\#419360

Topic: Linear Inequations
Solve $24 x<100$, when (i) x is a natural number. (ii) x is an integer

Solution
$24 x<100$
$\Rightarrow x<\frac{100}{24}$
$\Rightarrow x<\frac{25}{6}$
(i) It is evident that 1, 2, 3 and 4 are the only natural numbers less than $\frac{25}{6}$,

Thus when x is a natural number ,the solutions of the given inequality are $1,2,3$ and 4
Hence, in this case, the solution set is $\{1,2,3,4\}$.
(ii) The integers less than $\frac{25}{6}$ are $\ldots \ldots-3,-2,-1,0,1,2,3,4$.

Hence, in this case ,the solution set is $\{\ldots \ldots$.

\#419361

Topic: Linear Inequations
Solve $-12 x>30$, when (i) x is a natural number. (ii) x is an integer

Solution
The given inequality is $-12 x>30$.
$\Rightarrow \frac{-12 x}{-12}<\frac{30}{-12}$ [Dividing both sides by same negative number]
$\Rightarrow x<-\frac{5}{2}$
(i) There is no natural number less than $\left(\begin{array}{c}5 \\ - \\ 2\end{array}\right)$
(ii) The integers less than $\binom{\frac{5}{2}}{$\hline} are $-\infty, \ldots \ldots,-5,-4,-3$.

\#419362

Topic: Linear Inequations
Solve $5 x-3<7$, when (i) x is an integer. (ii) x is a real number

Solution
The given inequality is, $5 x-3<7$
$\Rightarrow 5 x-3+3<7+3$
$\Rightarrow 5 x<10$
$\Rightarrow \frac{5 x}{5}<\frac{10}{5}$
$\Rightarrow x<2$
(i) The integers less than 2 are \qquad $-4,-3,-3,-1,0,1$.

Thus when x is an integer, the solutions of the given inequality are
all the integral values of x which are less than 2
(ii) When x is real number the solution is given by $x<2$,
i.e., all real numbers x which are less than 2

Thus, the solution set of the given inequality is $x \in(-\infty, 2)$
\#419363
Topic: Linear Inequations
Solve $3 x+8>2$, when (i) x is an integer. (ii) x is a real number

Solution

The given inequality is $3 x+8>2$
$\Rightarrow 3 x+8-8>2-8$
$\Rightarrow 3 x>-6$
$\Rightarrow \frac{3 x}{3}>\frac{-6}{3}$
$\Rightarrow x>-2$
(i) The integers greater than -2 are $-1,0,1,2, \ldots \ldots$.

Thus when x is an integer, the solutions of the given inequality are $-1,0,1,2 \ldots$.
(ii) When x is a real number, the solutions of the given inequality are all the real numbers, which are greater than -2 .

Thus in this case, the solution set is $(-2, \infty)$

\#419365

Topic: Linear Inequations
Solve the inequalities for real x.
$4 x+3<5 x+7$

Solution
Given, $4 x+3<5 x+7$
$\Rightarrow 3-7<5 x-4 x$
$\Rightarrow x>-4$
$\Rightarrow x \in(-4, \infty)$

\#419366

Topic: Linear Inequations
Solve the inequalities for real x.
$3 x-7>5 x-1$

Solution

Given, $3 x-7>5 x-1$
$\Rightarrow-7+1>5 x-3 x$
$\Rightarrow 2 x<-6$
$\Rightarrow x<-3$
$\Rightarrow x \in(-\infty,-3)$
\#419367
Topic: Linear Inequations
Solve the inequalities for real x.
$3(x-1) \leq 2(x-3)$

Solution
Given, $3(x-1) \leq 2(x-3)$
$\Rightarrow 3 x-3 \leq 2 x-6$
$\Rightarrow 3 x-2 x \leq-6+3$
$\Rightarrow x \leq-3$
$\Rightarrow x \in(-\infty,-3]$
\#419368
Topic: Linear Inequations
Solve the inequality for real x.
$3(2-x) \geq 2(1-x)$

