CONIC SECTION FORMULAS CLASS XI

Let l be a fixed line and F be a fixed point not on l, and $\mathrm{e}>0$ be a fixed real number. Let $|\mathrm{MP}|$ be the perpendicular distance from a point P (in the plane of the line l and point F) to the line l, then the locus of all points P such that $|\mathrm{FP}|$ $=\mathrm{e}|\mathrm{MP}|$ is called a conic.

(Fined podit) FF 2

The fixed point F is called a focus of the conic and the fixed line l is called the directrix associated with F. The fixed real number e (>0) is called eccentricity of the conic.
In particular, a conic with eccentricity e is called
(i) a parabola iff $\mathrm{e}=1$ (ii) an ellipse iff $\mathrm{e}<1$ (iii) a hyperbola iff $\mathrm{e}>1$.

Main facts about the parabola

Equations	$y^{2}=4 a x,(a>0)$ Right hand	$\mathbf{y}^{2}=-4 a x, a>0$ Left hand	$\begin{gathered} x^{2}=4 a y, a>0 \\ \text { Upwards } \end{gathered}$	$x^{2}=-4 a y, a>0$ Downwards
Axis	$y=0$	$y=0$	$\mathrm{x}=0$	$\mathrm{x}=0$
Eqn. of Directrix	$x+a=0$	$x-\mathrm{a}=0$	$y+\mathrm{a}=0$	$y-a=0$
Focus	$(\mathrm{a}, 0)$	$(-\mathrm{a}, 0)$	(0,a)	$(0,-\mathrm{a})$
Vertex	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
Length of Latus-rectum	4a	- 4 a	4a	4a

Main facts about the ellipse

Equation	$\mathbf{x}^{2} / \mathbf{a}^{2}+\mathbf{y}^{2} / \mathbf{b}^{2}=\mathbf{1}(\mathbf{a}>\mathbf{b})$	$\mathbf{x}^{2} / \mathbf{a}^{2}+\mathbf{y}^{2} / \mathbf{b}^{2}=\mathbf{1}(\mathbf{a}<\mathbf{b})$
Eccentricity	$\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$	$\mathrm{a}^{2}=\mathrm{b}^{2}\left(1-\mathrm{e}^{2}\right)$
Equation of major axis	$\mathrm{y}=0$	$\mathrm{x}=0$
Length of major axis	2 a	2 b
Equation of minor axis	$\mathrm{x}=0$	$\mathrm{y}=0$
length of minor axis	2 b	2 a
Vertices	$(\pm \mathrm{a}, 0)$	$(0, \pm \mathrm{b})$
Foci	$(\pm \mathrm{ae}, 0)$	$(0, \pm \mathrm{be})$
Equation of Directrices	$\mathrm{x}= \pm \mathrm{a} / \mathrm{e}$	$\mathrm{y}= \pm \mathrm{b} / \mathrm{e}$
Length of Latus -rectum	$2 \mathrm{~b}^{2} / \mathrm{a}$	$2 \mathrm{a}^{2} / \mathrm{b}$

Main facts about the hyperbola

Equation	$\begin{gathered} \mathbf{x}^{2} / \mathbf{a}^{2}-\mathbf{y}^{2} / \mathbf{b}^{2}=1 \\ \mathbf{a}>0, b>0 \end{gathered}$	$\begin{gathered} \mathbf{x}^{2} / \mathbf{a}^{2}-\mathbf{y}^{2} / \mathbf{b}^{2}=-1 \\ \mathbf{a}>0, b>0 \end{gathered}$
Eccentricity	$\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$	$\mathrm{a}^{2}=\mathrm{b}^{2}\left(\mathrm{e}^{2}-1\right)$
Equation of transverse axis	$y=0$	$\mathrm{x}=0$
Length of transverse axis	2 a	-2b
Equation of conjugate axis	$\mathrm{x}=0$	$y=0$
Length of conjugate axis	2 b	2 a
Vertices	$(\pm \mathrm{a}, 0)$	$(0, \pm b)$
Foci	$(\pm \mathrm{ae}, 0)$	($0, \pm$ be $)$
Equation of Directrices	$x= \pm a / e$	$y= \pm b / e$
Length of lactus-rectum	$2 b^{2 / a}$	$2 \mathrm{a}^{2} / \mathrm{b}$

Main facts about the Circle

1. The equation of a circle with $C(a, b)$ as center and $r(>0)$ as radius is given by $(x-a)^{2}+(y-b)^{2}=r^{2}$
2. The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle iff $g^{2}+f^{2}-c>0$.

Its center is $(-\mathrm{g},-\mathrm{f})$ and radius $=\square\left[\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right]$

