rule must depend only on the data at hand).

Example 171. We present three possible rules.

(1) If X is an even number declare that H1 is true. Else declare that H1 is false.

(2) If X ≥ 5, then accept H1, else reject H1.

(3) If X ≥ 8, then accept H1, else reject H1.

The first rule does not make much sense as the parity (evenness or oddness) has little to do with
either hypothesis. On the other hand, the other two rules make some sense. They rely on the fact
that if H1 is true then we expect X to be larger than if H0 is true. But the question still remains,
should we draw the line at 5 or at 8 or somewhere else?

In testing problems there is only one objective, to avoid the following two possible types of
mistakes.

Type-I error: H0 is true but our rule concludes H1.

Type-II error: H1 is true but our rule concludes H0.

The probability of type-I error is called the significance level of the test and usually denote by
α. That is, α = PH0{the test accepts H1} where we write PH0 to mean that the probability is
calculated under the assumption that H0 is true. Similarly one define the power of the test as
β = PH1{the test accepts H1}. Note that β is the probability of not making type-II error, and
hence we would like it to be close to 1. Given two tests with the same level of significance, the
one with higher power is better. Ideally we would like both to be small, but that is not always
achievable.
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We fix the desired level of significance, usually α = 0.05 or 0.1 and only consider tests whose
probability of type-I error is at most α. It may seem surprising that we take α to be so small.
Indeed the two hypotheses are not treated equally. Usually H0 is the default option, representing
traditional belief and H1 is a claim that must prove itself. As such, the burden of proof is on H1.

To use analogy with law, when a person is convicted, there are two hypotheses, one that he is
guilty and the other that he is not guilty. According to the maxim “innocent till proved guilty”,
one is not required to prove his/her innocence. On the other hand guilt must be proved. Thus the
null hypothesis is “not guilty” and the alternative hypothesis is “guilty”.

In our example of card-guessing, assuming random guessing, we have calculated the distribu-
tion of X long ago. Let pk = P{X = k} for k = 0, 1, . . . , 52. Now consider a test of the form
“Accept H1 if X ≥ k0 and reject otherwise”. Its level of significance is

PH0{accept H1} = PH0{X ≥ k0} =
52∑
i=k0

pi.

For k0 = 0, the right side is 1 while for k0 = 52 it is 1/52! which is tiny. As we increase k0 there is a
first time where it becomes less than or equal to α. We take that k0 to be the threshold for cut-off.

In the same example of card-guessing, let α = 0.01. Let us also assume that Poisson approxi-

mation holds. This means that pj ≈ e−1/j! for each j. Then, we are looking for the smallest k0

such that
∑∞

j=k0
e−1/j! ≤ 0.01. For k0 = 4, this sum is about 0.019 while for k0 = 5 this sum is

0.004. Hence, we take k0 = 5. In other words, accept H1 if X ≥ 5 and reject if X < 5. If we took
α = 0.0001 we would get k0 = 7 and so on.

Strength of evidence: Rather than merely say that we accepted H1 or rejected it would be better
to say how strong the evidence is in favour of the alternative hypothesis. This is captured by the
p-value, a central concept of decision making. It is defined as the probability that data drawn from the
null hypothesis would show closer agreement with the alternative hypothesis than the data we have at hand
(read it five times!).

Before we compute it in our example, let us return to the analogy with law. Suppose a man is
convicted for murder. Recall that H0 is that he is not guilty and H1 is that he is guilty. Suppose
his fingerprints were found in the house of the murdered person. Does it prove his guilt? It is
some evidence in favour of it, but not necessarily strong. For example, if the convict was a friend
of the murdered person, then he might be innocent but have left his fingerprints on his visits to
his friend. However if the convict is a total stranger, then one wonders why, if he was innocent,
his finger prints were found there. The evidence is stronger for guilt. If bloodstains are found on
his shirt, the evidence would be even stronger! In saying this, we are asking ourselves questions
like “if he was innocent, how likely is it that his shirt is blood-stained?”. That is p-value. Smaller
the p-value, stronger the evidence for the alternate hypothesis.
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Now we return to our example. Suppose the observed value is Xobs = 4. Then the p-value is
P{X ≥ 4} = p4 + . . . + p52 ≈ 0.019. If the observed value was Xobs = 6, then the p-value would
be p6 + . . .+ p52 ≈ 0.00059. Note that the computation of p-value does not depend on the level of
significance. It just depends on the given hypotheses and the chosen test.

8. TESTING FOR THE MEAN OF A NORMAL POPULATION

Let X1, . . . , Xn be i.i.d. N(µ, σ2). We shall consider the following hypothesis testing problems.

(1) One sided test for the mean. H0 : µ = µ0 versus H1 : µ > µ0.

(2) Two sided test for the mean. H0 : µ = µ0 versus H1 : µ 6= µ0.

This kind of problem arises in many situations in comparing the effect of a treatment as follows.

Example 172. Consider a drug claimed to reduce blood pressure. How do we check if it actually
does? We take a random sample of n patients, measure their blood pressures Y1, . . . , Yn. We ad-

minister the drug to each of them and again measure the blood pressures Y ′1 , . . . , Y
′
n, respectively.