Solution
Given, $3(2-x) \geq 2(1-x)$
$\Rightarrow 6-3 x \geq 2-2 x$
$\Rightarrow 6-2 \geq 3 x-2 x$
$\Rightarrow x \leq 4$
$\Rightarrow x \in(-\infty, 4]$

\#419371

Topic: Linear Inequations
Solve the inequality for real x.
$x+\frac{x}{2}+\frac{x}{3}<11$

Solution

Given, $x+\frac{x}{2}+\frac{x}{3}<11$
$\Rightarrow x\left(1+\frac{1}{2}+\frac{1}{3}\right)<11$
$\Rightarrow x\left(\frac{6+3+2}{6}\right)<11$
$\Rightarrow \frac{11 x}{6}<11$
$\Rightarrow x<6$
$\Rightarrow x \in(-\infty, 6)$
\#419372
Topic: Linear Inequations
Solve the inequality for real x.
$\frac{x}{3}>\frac{x}{2}+1$

Solution
Given, $\frac{x}{3}>\frac{x}{2}+1$
$\Rightarrow \frac{x}{3}-\frac{x}{2}>1$
$\Rightarrow \frac{2 x-3 x}{6}>1$
$\Rightarrow \frac{-x}{6}>1$
$\Rightarrow x<-6$
$\Rightarrow x \in(-\infty,-6)$
\#419374
Topic: Linear Inequations
Solve the inequality for real x.
$\frac{3(x-2)}{5} \leq \frac{5(2-x)}{3}$

Solution

Given, $\frac{3(x-2)}{5} \leq \frac{5(2-x)}{3}$
$\Rightarrow 9(x-2) \leq 25(2-x)$
$\Rightarrow 9 x-18 \leq 25(2-x)$
$\Rightarrow 9 x-18+25 x \leq 50$
$\Rightarrow 34 x-18 \leq 50$
$\Rightarrow 34 x \leq 50+18$
$\Rightarrow 34 x \leq 68 \Rightarrow x \leq 2$ or $x \in(-\infty, 2]$

\#419377

Topic: Linear Inequations
Solve the inequality for real x
$\frac{1}{2}\left(\frac{3 x}{5}+4\right) \geq \frac{1}{3}(x-6)$

Solution

Given, $\frac{1}{2}\left(\frac{3 x}{5}+4\right) \geq \frac{1}{3}(x-6)$
$\Rightarrow 3\left(\frac{3 x}{5}+4\right) \geq 2(x-6)$
$\Rightarrow \frac{9 x}{5}+12 \geq 2 x-12$
$\Rightarrow 12+12 \geq 2 x-\frac{9 x}{5}$
$\Rightarrow 24 \geq \frac{10 x-9 x}{5}$
$\Rightarrow 24 \geq \frac{x}{5} \Rightarrow x \leq 120$ or $x \in(-\infty, 120]$

\#419378

Topic: Linear Inequations
Solve the inequality for real x
$2(2 x+3)-10<6(x-2)$

Solution

Given, $2(2 x+3)-10<6(x-2)$
$\Rightarrow 4 x+6-10<6 x-12$
$\Rightarrow 4 x-4<6 x-12$
$\Rightarrow-4+12<6 x-4 x$
$\Rightarrow 8<2 x \Rightarrow x>4$ or $x \in(4, \infty)$
\#419380
Topic: Linear Inequations

Solve the inequality for real x.
$37-(3 x+5) \geq 9 x-8(x-3)$

Solution
Given, $37-(3 x+5) \geq 9 x-8(x-3)$
$\Rightarrow 37-3 x-5 \geq 9 x-8 x+24$
$\Rightarrow 32-3 x \geq x+24$
$\Rightarrow 32-24 \geq x+3 x$
$\Rightarrow 8 \geq 4 x \Rightarrow x \leq 2$ or $x \in(-\infty, 2]$
\#419381
Topic: Linear Inequations
Solve the inequality for real x.
$\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$

