Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Exercise 10.1

Question 1:

Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7),(5,-5)$ and $(-4,-$ 2). Also, find its area.

Solution 1:

Let ABCD be the given quadrilateral with vertices $\mathrm{A}(-4,5), \mathrm{B}(0,7), \mathrm{C}(5,-5)$, and $\mathrm{D}(-4,-$ 2).

Then, by plotting $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D on the Cartesian plane and joining $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, and DA , the given quadrilateral can be drawn as

To find the area of quadrilateral ABCD , we draw one diagonal, say AC.
Accordingly, area $(\mathrm{ABCD})=\operatorname{area}(\triangle \mathrm{ABC})+\operatorname{area}(\triangle \mathrm{ACD})$
We know that the area of a triangle whose vertices are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of $\triangle \mathrm{ABC}$
$\left.=\frac{1}{2} \right\rvert\,-4(7+5)+0(-5-5)+5(5-7)$ unit $^{2} \mid$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
$=\frac{1}{2}|-4(7+5)+0(-5-5)+5(5-7)|$ unit 2
$=\frac{1}{2}|-4(12)+5(-2)|$ unit 2
$=\frac{1}{2}|-48-10|$ unit 2
$=\frac{1}{2}|-58|$ unit 2
$=\frac{1}{2} \times 58$ unit 2
$=29$ unit 2
Area of $\triangle \mathrm{ACD}$
$=\frac{1}{2}|-4(-5+2)+5(-2-5)+(-4)(5-5)|$ unit 2
$=\frac{1}{2}|-4(-3)+5(-7)-4(10)|$ unit 2
$=\frac{1}{2}|12-35-40|$ unit 2
$=\frac{1}{2}|-63|$ unit 2
$=\frac{63}{2}$ unit 2

Thus, area $(\mathrm{ABCD})=\left(29+\frac{63}{2}\right)$ unit $^{2}=\frac{58+63}{2}$ unit $^{2}=\frac{121}{2}$ unit 2

Question 2:

The base of an equilateral triangle with side 2 a lies along the y -axis such that the midpoint of the base is at the origin. Find vertices of the triangle.

Solution 2:

Let $A B C$ be the given equilateral triangle with side 2 a .
Accordingly, $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{a}$
Assume that base BC lies along the y -axis such that the mid-point of BC is at the origin.
i.e., $\mathrm{BO}=\mathrm{OC}=\mathrm{a}$, where O is the origin.

Now, it is clear that the coordinates of point C are $(0, \mathrm{a})$, while the coordinates of point B are (0, -a).
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex A lies on the y-axis.

On applying Pythagoras theorem to $\triangle \mathrm{AOC}$, we obtain
$(\mathrm{AC})^{2}=(\mathrm{OA})^{2}+(\mathrm{OC})^{2}$
$\Rightarrow(2 a)^{2}=(\mathrm{OA})^{2}+a^{2}$
$\Rightarrow 4 a^{2}-a^{2}=(\mathrm{OA})^{2}$
$\Rightarrow(\mathrm{OA})^{2}=3 a^{2}$
$\Rightarrow \mathrm{OA}=\sqrt{3} a$
\therefore Coordinates of point $A=(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, \mathrm{a}),(0,-a)$, and $(\sqrt{3} a, 0) \operatorname{or}(0, a),(0,-a)$, and $(-\sqrt{3} a, 0)$

Question 3:

Find the distance between $\mathrm{P}\left(\mathrm{x}_{1}, y_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, y_{2}\right)$ when (i) PQ is parallel to the y -axis, (ii) $P Q$ is parallel to the x-axis.

Solution 3:

The given points are $\mathrm{P}\left(\mathrm{x}_{1}, y_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, y_{2}\right)$.
(i) When PQ is parallel to the y -axis, $\mathrm{x}_{1}=\mathrm{x}_{2}$.

In this case, distance between P and $\mathrm{Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(y_{2}-y_{1}\right)^{2}} \\
& =\left|y_{2}-y_{1}\right|
\end{aligned}
$$

(ii) In this case, distance between P and $\mathrm{Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}}$
$=\left|x_{2}-x_{1}\right|$

Question 4:

Find a point on the x -axis, which is equidistant from the points $(7,6)$ and $(3,4)$.

Solution 4:

Let $(a, 0)$ be the point on the X - axis that is equidistance from the points $(7,6)$ and $(3,4)$.
Accordingly, $\sqrt{(7-a)^{2}+(6-0)^{2}}=\sqrt{(3-a)^{2}+(4-0)^{2}}$
$\Rightarrow \sqrt{49+a^{2}-14 a+36}=\sqrt{9+a^{2}-6 a+16}$
$\Rightarrow \sqrt{a^{2}-14 a+85}=\sqrt{a^{2}-6 a+25}$
On squaring both sides, we obtain
$a^{2}-14 a+85=a^{2}-6 a+25$
$\Rightarrow-14 a+6 a=25-85$
$\Rightarrow-8 a=-60$
$\Rightarrow a=\frac{60}{8}=\frac{15}{2}$
Thus, the required point on the x -axis is $\left(\frac{15}{2}, 0\right)$

Question 5:

Find the slope of a line, which passes through the origin, and the mid-point of the segment joining the points $\mathrm{P}(0,-4)$ and $\mathrm{B}(8,0)$.