Then, the question is whether the mean blood pressure decreases upon giving the treatment. To

this effect, we define Xi = Yi − Y ′i and wish to test the hypothesis that the mean of Xis is strictly
positive. If Xi are indeed normally distributed, this is exactly the one-sided test above.

Example 173. The same applies to test the efficacy of a fertilizer to increase yield, a proposed drug
to decrease weight, a particular educational method to improve a skill, or a particular course such
as the current probability and statistics course in increasing subject knowledge. To make a policy
decision on such matters, we can conduct an experiment as in the above example.

For example, a bunch of students are tested on probability and statistics and their scores are
noted. Then they are subjected to the course for a semester. They are tested again after the course
(for the same marks, and at the same level of difficulty) and the scores are again noted. Take
differences of the scores before and after, and test whether the mean of these differences is positive
(or negative, depending on how you take the difference). This is a one-sided tests for the mean.
Note that in these examples, we are taking the null hypothesis to be that there is no effect. In other
words, the burden of proof is on the new drug or fertilizer or the instructor of the course.

The test: Now we present the test. We shall use the statistic T :=
√
n(X̄−µ0)

s where X̄ and s are the

sample mean and sample standard deviation.

(1) In the one-sided test, we accept the alternative hypothesis if T > tn−1(α).

(2) In the two sided-test, accept the alternative hypothesis if T > tn−1(α/2) or T < −tn−1(α/2).

The rationale behind the tests: If X̄ is much larger than µ0 then the greater is the evidence that
the true mean µ is greater than µ0. However, the magnitude depends on the standard deviation
and hence we divide by s (if we knew σ we would divide by that). Another way to see that this
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is reasonable is that T does not depend on the units in which you measure Xis (whether Xi are
measured in meters or centimeters, the value of T does not change).

The significance level is α: The question is where to draw the threshold. We have seen before that
under the null hypothesis T has a tn−1 distribution. Recall that this is because, if the null hypothesis

is true, then
√
n(X̄−µ0)

σ ∼ N(0, 1), (n − 1)s2/σ2 ∼ χ2
n−1 and the two are independent. Thus, the

given tests have significance level α for the two problems.

Remark 174. Earlier we considered the problem of constructing a (1 − α)-CI for µ when σ2 is
unknown. The two sided test abovecan be simply stated as follows: Accept the alternative at
level α if the corresponding (1 − α)-CI does not contain µ0. Conversely, if we had dealt with
testing problems first, we could define a confidence interval as the set of all those µ0 for which the
corresponding test rejects the alternative.

Thus, confidence intervals and testing are closely related. This is true in some greater generality.
For example, we did not construct confidence interval for µ, but you should do so and check that
it is closely related to the one-sided tests above.

9. TESTING FOR THE DIFFERENCE BETWEEN MEANS OF TWO NORMAL POPULATIONS

Let X1, . . . , Xn be i.i.d. N(µ1, σ
2
1) and let Y1, . . . , Ym be i.i.d. N(µ2, σ

2
2). We shall consider the

following hypothesis testing problems.

(1) One sided test for the difference in means. H0 : µ1 = µ2 versus H1 : µ1 > µ2.

(2) Two sided test for the mean. H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

This kind of problem arises in many situations in comparing two different populations or the
effect of two different treatments etc. Actual data sets of such questions can be found in the
homework.

Example 175. Suppose a new drug to reduce blood pressure is introduced by a pharmaceutical
company. There is already an existing drug in the market which is working reasonably alright.
But it is claimed by the company that the new drug is better. How to test this claim?

We take a random sample of n + m patients and break them into two groups of n and of m
patients. The first group is administered the new drug while the second group is administered the
old drug. Let X1, . . . , Xn be the decrease in blood pressures in the first group. Let Y1, . . . , Ym be the
decrease in blood pressures in the second group. The claim is that one average Xis are larger than
Yis.

Note that it does not make sense to subtract Xi − Yi and reduce to a one sample test as in
the previous section (here Xi is a measurement on one person and Yi is a measurement on a
completely different person! Even the number of persons in the two groups may differ). This is
an example of a two-sample test as formulated above.
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Example 176. The same applies to many studies of comparision. If someone claims that Amer-
icans are taller than Indians on average, or if it is claimed that cycling a lot leads to increase in
height, or if it is claimed that Chinese have higher IQ than Europeans, or if it is claimed that
Honda Activa gives better mileage than Suzuki Access, etc., etc., the claims can be reduced to the
two-sample testing problem as introduced above.

BIG ASSUMPTION: We shall assume that σ2
1 = σ2

2 = σ2 (yet unknown). This assumption is not
made because it is natural or because it is often observed, but because it leads to mathematical
simplification. Without this assumption, no exact level-α test has been found!

The test: Let X̄, Ȳ denote the sample means of X and Y and let sX , sY denote the corresponding

sample standard deviations. Since σ2 is the assumed to be the same for both populations, s2
X and

s2
Y can be combined to define

S2 :=
(n− 1)s2

X + (m− 1)s2
Y

m+ n− 2

which is a better estimate for σ2 than just s2
X or s2

Y (this S2 is better than simply taking (s2
X +s2

Y )/2
because it gives greater weight to the larger sample).