Solution
Given, $\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$
$\Rightarrow \frac{x}{4}<\frac{5(5 x-2)-3(7 x-3)}{15}$
$\Rightarrow \frac{x}{4}<\frac{(25 x-10-21 x+9)}{15}$
$\Rightarrow \frac{x}{4}<\frac{4 x-1}{15}$
$\Rightarrow 15 x<4(4 x-1)$
$\Rightarrow 15 x<16 x-4$
$\Rightarrow 4<16 x-15 x$
$\Rightarrow x>4$ or $x \in(4, \infty)$

\#419382

Topic: Linear Inequations
Solve the inequality for real x.
$\frac{(2 x-1)}{3} \geq \frac{(3 x-2)}{4}-\frac{(2-x)}{5}$

Solution
Given, $\frac{(2 x-1)}{3} \geq \frac{(3 x-2)}{4}-\frac{(2-x)}{5}$
$\Rightarrow \frac{(2 x-1)}{3} \geq \frac{5(3 x-2)-4(2-x)}{20}$
$\Rightarrow \frac{(2 x-1)}{3} \geq \frac{15 x-10-8+4 x}{20}$
$\Rightarrow \frac{(2 x-1)}{3} \geq \frac{19 x-18}{20}$
$\Rightarrow 20(2 x-1) \geq 3(19 x-18)$
$\Rightarrow 40 x-20 \geq 57 x-54$
$\Rightarrow-20+54 \geq 57 x-40 x$
$\Rightarrow 34 \geq 17 x$
$\Rightarrow x \leq 2$ or $x \in(-\infty, 2]$

\#419384

Topic: Linear Inequations
Solve the inequality and show the graph of the solution on number line:
$3 x-2<2 x+1$

Solution
Given, $3 x-2<2 x+1$
$\Rightarrow 3 x-2 x<1+2$
$\Rightarrow x<3$ or $x \in(-\infty, 3)$
The lines $y=3 x-2$ and $y=2 x+1$ both will intersect at $x=3$
Clearly, the dark line shows the solution of $3 x-2<2 x+1$.

\#419385
Topic: Linear Inequations
Solve the inequality and show the graph of the solution on number line:
$5 x-3 \geq 3 x-5$

Solution
Given, $5 x-3 \geq 3 x-5$
$\Rightarrow 5 x-3 x \geq-5+3$
$\Rightarrow 2 x \geq-2$
$\Rightarrow x \geq-1$ or $x \in[-1, \infty)$
Blue line is $y=5 x-3$ and red line is $y=3 x-5$
Both line intersect at $x=-1$ and It is clearly observed from graph that for $x>-1 \Rightarrow 5 x-3>3 x-5$

\#419386
Topic: Linear Inequations
Solve the inequality and show the graph of the solution on number line:
$3(1-x)<2(x+4)$

Solution
Given, $3(1-x)<2(x+4)$
$\Rightarrow 3-3 x<2 x+8$
$\Rightarrow 3-8<2 x+3 x$
$\Rightarrow-5<5 x$
$\Rightarrow x>-1$ or $x \in(-1, \infty)$
Blue line is $y=3-3 x$ and red line is $y=2 x+8$
Both line intersect at $x=-1$ and It is clearly observed from graph that
For $x>-1 \Rightarrow 2 x+8>3-3 x$

Given, $3(1-x)<2(x+4)$
$\Rightarrow 3-3 x<2 x+8$
$\Rightarrow 3-8<2 x+3 x$
$\Rightarrow-5<5 x$
$\Rightarrow x>-1$ or $x \in(-1, \infty)$
Blue line is $y=3-3 x$ and red line is $y=2 x+8$
Both line intersect at $x=-1$ and It is clearly observed from graph that
For $x>-1 \Rightarrow 2 x+8>3-3 x$

\#419388

Topic: Linear Inequations
Solve the inequality and show the graph of the solution on number line:
$\frac{x}{2} \geq \frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$

