CBSE Class 11 Mathematics
 Revision Notes
 Chapter-15
 STATISTICS

1. Mean: $\bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots .+x_{n}}{n}$
2. Median: If the number of observations n is odd, then median is $\left(\frac{n+1}{2}\right)^{t h}$ observation and if the number of observations n is even, then median is the mean of $\left(\frac{n}{2}\right)^{t h}$ and $\left(\frac{n+1}{2}\right)^{t h}$ observations.
3. Measures of Dispersion, Range and Mean Deviation
4. Variance and Standard Deviation
5. Analysis of Frequency Distributions

- Measures of dispersion Range, Quartile deviation, mean deviation, variance, standard deviation are measures of dispersion.
- Range $=$ Maximum Value - Minimum Value
- Mean deviation for ungrouped data
M.D. $(\bar{x})=\frac{\sum\left|x_{i}-\bar{x}\right|}{n}$
- Mean Deviation from Median for ungrouped data
$M . D .(M)=\frac{\sum\left|x_{i}-M\right|}{n}$
- Mean deviation for grouped data
M.D. $(\bar{x})=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{N}$
- Mean Deviation from Median for grouped data
M.D. $(M)=\frac{\sum f_{i}\left|x_{i}-M\right|}{N}$ where $\mathbf{N}=N=\sum f_{i}$
- Variance and standard deviation for ungrouped data

Variance: $\sigma^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$
Standard deviation: $\sigma^{2}=\sqrt{\frac{1}{n} \sum\left(x_{1}-\bar{x}\right)^{2}}$

- Variance and standard deviation of a discrete frequency distribution

Variation: $\sigma^{2}=\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2}$

Standard deviation: $\sigma^{2}=\sqrt{\frac{1}{N} \sum f_{i}\left(x_{1}-\bar{x}\right)^{2}}$

- Variance and standard deviation of a continuous frequency distribution

(i) If $\frac{x_{i}}{f_{1}} ; i=1,2,3, \ldots \ldots \ldots ., n$ is a continuous frequency distribution of a variate X ,

$$
\text { then } \sigma^{2}=\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

(ii) If $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be the n given observations with respective frequencies $f_{1}, f_{2}, \ldots \ldots, f_{n}$, then $\sigma=\frac{1}{N} \sqrt{N \sum f_{i} x_{i}^{2}-\left(\sum f_{i} x_{1}\right)^{2}}$, where $\mathrm{N}=\sum f_{1}$
(iii) If $d_{i}=x_{i}-\mathrm{A}$, where A is assumed mean, then $\sigma^{2}=\frac{1}{\mathrm{~N}} \sum f_{i} d_{i}^{2}-\left(\frac{\sum f_{i} d_{i}}{\mathrm{~N}}\right)^{2}$
(iv) If $u_{i}=\frac{x_{i}-\mathrm{A}}{h}$, where h is the common difference of values of x, then

$$
\sigma^{2}=\frac{1}{\mathrm{~N}}\left[\sum f_{i} u_{i}^{2}-\left(\frac{\sum f_{i} u_{i}}{\mathrm{~N}}\right)^{2}\right]
$$

- Analysis of frequency distribution with equal means but different variances: If the S.D. of group A < the S.D. of group B, then group A is considered more consistent or uniform.
- Ananlysis of frequency distribution with unequal means: In this case we compare the coefficient of variation [Coefficient of variation (C.V. $=\frac{100 \times \text { S.D. }}{M e a n}$. The series having greater coefficient of variation is said to be more variable than the other.
- Variance of the combined two series: $\sigma^{2}=\frac{1}{n_{1}+n_{2}}\left[n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{2}^{2}+d_{2}^{2}\right)\right]$ where n_{1} and n_{2} are the sizes of two groups, σ_{1} and σ_{2} are the S.D. of two groups, $d_{1}=\bar{a}-\bar{x}, d_{2}=\bar{b}-\bar{x}$ and $\bar{x}=\frac{n_{1} \bar{a}+n_{2} \bar{b}}{n_{1}+n_{2}}$