Now define T =
√

1
n + 1

m

(
X̄−Ȳ
S

)
. The following tests hav significance level α.

(1) For the one-sided test, accept the alternative if T > tn+m−2(α).

(2) For the one-sided test, accept the alternative if T > tn+m−2(α/2) or T < −tn+m−2(α/2).

The rationale behind the tests: If X̄ is much larger than Ȳ then the greater is the evidence that the
true mean µ1 is greater than µ2. But again we need to standardize by dividing this by an estimate
of σ, namely S. The resulting statistic T has a tm+n−2 distribution as explained below.

The significance level is α: The question is where to draw the threshold. From the facts we know,

X̄ ∼ N(µ1, σ
2
1/n),

Ȳ ∼ N(µ2, σ
2
2/m),

(n− 1)
σ2

s2
X ∼ χ2

n−1,

(m− 1)
σ2

s2
Y ∼ χ2

m−1

and the four random variables are independent. From this, it follows that (m + n − 2)S2 has

χ2
n+m−2 distribution. Under the null hypothesis 1

σ

√
1
n + 1

m(X̄ − Ȳ ) has N(0, 1) distribution and is

independent of S. Taking ratios, we see that T has tm+n−2 distribution (under the null hypothesis).
96



10. TESTING FOR THE MEAN IN ABSENCE OF NORMALITY

Suppose X1, . . . , Xn are i.i.d. Ber(p). Consider the test

H0 : p = p0 versus H1 : p 6= p0.

One can also consider the one-sided test. Just as in the confidence interval problem, we can give
a solution when n is large, using the approximation provided by the central limit theorem. Recall
that an approximate (1− α)-CI is[

X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

Inverting this confidence interval, we see that a reasonable test is:
Reject the alternative if p0 belongs to the above CI. That is, accept the alternative if

X̄n − zα/2

√
X̄n(1− X̄n)

n
≤ p0 ≤ X̄n + zα/2

√
X̄n(1− X̄n)

n

This test has (approximately) significance level α.

More generally, if we have data X1, . . . , Xn from a population with mean µ and variance σ2,
then consider the test

H0 : µ = µ0 versus H1 : µ 6= µ0.

A test with approximate significance level α is given by: Reject the alternative if

X̄n − zα/2
sn√
n
≤ µ0 ≤ X̄n + zα/2

sn√
n
.

Just as with confidence intervals, we can find the actual level of significance (if n is not large
enough) by simulating data on a computer.
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11. CHI-SQUARED TEST FOR GOODNESS OF FIT

At various times we have made statements such as “heights follow normal distribution”, “life-
times of bulbs follow exponential distribution” etc. Where do such claims come from? Over years
of analysing data, of course. This leads to an interesting question. Can we test whether lifetimes
of bulbs do follow exponential distribution?

We start with a simple example of testing whether a die is fair. The hypotheses are H0 : the die

is fair, versus H1 : the die is unfair15.
We throw the die n times and record the observations X1, . . . , Xn. For j ≤ 6, let Oj be the

number of times we observe the face j turn up. In symbols Oj =
∑n

i=1 1Xi=j . Let Ej = E[Oj ] = n
6

be the expected number of times we see the face j (under the null hypothesis). Common sense says
that if H0 is true then Oj and Ej must be rather close for each j. How to measure the closeness?
Karl Pearson introduced the test statistic

T :=
6∑
j=1

(Oj − Ej)2

Ej
.

If the desired level of significance is α, then the Pearson χ2-test says “Reject H0 if T ≥ χ2
5(α)”. The

number of degrees of freedom is 5 here. In general, it is one less than the number of bins (i.e., how
many terms you are summing to get T ).

Some practical points: The χ2 test is really an asymptotic statement. For large n, the level of
significance is approximately 1− α. There is no assurance for small n. Further, in performing the
test, it is recommended that each bin must have at least 5 observations (i.e., Oj ≥ 5). Otherwise
we club together bins with fewer entries. The number 5 is a rule of thumb, the more the better.

Fitting the Poisson distribution: We consider the famous data collected by Rutherford, Chadwick
and Ellis on the number of radioactive disintegrations. For details see the book of Feller’s book
(section VI.7) or http://galton.uchicago.edu/˜lalley/Courses/312/PoissonProcesses.
pdf.

The data consists of X1, . . . , X2608 (where Xk is the number of particles detected by the counter

in the kth time interval. The hypotheses are

H0 : F is a Poisson distribution. H1 : F is not Poisson.

The physical theories predict that the distribution ought to be Poisson and hence we have taken it

as the null hypothesis16

15You may feel that the null and alternative hypotheses are reversed. Is not independence a special property that
should prove itself. Yes and no. Here we are imagining a situation where we have some reason to think that the die is
fair. For example perhaps the die looks symmetric.

16When a new theory is proposed, it should prove itself and is put in the alterntive hypotheis, but here we take it as
null.
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We define Oj as the number of time intervals in which we see exactly j particles. Thus Oj =∑2608
i=1 1Xi=j . How do we find the expected numbers? If the null hypothesis had said that F

has Poisson(1) distribution, we could use that to find the expected numbers. But H0 only says
Poisson(λ) for an unspecified λ? This brings in a new feature.