Solution

Given, $\frac{x}{2} \geq \frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$
$\Rightarrow \frac{x}{2} \geq \frac{5(5 x-2)-3(7 x-3)}{15}$
$\Rightarrow \frac{x}{2} \geq \frac{25 x-10-21 x+9}{15}$
$\Rightarrow \frac{x}{2} \geq \frac{4 x-1}{15}$
$\Rightarrow 15 x \geq 2(4 x-1)$
$\Rightarrow 15 x \geq 8 x-2$
$\Rightarrow 7 x \geq-2$
$\Rightarrow x \geq-\frac{2}{7}$

\#419389

Topic: Linear Inequations
Ravi obtained 70 and 75 marks in first two unit test. Find the minimum marks he should get in the third test to have an average of at least 60 marks.

Solution

Let x be the marks obtained by Ravi in the third unit test.
Since the student should have an average of at least 60 marks.
$70+75+x$
$\frac{0+75+x}{3} \geq 60$
$\Rightarrow 145+x \geq 180$
$\Rightarrow x \geq 180-145$
$\Rightarrow x \geq 35$
Thus the student must obtain a minimum of 35 marks to have an average of at least 60 marks.

\#419390

Topic: Linear Inequations
To receive Grade A in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunitas marks in first four examinations are
$87,92,94$ and 95 , find minimum marks that Sunita must obtain in the fifth examination to get grade A in the course

Solution

Let x be the marks obtained by Sunita in the fifth examination.
In order to receive grade ' A ' in the course she must obtain an average of 90 marks or more in five examinations
Therefore,
$\frac{87+92+94+95+x}{5} \geq 90$
$\Rightarrow \frac{368+x}{5} \geq 90$
$\Rightarrow 368+x \geq 450$
$\Rightarrow x \geq 450-368$
$\Rightarrow x \geq 82$

Thus sunita must obtain greater than or equal to 82 marks in the fifth examination.

\#419391

Topic: Linear Inequations
Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11

Solution

Let x be the smaller of the two consecutive odd positive integers.
Then, the other integer will be $x+2$.
Since both the integers are smaller than 10,
$\Rightarrow x+2<10$
$\Rightarrow x<10-2$
$\Rightarrow x<8 \ldots$ (l)
Also, the sum of the two integers is more than 11 .
$\therefore x+(x+2)>11$
$\Rightarrow 2 x+2>11$
$\Rightarrow 2 x>11-2$
$\Rightarrow 2 x>9$
$\Rightarrow x>\frac{9}{2}$
$\Rightarrow x>4.5 \ldots$ (ii)
From (i) and (ii) since x is an odd number , x can take the values 5 and 7 . Thus the required possible pairs are $(5,7)$ and $(7,9)$

\#419393

Topic: Linear Inequations
Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23

Solution
Let x be the smaller of the two consecutive even positive integers .
Then the other integer is $x+2$.
Since both the integers are larger than $5, x>5 \ldots$...(1)
Also the sum of the two integers is less than 23
$x+(x+2)<23$
$\Rightarrow 2 x+2<23$
$\Rightarrow 2 x<23-2$
$\Rightarrow 2 x<21$
$\Rightarrow x<\frac{21}{2}$
$\Rightarrow x<10.5 \ldots$..(2)
From (1) and (2) we obtain $5<x<10.5$.
Since x is an even number, x can take the values 6, 8 and 10
Thus the required possible pairs are $(6,8),(8,10)$ and $(10,12)$.

\#419394

Topic: Linear Inequations
The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm , find the minimum length in cm . of the shortest side.

Answer: 9
Solution
Let the length of the shortest side of the triangle be $x \mathrm{~cm}$.
Then length of the longest side $=3 x \mathrm{~cm}$.
Thus the length of the third side $=(3 x-2) \mathrm{cm}$.
Since the perimeter of the triangle is at least 61 cm ,
$x+3 x+(3 x-2) \geq 61$
$\Rightarrow 7 x-2 \geq 61$
$\Rightarrow 7 x \geq 61+2$
$\Rightarrow 7 x \geq 63$
$\Rightarrow x \geq 9$
Thus the minimum length of the shortest side is 9 cm .

\#419395

Topic: Linear Inequations
 as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5 cm longer than the second?

Solution

Let the length of the shortest piece be $x \mathrm{~cm}$.
Then the length of the second piece and the third piece are $(x+3) \mathrm{cm}$ and $2 x \mathrm{~cm}$ respectively.
Since the three lengths are to be cut from a single piece of board of length 91 cm ,
$x+(x+3)+2 x \leq 91$
$\Rightarrow 4 x+3 \leq 91$
$\Rightarrow 4 x \leq 91-3$
$\Rightarrow 4 x \leq 88$
$\Rightarrow \frac{4 x}{4} \leq \frac{88}{4}$
$\Rightarrow x \leq 22---$-(i)
Also the third piece is at least 5 cm longer than the second piece.
$\therefore 2 x \geq(x+3)+5$
$\Rightarrow 2 x \geq x+8$
$\Rightarrow x \geq 8 \ldots$ (2)
From (1) and (2) we obtain
$8 \leq x \leq 22$
Thus the possible length of the shortest board is greater than or equal to 8 cm but less than or equal to 22 cm .
\#419397
Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$x+y<5$

Solution
$x+y<5$ is the shaded region shown in the graph.
If we put $O(0,0)$ in the LHS, we get LHS $=0$
Now LHS < 5
Means $O(0,0)$ lies on "less than " side of the line.
Hence required region is "origin" side of the line.

\#419398
Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$2 x+y \geq 6$

Solution

The graphical representation of $2 x+y \geq 6$ is shown in the graph. Shaded region represents the given condition.

\#419399

Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$3 x+4 y \leq 12$

Solution

Put $O(0,0)$ in the LHS we get $L H S=0$
$0<12$
So origin is on "less than " side of the line.

\#419400

Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$y+8 \geq 2 x$

Solution
$y \geq 2 x-8$
So all the points lies on line or left to the line $y=2 x-8$ will be your answer

\#419401
Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$x-y \leq 2$

Solution

$x-y \leq 2$ is the shaded region shown in the graph.
If we put $O(0,0)$ in the LHS, we get LHS $=0$
Now LHS <0
Means $O(0,0)$ lies on "less than " side of the line.
Hence required region is "origin" side of the line.

\#419402
Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$2 x-3 y>6$

Solution
$2 x-3 y>6$
$3 y<2 x-6$
$y<\frac{2 x-6}{3}$
Now from graph we have
$y<-2$

\#419403
Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$-3 x+2 y \geq-6$
Solution
$-3 x+2 y \geq-6$
Will denote the region lies on or above the line $-3 x+2 y=-6$

\#419404

Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:
$3 y-5 x<30$

Solution
$3 y-5 x<30$ shows the region lies below the line $3 y-5 x=30$
All sets of points (x, y) lies below the line shown in graph satisfy $3 y-5 x<30$

\#419405

Topic: Linear Inequations
Solve the following inequalities graphically in two-dimensional plane:

$$
y<-2
$$

Solution

```
y<-2 is the shaded region shown in the graph.
```

If we put $O(0,0)$ in the LHS, we get LHS $=0$
Now LHS > - 2
Means $O(0,0)$ lies on opposite side of "less than " side of the line. Hence required region is "non-origin" side of the line.

\#419406
Topic: Linear Inequations

Passage

Solve the following inequalities graphically in two-dimensional plane:
$x>-3$

Solution
Yellow line is $x=-3$
$x>-3$
$x \in(-3, \infty)$

\#419407

Topic: Linear Inequations
Solve the given inequalities graphically:
$x \geq 3, y \geq 2$

Solution

$x \geq 3, y \geq 2$
$\Rightarrow x \in[3, \infty), y \in[2, \infty)$
Blue line is $x=3$ and yellow line is $y=2$
Now we have to look over the region where $x \geq 3$ and $y \geq 2$