First estimate λ, for example λ̂ = X̄n is an MLE as well as method of moments estimate. Then
we use this to calculate Poisson probabilities and the expected numbers. In other words, Ej =

e−λ̂ λ̂
j

j! . For the given data we find that λ̂ = 3.87. The table is as follows.

j 0 1 2 3 4 5 6 7 8 9 ≥ 10

Oj 57 203 383 525 532 408 273 139 45 27 16

Ej 54.4 210.5 407.4 525.4 508.4 393.5 253.8 140.3 67.9 29.2 17.1

Two remarks: The original data would have consisted of several more bins for j = 11, 12 . . .. These

have been clubbed together to perform the χ2 test (instead of a minimum of 5 per bin, they may

have ensured that there are at least 10 per bin). Also, the estimate λ̂ = 3.87 was obtained before
clubbing these bins. Indeed, if the data is merely presented as the above table, there will be some

ambiguity in how to find λ̂ as one of the bins says “≥ 10”.
Then we compute

T =
10∑
j=0

(Oj − Ej)2

Ej
= 14.7.

Where should we look up in the χ2 table? Earlier we said that the degrees of freedom is one less
than the number of bins. Here we give the more general rule.

Degrees of freedom of the χ2 = No. of bins − 1−No. of parameters estimated from data.

In our case we estimated one parameter, λ hence the d.f. of the χ2 is 11 − 1 − 1 = 9. Looking

at χ2
9 table one can see that the p-value is 0.10. This is the probability that a χ2

9 random variable
is greater than 14.7. (Caution: Elsewhere I see that the p-value for this experiment is reported as
0.17, please check my calculations!). This means that at 5% level, we would not reject the null
hypothesis. If the p-value was 0.17, we would not reject the null hypothesis even at 10% level.

Fitting a continuous distribution: Chi-squared test can be used to test goodness of fit for contin-
uous distributions too. We need some modifications. We must make bins of appropriate size, like
[a, a+h], [a+h, a+ 2h], . . . , [a+h(k− 1), a+hk] for a suitable h and k. Then we find the expected
numbers in each bin using the null hypothesis (first estimating some parameters if necessary) and

then proceed to compute T in the same way as before. Then check against the χ2 table with the
appropriate degrees of freedom. We omit details.

The probability theorem behind the χ2-test for goodness of fit: Let (W1, . . . ,Wk) have multi-
nomial distribution with parameters n,m, (p1, . . . , pk). (In other words, place n balls at random
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into m bins, but each ball goes into the ith bin with probability pi and distinct balls are assigned
independently of each other). The following proposition is the mathematics behind Pearson’s test.

Proposition [Pearson]: Fix k, p1, . . . , pk. Let Tn =
∑k

i=1
(Wi−npi)2

npi
. Then Tn converges to a χ2

k−1

distribution in the sense that P{Tn ≤ x} →
x∫
0

fk−1(u)du where fk−1 is the density of χ2
k−1 distri-

bution.

How does this help? Suppose X1, . . . , Xn are i.i.d. random variables taking k values (does
not matter what the values are, say t1, t2, . . . , tk) with probabilities p1, . . . , pk. Then, let Wi be the
number of Xis whose value is ti. Clearly, (W1, . . . ,Wk) has a multinomial distribution. Therefore,

for large n, the random variable Tn defined above (which is in fact the χ2-statistic of Pearson) has

approximately χ2
k−1 distribution. This explains the test.

Sketch of proof of the proposition: Start with the case k = 2. Then,W1 ∼ Bin(n, p1) andW2 = r−

W1. Thus, Tn = (W1−np1)2

np1p2
(recall that p1+p2 = 1 and check this!). We know that (W1−np1)/

√
np1q1

is approximately a N(0, 1) random variable, where qi = 1 − pi). Its square has (approximatelyχ2
1

distribution. Thus the proposition is proved for k = 2.
When k > 2, what happens is that the random variables ξi := (Wi − npi)/

√
npiqi are ap-

proximately N(0, 1), but not independent. In fact the correlation between ξi and ξj is close to

−
√
pipj/qiqj . The sum of squares of ξis gives the χ2 statistic. On the other hand, one can (with

some clever linear algebra/matrix manipulation) write
∑k

i=1 ξ
2
i as

∑k−1
i=1 η

2
i where ηi are indepen-

dent N(0, 1) random variables. Thus we get χ2
k−1 distribution.

12. TESTS FOR INDEPENDENCE

Suppose we have a bivariate sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d. from a joint density
(or joint pmf) f(x, y). The question is to decide whether Xi is independent of Yi.

Example 177. There are many situations in which such a problem arises. For example, suppose a
bunch of students are given two exams, one testing mathematical skills and another testing verbal
skills. The underlying goal may be to investigate whether the human brain has distinct centers for
verbal and quantitative thinking.

Example 178. As another example, say we want to investigate whether smoking causes lung can-
cer. In this case, for each person in the sample, we take two measurements - X (equals 1 if smoker
and 0 if not) and Y (equal 1 if the person has lung cancer, 0 if not). The resulting data may be
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summarized in a two-way table as follows.