\#419408

Topic: Linear Inequations
Solve the given inequalities graphically:
$3 x+2 y \leq 12, x \geq 1, y \geq 2$

Solution

Draw the line $3 x+2 y=12, x=1$ and $y=2$. Now check for the position of origin w.r.t. the given lines to determine the solution of the inequalities.
For $3 x+2 y-12$ at $(0,0), 3(0)+2(0)-12<0$. Hence, $(0,0)$ lies in the inequality $3 x+2 y \leq 12$
For $x-1$ at $(0,0), 0-1<0$. Hence, $(0,0)$ doesn't lie in the inequality $x \geq 1$
For $y-2$ at $(0,0), 0-2<0$. Hence, $(0,0)$ doesn't lie in the inequality $y \geq 2$.
The shaded part in the above graph represents the solution of the given inequlities.

\#419410

Topic: Linear Inequations

Solve the given inequalities graphically
$2 x+y \geq 6$ and $3 x+4 y \leq 12$

Solution

Given equations are $2 x+y \geq 6 \Rightarrow y=6-2 x$
and $3 x+4 y \leq 12 \Rightarrow y=\frac{12-3 x}{4}$
Let $f(x)=6-2 x$
and $g(x)=\frac{12-3 x}{4}$
Intersection of this two lines is shown in figure.
Region is shown in the graph.

\#419411
Topic: Linear Inequations

Solve the given inequalities graphically
$x+y \geq 4$ and $2 x-y>0$

Solution

Given equations are $x+y \geq 4,2 x-y>0$
Let $f(x)=2 x$ and $g(x)=4-x$
The graph of these equations in shown in figure.

\#419730
Topic: Linear Inequations
Solve the following inequations graphically:
$2 x-y>1, x-2 y<-1$

Solution

\#419731

Topic: Linear Inequations
Solve the given inequalities graphically:
$x+y \leq 6, x+y \geq 4$

Solution

Blue line is $x+y=6$ and red line is $x+y=4$
Now we have to look the region which is below or on the $x+y=6$ line and above or on the $x+y=4$ line.
So required region is in between the two lines.

\#419732

Topic: Linear Inequations
Solve the given inequalities graphically:
$2 x+y \geq 8, x+2 y \geq 10$

Solution
Blue line is $2 x+y=8$ and red line is $x+2 y=10$
Now according to question we have to look over the region which
$2 x+y \geq 8$ and $x+2 y \geq 10$ they intersect at point $(2,4)$
So for $x>2$ region is above or on the line $x+2 y=10$
and for $x<2$ region is above or on the line $2 x+y=8$

\#419733

Topic: Linear Inequations
Solve the given inequalities graphically:
$x+y \leq 9, y>x, x \geq 0$

Solution

Blue line is $x+y=9$ and red line is $y=x$
Now we have to look for $x \geq 0$ region
Line intersect at point let say (a, b) as shown in graph
Region is area of triangle of formed by two lines and y axis as shown in graph

\#419734
Topic: Linear Inequations
Solve the system of inequalities graphically:
$5 x+4 y \leq 20, x \geq 1, y \geq 2$

Solution

Shaded region shows the intersection of given inequality.

\#419735

Topic: Linear Inequations
Solve the system of inequalities graphically:
$3 x+4 y \leq 60, x+3 y \leq 30, x \geq 0, y \geq 0$

Solution
For $x, y \geq 0$
See the graph
solution is shaded part.

\#419736

Topic: Linear Inequations
Solve the system of inequalities graphically:
$2 x+y \geq 4, x+y \leq 3,2 x-3 y \leq 6$

Solution
$2 x+y>4$ for all set of (x, y) which lies above the line $2 x+y=4$
$x+y<3$ for all set of (x, y) which lies below the line $x+y=3$
solution is shaded part.