X = 0 X = 1

Y = 0 n0,0 n0,1 n0·

Y = 1 n1,0 n1,1 n1·

n·0 n·1 n

Here the total sample is of n persons and ni,j denote the numbers in each of the four boxes. The
numbers n0· etc denote row or column sums. The statistical problem is to check if smoking (X)
and incidence of lung cancer (Y ) are positively correlated.

Testing independence in bivariate normal: We shall not discuss this problem in detail but instead
quickly give some indicators and move on. Here we have (Xi, Yi) i.i.d bivariate normal random

variables with E[X] = µ1, E[Y ] = µ2, Var(X) = σ2
1 , Var(Y ) = σ2

2 and Corr(X,Y ) = ρ. The testing
problem is H0 : ρ = 0 versus H1 : ρ 6= 0. (Remember that if (X,Y ) is bivariate normal, then X
and Y are independent if and only if X and Y are uncorrelated.

The natural statistic to consider is the sample correlation coefficient (Pearson’s r statistic)

rn :=
sX,Y
sXsY

where s2
X , s

2
Y are the sample variances of X and Y and sX,Y = 1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ ) is the

sample covariance. It is clear that the test should reject null hypothesis if rn is away from 0. To
decide the threshold we need the distribution of rn under the null hypothesis.

Fisher: Under the null hypothesis, r2
n has Beta(1

2 ,
n−2

2 ) distribution.

Using this result, we can draw the threshold for rejection using the Beta distribution (of course
the explicit threshold can only be computed numerically). If the assumption of normality of the
data is not satisfied, then this test is invalid. However, for large n as usual we can obtain an
asymptotically level-α test.

Testing for independence in contingency tables: Here the measurements X and Y take values
in {x1, . . . , xk} and {y1, . . . , y`}, respectively. These xi, yj are categories, not numerical values
(such as “smoking” and “non-smoking”). Let the total number of samples be n and let Ni,j be the

number of samples with values (xi, yj). Let Ni· =
∑

j Ni,j and let N·j =
∑

iNi,j .

We want to test

H0 : X and Y are independent

H1 : X and Y are not independent.

Let µ(i, j) = P{X = xi, Y = yj} be the joint pmf of (X,Y ) and let p(i), q(j) be the marginal pmfs

of X and Y respectively. From the sample, our estimates for these probabilities would be µ̂(i, j) =
101



Ni,j/n and p̂(i) = Ni·/n and q̂(j) = N·j/n (which are consistent in the sense that
∑

j µ̂(i, j) = p̂(i)

etc).
Under the null hypothesis we must have µ(i, j) = p(i)q(j). We test if these equalities hold

(approximately) for the estimates. That is, define

T =
k∑
i=1

∑̀
j=1

(Ni,j − np̂(i)q̂(j))2

np̂(i)q̂(j)
.

Note that this is in the usual form of a χ2 statistic (sum of (observed− expected)2/expected).
The number of terms is k`. We lose one d.f. as usual but in addition we estimate (k− 1) param-

eters p(i) (the last one p(k) can be got from the others) and (`− 1) parameters q(j). Consequently,
the total degress of freedom is k`− 1− (k − 1)− (`− 1) = (k − 1)(`− 1).

Hence, we reject the null hypothesis if T > χ2
(k−1)(`−1)(α) to get (an approximately) level α test.

13. REGRESSION AND LINEAR REGRESSION

Let (Xi, Yi) be i.i.d random variables. For example, we could pick people at random from a
population and measure their height (X) and weight (Y ). One question of interest is to predict
the value of Y from the value of X . This may be useful if Y is difficult to measure directly. For
instance, X could be the height of a person and Y could be the xxx

In other words, we assume that there is an underlying relationship Y = f(X) for an unknown
function f which we want to find. From a random sample (X1, Y1), . . . , (Xn, Yn) we try to guess
the function f .

If we allow all possible functions, it is easy to find one that fits all the data points, i.e., there
exists a function f : R → R (in fact we may take f to be a polynomials of degree n) such that
f(Xi) = Yi for each i ≤ n (this is true only if we assume that all Xi are distinct which happens if
X has a continuous distribution). This is not a good predictor, because the next data point (U, V )
will fall way off the curve. We have found a function that “predicts” well all the data we have, but
not for a future observation!

Instead, we fix a class of functions, for example the collection of all linear functions y = mx+ c

where m, c ∈ R and within this class, find the best fitting function.

Remark 179. One may wonder if linearity is too restrictive. To some extent, but perhaps not as
much as it sounds at first.

(1) Firstly, many relationships are linear in a reasonable range of the X variable (for example,
resistance of a materiaal versus temperature).

(2) Secondly, we may sometimes transform the variables so that the relationship becomes lin-

ear. For example, if Y = aebX , then log(Y ) = a′ + b′X where a′ = log(a) and b′ = log(b)
and hence in terms of the new variables X and log(Y ), we have a linear relationship.
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(3) Lastly, as a slight extension of linear regression, one can study multiple linear regression,

where one has several independent variables X(1), . . . , X(p) and try to fit a linear function

Y = β1X
(1) + . . . + βpX

(p). Once that is done, it increases the scope of curve fitting even

more. For example, if we have two variable X,Y , then we can take X(1) = 1, X(2) = X ,

X(3) = X2. Then, linear regression of Y against X(1), X(2), X(3) is tantamount to fitting a
quadratic polynomial curve for X,Y .

In short, multiple linear regression along with non-linear transformations of the individual vari-
ables, the class of functions f is greatly extended.

Finding the best linear fit: We need a criterion for deciding the “best”. A basic one is the method of

least squares which recommends finding α, β such that the error sum of squares R2 :=
∑n

k=1(Yk −
α− βXk)2 is minimized.

For fixed Xi, Yi this is a simple problem in calculus. We get

β̂ =
∑n

k=1(Xk − X̄n)(Yk − Ȳn)∑n
k=1(Xk − X̄n)2

=
sX,Y
s2
X

, α̂ = Ȳn − β̂X̄n

where sX,Y is the sample covariance of X,Y and sX is the sample variance of X .
We leave the derivation of the least squares estimators by calculus to you. Instead we present

another approach.

For a given choice of β, we know that the choice of α which minimizes R2 is the sample mean

of Yi − βXi which is Ȳ − βX̄ . Thus, we only need to find β̂ that minimizes

n∑
k=1

(
(Yk − Ȳ )− β(Xk − X̄)

)2
and then we simply set α̂ = Ȳ − βX̄ . Let17 Zk = Yk−Ȳ

Xk−X̄
and wk = (Xk − X̄)2/s2

X . Then,

n∑
k=1

(
(Yk − Ȳ )− β(Xk − X̄)

)2 = s2
X

n∑
k=1

wk (Zk − β)2 .

Since wk are non-negative numbers that add to 1, we can intepret it as a probability mass function
and hence we see that the minimizing β is given by the expectation with respect to this mass
function. In other words,

β̂ =
n∑
k=1

wkZk =
sX,Y
s2
X

.

Another way to write it is β̂ = sY
sX
rX,Y where rX,Y is the sample correlation coefficient.

17We are dividing by Xk − X̄ . What if it is zero for some k? But note that in the expressionP`
(Yk − Ȳ )− β(Xk − X̄)

´2, all such terms do not involve β and hence can be safely left out of the summation. We

leave the details for you to work out (the expressions at the end should involve all Xk, Yk).
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A motivation for the least squares criterion: Suppose we make more detailed model assumptions
as follows. Let X be a control variable (i.e., not random but we can tune it to any value, like

temperature) and assume that Yi = α + βXi + εi where εi are i.i.d. N(0, σ2) “errors”. Then, the

data is essential Yi that are independent N(α+ βXi, σ
2) random variables. Now we can extimate

α, β by the maximum likelihood method.

Example 180 (Hubble’s 1929 experiment on the recession velocity of nebulae and their distance
to earth). Hubble collected the following data that I took from http://lib.stat.cmu.edu/

DASL/Datafiles/Hubble.html. Here X is the number of megaparsecs from the nebula to

earth and Y is the observed recession velocity in 103km/s.

X 0.032 0.034 0.214 0.263 0.275 0.275 0.45 0.5 0.5 0.63 0.8 2

Y 0.17 0.29 -0.13 -0.07 -0.185 -0.22 0.2 0.29 0.27 0.2 0.3 1.09

X 0.9 0.9 0.9 0.9 1 1.1 1.1 1.4 1.7 2 2 2

Y -0.03 0.65 0.15 0.5 0.92 0.45 0.5 0.5 0.96 0.5 0.85 0.8

We fit two straight lines to this data.

(1) Fit the line Y = α + βX . The least squares estimators (as derived earlier) turn out to be

α̂ = −0.04078 and β̂ = 0.45416. If Zi = α + βXi are the predicted values of Yis, then one

can see that the residual sum of squares is
∑

i(Yi − Zi)2 = 1.1934.

(2) Fit the line Y = bX . In this case we get b̂ by minimizing
∑

i(Yi − bXi)2. This is slightly
different from before, but the same methods (calculus or the alternate argument we gave)
work to give

b̂ =
∑n

i=1 YiXi∑n
i=1X

2
i

= 0.42394.

The residual sum of squares
∑n

i=1(Yi − bXi)2 turns out to be 1.2064.

The residual sum of squares is smaller in the first, thus one may naively think that it is a better
fit. However, note that the reduction is due to an extra parameter. Purely statistically, introducing
extra parametrs will always reduce the residual sum of squares for obvious reasons. But the
question is whether the extra parameter is worth the reduction. More precisely, if we fit the data
too closely, then the next data point to be discovered (which may be nebula that is 10 megaparsecs
away) may fall way off the curve.

More importantly, in this example, physics tells us that the line must pass through zero (that is,
there is no recession velocity when two objects are very close). Therefore it is the second line that
we consider, not the first. This gives the Hubble constant to be 423 km./s./megaparsec (the cur-
rently accepted values appear to be about 70, with data going up to distances of hundreds of mega-
parsecs...see https://www.cfa.harvard.edu/˜dfabricant/huchra/hubble.plot.dat!).
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Example 181. I have taken this example from the wonderful compilation of data sets by A.P.Gore,
S.A.Paranjpe, M.B.Kulkarni, available at http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/
databook.html. In this example, Y denotes the number of frogs of age X (in some delimited
population).