\#419737
Topic: Linear Inequations
Solve the system of inequalities graphically:
$x-2 y \leq 3,3 x+4 y \geq 12, x \geq 0, y \geq 1$
Solution
$x \geq 0$ and $y \geq 1$

\#419739
Topic: Linear Inequations
Solve the system of inequalities graphically:
$4 x+3 y \leq 60, y \geq 2 x, x \geq 3,(x, y \geq 0)$

Solution
Given equations are $4 x+3 y \leq 60, y \geq 2 x$ and $x \geq 3$
On plotting these, we get to form a triangle.
Here solution is the shaded part.

\#419740
Topic: Linear Inequations
Solve the system of inequalities graphically
$3 x+2 y \leq 150, x+4 y \leq 80, x \leq 15, y \geq 0, x \geq 0$

Solution

solution is shaded part.

\#419742

Topic: Linear Inequations
Solve the given inequalities graphically:
$x+2 y \leq 10, x+y \geq 1, x-y \leq 0, x \geq 0, y \geq 0$

Solution
blue line is $x+2 y=10$
red line is $x+y=1$
and green line is $x-y=0$
According to question, For $x, y \geq 0$
Region shown in graph

\#447479

Topic: Linear Inequations
Solve the inequalities:
$2 \leq 3 x-4 \leq 5$

Solution
$2 \leq 3 x-4 \leq 5$
$\Rightarrow 2+4 \leq 3 x \leq 5+4$
$\Rightarrow 6 \leq 3 x \leq 9$
$\Rightarrow 2 \leq x \leq 3$
$\Rightarrow x \in[2,3]$
\#447480
Topic: Linear Inequations
Solve the inequalities
$6 \leq-3(2 x-4)<12$

Solution
$6 \leq-3(2 x-4)<12$
$\Rightarrow-2 \geq 2 x-4>-4$
$\Rightarrow-4+4<2 x \leq-2+4$
$\Rightarrow 0<x \leq 2$
$\Rightarrow x \in(0,2]$
\#447481
Topic: Linear Inequations
Solve the inequalities
$-3 \leq 4-\frac{7 x}{2} \leq 18$

Solution
We have,
$-3 \leq 4-\frac{7 x}{2} \leq 18$
Add -4 on each of the sides, we get
$-3-4 \leq-4+4-\frac{7 x}{2} \leq 18-4$
$\Rightarrow-7 \leq-\frac{7 x}{2} \leq 14$
Multiply $\frac{2}{7}$ on each of the sides
$\Rightarrow-2 \leq-x \leq 4$
Now multiply each side by -1
$\Rightarrow 2 \geq x \geq-4$, since after multiplying any inequalty by negative number its sign reverses
$\Rightarrow-4 \leq x \leq 2$
$\Rightarrow x \in[-4,2]$

\#447482

Topic: Linear Inequations
Solve the inequalities
$-15<\frac{3(x-2)}{5} \leq 0$

Solution
$-15<\frac{3(x-2)}{5} \leq 0$
$-25<x-2 \leq 0$
$-23<x \leq 2$
$x \in(-23,2]$
\#447483
Topic: Linear Inequations
Solve the inequalities
$-12<4+\frac{3 x}{5} \leq 2$

Solution

$-12<4+\frac{3 x}{5} \leq 2$
$-12-4<\frac{3 x}{5} \leq 2-4$
$-16 \times 5<3 x \leq-2 \times 5$
$\frac{-80}{3}<x \leq \frac{-10}{3}$
$\therefore x \in\left(\frac{-80}{3}, \frac{-10}{3}\right]$

\#447484

Topic: Linear Inequations
Solve the inequalities
$7<\frac{(3 x+11)}{2} \leq 11$
Solution
Given :
$7<\frac{(3 x+11)}{2} \leq 11$
$14<3 x+11 \leq 22$
$3<3 x \leq 11$
$1<x \leq \frac{11}{3}$
$\therefore x \in\left(1, \frac{11}{3}\right]$
\#447485
Topic: Linear Inequations
Solve the inequalities and represent the solution graphically on number line.
$5 x+1>-24,5 x-1<24$

Solution
We have, $5 x+1>-24 \Rightarrow 5 x>-24-1=-25 \Rightarrow x>-5$
and $5 x-1<24 \Rightarrow 5 x<24+1=25 \Rightarrow x<5$
Thus combining above we get $-5<x<5$
Solution is shown in above graph.