X 1 2 3 4 5 6 7 8

Y 9093 35 30 28 12 8 5 2

A prediction about life-times says that the survival probability P (t) (which is the chance that an

individual survives up to age t or more) decays as P (t) = Ae−bt for some constants A and b. We
would like to check this agains the given data.

What we need are individuals that survive beyond age t. Taking Z to be the cumulative sums
of Y , this gives us

X 1 2 3 4 5 6 7 8

Z 9213 120 85 55 27 15 7 2

P = Z/n 1.0000 0.0130 0.0092 0.0060 0.0029 0.0016 0.0008 0.0002

W = logP 0 -4.3409 -4.6857 -5.1210 -5.8325 -6.4203 -7.1825 -8.4352

We compute that X̄ = 4.5, W̄ = −5.25, std(X) = 2.45, std(W ) = 2.52 and corr(X,W ) = 0.92.

Hence, in the linear regression W = a+ bX , we see that b̂ = 0.94 and â = −9.49. The residual sum
of squares is 7.0.

How good is the fit? For the same data (X1, Y1), . . . , (Xn, Yn), suppose we have two candidates
(a) Y = f(X) and (b) Y = g(X). How to decide which is better? Or how to say if a fit is good
at all?

By the least-squares criterion, the answer is the one with smaller residual sum of squares SS :=∑n
k=1(Yk − f(Xk))2. Usually one presents a closely related quantity R2 = 1 − SS

SS0
(where SS0 =∑n

k=1(Yk− Ȳ )2 = (n−1)s2
Y ). Since SS0 is (a multiple of) the total variance in Y , R2 measures how

much of it is “explained” by a particular fit. Note that 0 ≤ R2 ≤ 1. And higher (i.e., closer to 1)

the R2 is, the better the fit.
Thus, the first naive answer to the above question is to compute R2 in the two situations (fit-

ting by f and fitting by g) and see which is higher. But a more nuanced approach is preferable.
Consider the same data and three situations.

(1) Fit a constant function. This means, choose α to minimize
∑n

k=1(Yk − α)2. The solution is

α̂ = Ȳ and the residual sum of squares is SS0 itself. Then, R2
0 = 0.

(2) Fit a linear function. Then α, β are chosen as discussed earlier and the residual sum of

squares is SS1 =
∑n

k=1(Yk − α̂− β̂Xk)2. Then, R2
1 = 1− SS1

SS0
.
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(3) Fit a quadratic function. The the residual sum of squares is SS2 =
∑n

k=1(Yk − α̂ − β̂Xk −

γ̂X2
k)2 where α̂, β̂, γ̂ are chosen so as to minimize

∑n
k=1(Yk − α − βXk − γX2

k)2. Then

R2
2 = 1− SS2

SS0
.

Obviously we will have R2
2 ≥ R2

1 ≥ R2
0 (since linear functions include constants and quadratic

functions include linear ones). Does that mean that the third is better? If that were the conclusion,
then we can continue to introduce more parameters as that will always reduce the residual sum of
squares! But that comes at the cost of making the model more complicated (and having too many
parameters means that it will fit the current data well, but not future data!). When to stop adding
more parameters?

Qualitatively, a new parameter is desirable if it leads to a significant increase of the R2. The

question is, how big an increase is significant. For this, one introduces the notion of adjusted R2,
which is defined as follows:

If the model has p parameters, then define S̄S = SS/(n− 1− p). In particular, S̄S0 = SS0
n−1 = s2

Y .

Then define the adjusted R2 as R̄2 = 1− S̄S
S̄S0

.

In particular, R̄2
0 = R2

0 as before. But R2
1 = 1 − SS1/(n−2)

SS0/(n−1) . Note that R̄2 does not necessarily

increase upon adding an extra parameter. If we want a polynomial fit, then a rule of thumb is to

keep adding more powers as long as R̄2 continues to increase and stop the moment it decreases.

Example 182. To illustrate the point let us look at a simulated data set. I generated 25 i.i.d N(0, 1)
variables Xi and then generated 25 i.i.d. N(0, 1/4) variables εi. And set Yi = 2Xi + εi. The data set
obtained was as follows.

X -0.87 0.07 -1.22 -1.12 -0.01 1.53 -0.77 0.37 -0.23 1.11 -1.09 0.03 0.55

Y -2.43 -0.56 -2.19 -2.32 -0.12 3.77 -1.4 0.84 0.34 1.83 -1.83 0.48 0.98

X 1.1 1.54 0.08 -1.5 -0.75 -1.07 2.35 -0.62 0.74 -0.2 0.88 -0.77

Y 2.3 2.5 -0.41 -2.94 -1.13 -0.84 4.36 -1.14 1.45 -1.36 1.55 -2.43

To this data set we fit two models (A) Y = βX and (B) Y = a+ bX . The results are as follows.