\#447486
Topic: Linear Inequations
Solve the inequality and represent the solution graphically on number line.
$2(x-1)<x+5,3(x+2)>2-x$

Solution

Red line is $y=2 x-2$
Green line is $y=x+5$
black line $y=2-x$
blue line is $y=3 x+6$
Since $2 x-1<x+5$ for all $x<7$
and $3(x+2)>2-x$ for all $x>-1$
So intersection of these $x \in(-1,7)$

$\begin{array}{lllllllllllllll}-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

\#447487
 Topic: Linear Inequations

Solve the inequalities and represent the solution graphically on number line.
$3 x-7>2(x-6), 6-x>11-2 x$

Solution

Red line is $y=3 x-7$
Green line is $y=2 x-12$
black line $y=11-2 x$
blue line is $y=6-x$
Since $3 x-7>2 x-12$ for all $x>-5$
and $6-x>11-2 x$ for all $x>5$

\#447488

Topic: Linear Inequations
Solve the inequality and represent the solution graphically on number line
$5(2 x-7)-3(2 x+3) \leq 0,2 x+19 \leq 6 x+47$

Solution
We have,
$5(2 x-7)-3(2 x+3) \leq 0$
$\Rightarrow 10 x-35-6 x-9 \leq 0$
$\Rightarrow 4 x-44 \leq 0 \Rightarrow x \leq 11$
And $2 x+19 \leq 6 x+47$
$\Rightarrow 2 x-6 x \leq 47-19$
$\Rightarrow-4 x \leq 28 \Rightarrow x \geq-7$
Thus using above two we have $-7 \leq x \leq 11$
Solution is also shown graphically

\#447489
Topic: Linear Inequations

A solution is to be kept between $68^{\circ} \mathrm{F}$ and $77^{\circ} \mathrm{F}$. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by
$F=\frac{9}{5} C+32 ?$

Solution

We have, $F=\frac{9}{5} C+32 \Rightarrow C=\frac{5}{9}(F-32)$
Now at $F=68^{\circ}, C=\frac{5}{9}(68-32)=\frac{5}{9}(36)=20$
and at $F=77^{\circ}, C=\frac{5}{9}(77-32)=\frac{5}{9}(45)=25$
Hence range of temperature in degree Celsius is $\left[20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}\right]$

\#447490

Topic: Linear Inequations
A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

Solution

Let's add x liter of 2% boric acid solution.

Let's find x when final solution is 4% boric acid
Equating water content
$0.98 x+.92 \times 640=.96(x+640) .02 x=25.6 x=1280$

Similarly for 6\% boric solution
$0.98 x+.92 \times 640=.94(x+640) .04 x=12 \cdot 8 x=320$

\#447491

Topic: Linear Inequations
How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

Solution

Let's add x litres of water
Now if the solution is 45% acid then it is 55% water.
Equating water in initial and final solution
$x+0.55(1125)=0.75(x+1125)$ [When solution is 25% acid]
$x+618.75=0.75 x+843.75$ [When solution is 30% acid]
$0.25 x=225$
$x=900$ (to get 25% of acidic solution)
$x+0.55(1125)=0.7(x+1125)$
$x+618.75=0.7 x+787.5$
$0.3 x=168.75$
$x=562.5$ (to get 30% of acidic solution)
i.e $562.5<x<900$

\#447492

Topic: Linear Inequations

IQ of a person is given by the formula
$I Q=\frac{M A}{C A} \times 100$
where MA is mental age and CA is chronological age. If $80 \leq I Q \leq 140$ for a group 12 years old children, find the range of their mental age.

Solution

$80 \leq \frac{M A}{C A} \times 100 \leq 140$
$96 \leq M A \times 10 \leq 14 \times 12$
$9.6 \leq M A \leq 16.8$
range of mental age is[9.6, 16.8]