SS0 = 96.20, R2
0 = 0

SS1 = 6.8651, R2
1 = 0.9286, R̄2

1 = 0.9255

SS2 = 6.8212, R2
2 = 0.9291, R̄2

2 = 0.9227.

Note that the adjusted R2 decreases (slightly) for the the second model. Thus, if we go by that,
then the model with one parameter is chosen (correctly, as we generated from that model!). You

can try various simulations yourself. Also note the high value of R2
1 (and R2

2) which indicates that
it is not a bad fit at all.
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Plan of lectures

02/08 Intro. Probability space defns.
03/08 Examples of discrete prob spaces
06/08 Infinite sums
09/08 Basic rules of probability; Inclusion-exclusion
10/08 Bonferroni’s inequalities. Combinatorial examples
13/08 –
16/08 –These three days, have them go over lots of combinatorial problems
17/08 –
20/08 Probability distributions. Binomial, Poisson, Geometric, Hypergeometric
23/08 Continuous CDFs and densities
24/08 Normal, Exponential and Gamma, Uniform and Beta, Cauchy
27/08 Padding
30/08 Expectation, variance, covariance
31/08 Inequalities - Cauchy-Schwarz, Jensen’s, Markov, Chebyshev
03/09 Joint distributions. Change of variable formula.
06/09 Independence. Conditional probability.
07/09 Examples.
10/09
13/09
14/09
17/09
20/09
21/09
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1 02 Intro. Prob spaces. Examples.
2 05 Infinite sums. Basic rules. Inclusion-exclusion
3 12 [Lost week]
4 19 Distributions with examples. CDF. Uncountable prob spaces. Examples of pdf.
5 26 Examples further. Simulation. Joint distributions. Independence.
6 02 Conditioning. Bayes’ rule.
7 09 Expectation, variance, covariance. Inequalities.
8 16 WLLN.
9 23 Normal and Poisson convergence of Binomial.

10 30 Distribution of the sum. Whatever else.

11 07 Basic problems in statistics. Summarizing data.
12 14 Estimation problems.
13 21 Hypothesis testing problems.
14 28 Linear regression and least squares method.
15 04 Kolmogorov-Smirnov and Chi-squared tests.
16 11 Testing for independence. Contingency tables.
17 18
18 25
?? ?? Random walks. Pólya’s urn scheme. Branching processes.

Must include: Coupon collector problem. Banach’s matchbox problem. Boltzmann-Gibbs, Fermi-
Dirac and Bose-Einstein statistics. Sampling error in polls. Pólya’s urn scheme. Ballot problem.
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APPENDIX A. LECTURE BY LECTURE PLAN

DATE TARGET ACTUAL COMMENTS

02/Aug Introductory lecture

05/Aug Probability space definition
07/Aug Examples of probability spaces
09/Aug —-

12/Aug Balls in bins, Nonexamples
14/Aug Countability, Infinite sums Only countability
16/Aug Rules of probability Infinite sums

19/Aug Inclusion exclusion Countable probability spaces
21/Aug Bonferroni’s inequalities Rules of probability
23/Aug ≈≈≈≈(Independence?) Inclusion-exclusion

26/Aug Random variables, mean, pmf, cdf
28/Aug Binomial, Geometric, Poisson
30/Aug Simulation

02/Sep Conceptual difficulties of continuous distributions
04/Sep Continuous distributions
06/Sep Normal, exponential, Uniform

09/Sep Simulation
11/Sep Joint distributions, Independence
13/Sep Conditioning

16/Sep Conditioning
18/Sep Change of variable
20/Sep Change of variable

23/Sep Mean, variance, covariance
25/Sep Cauchy-Shwarz, Markov, Chebyshev
27/Sep Weak law of large numbers

30/Sep Monte Carlo integration
02/Oct Central limit theorem
04/Oct –End of probability–

07/Sep Statistics - introduction
09/Oct Estimation
11/Oct Estimation

14/Sep Confidence intervals
16/Oct Confidence intervals
18/Oct Wrap up estimation

21/Oct Testing
23/Oct Testing
25/Oct Testing

28/Oct Testing
30/Oct Testing

01/Nov Regression

04/Nov Regression
06/Nov ≈≈≈≈
08/Nov ≈≈≈≈
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Remark 183. Probably losing one week for midterm. But there must be two more weeks at the
end. Assuming loss of a couple of classes to holidays, there may be just enough time. But schedule
must be adhered to.

APPENDIX B. VARIOUS PIECES

There are many pieces that should be inserted in exercises if they cannot be covered in lectures
or tutorials.

• Stirling’s formula

• Poisson limit of Binomial

• Banach’s matchbox problem

• Coupon collector problem

• Polya’s urn scheme (definition)

• Random walk in one and two dimensions

• Gambler’s ruin problem

• Ballot problem

• Catalan numbers

• Gamma function

• Beta function

• Branching process

• Integration of e−x
2

• Multidimensional normal integral (at least bivariate)

• Hardy-Weinberg law

• Fisher’s explanation of sex-ratios

• Mendel’s actual data, falsification?

• Comparing literary styles, with example

• Sample surveys - actual examples?

•
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