Solution 5:

The coordinates of the mid-point of the line segment joining the points
$P(0,-4)$ and $B(8,0)$ are $\left(\frac{0+8}{2}, \frac{-4+0}{2}\right)=(4,-2)$
It is known that the slope (m) of a non-vertical line passing through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and (x_{2},
y_{2}) is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$
Therefore, the slope of the line passing through $(0,0$,$) and (4,-2)$ is $\frac{-2-0}{4-0}=\frac{-2}{4}=-\frac{1}{2}$
Hence, the required slope of the line is $-\frac{1}{2}$.

Question 6:

Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are vertices of a right angled triangle.

Solution 6:

The vertices of the given triangle are $\mathrm{A}(4,4), \mathrm{B}(3,5)$, and $\mathrm{C}(-1,-1)$.
It is known that the slope (m) of a non-vertical line passing through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and (x_{2}, y_{2}) is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$
\therefore Slope of AB $\left(\mathrm{m}_{1}\right)=\frac{5-4}{3-4}=-1$
Slope of BC $\left(m_{2}\right)=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$
Slope of CA $\left(\mathrm{m}_{3}\right)=\frac{4+1}{4+1}=\frac{5}{5}=1$
It is observed that $\mathrm{m}_{1} \mathrm{~m}_{3}=-1$
This shows that line segments AB and CA are perpendicular to each other i.e., the given triangle is right-angled at $\mathrm{A}(4,4)$.
Thus, the points $(4,4),(3,5)$, and $(-1,-1)$ are the vertices of a right-angled triangle.

Question 7:

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

Solution 7:

If a line makes an angle of 30° with positive direction of the y-axis measured anticlockwise, then the angle made by the line with the positive direction of the x -axis measured anticlockwise is $90^{\circ}+30^{\circ}=120^{\circ}$.

Thus, the slope of the given line is $\tan 120^{\circ}=\tan \left(180^{\circ}-60^{\circ}\right)=-\tan 60^{\circ}=-\sqrt{3}$

Question 8:

Find the value of x for which the points $(\mathrm{x},-1),(2,1)$ and $(4,5)$ are collinear.

Solution 8:

If points $A(x,-1), B(2,1)$, and $C(4,5)$ are collinear, then
Slope of $A B=$ Slope of $B C$
$\Rightarrow \frac{1-(-1)}{2-x}=\frac{5-1}{4-2}$
$\Rightarrow \frac{1+1}{2-x}=\frac{4}{2}$
$\Rightarrow \frac{2}{2-x}=2$
$\Rightarrow 2=4-2 x$
$\Rightarrow 2 x=2$
$\Rightarrow x=1$
Thus, the required value of x is 1 .

Question 9:

Without using distance formula, show that points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are vertices of a parallelogram.

Solution 9:

Let points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ be respectively denoted by A, B, C, and D.

Slopes of $\mathrm{AB}=\frac{0+1}{4+2}=\frac{1}{6}$
Slopes of $\mathrm{CD}=\frac{2-3}{-3-3}=\frac{-1}{-6}=\frac{1}{6}$
\Rightarrow Slope of $\mathrm{AB}=$ Slope of CD
$\Rightarrow \mathrm{AB}$ and CD are parallel to each other.
Now, slope of $\mathrm{BC}=\frac{3-0}{3-4}=\frac{3}{-1}=-3$
Slope of $\mathrm{AD}=\frac{2+1}{-3+2}=\frac{3}{-1}=-3$
\Rightarrow Slope of $\mathrm{BC}=$ Slope of AD
$\Rightarrow \mathrm{BC}$ and AD are parallel to each other.
Therefore, both pairs of opposite side of quadrilateral ABCD are parallel. Hence, ABCD is a parallelogram.
Thus, points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are the vertices of a parallelogram.

Question 10:

Find the angle between the x -axis and the line joining the points $(3,-1)$ and $(4,-2)$.
Solution 10:

The slope of the line joining the points $(3,-1)$ and $(4,-2)$ is $m=\frac{-2-(-1)}{4-3}=-2+1=-1$
Now, the inclination (θ) of the line joining the points $(3,-1)$ and $(4,-2)$ is given by $\tan \theta=-1$ $\Rightarrow \theta=\left(90^{\circ}+45^{\circ}\right)=135^{\circ}$
Thus, the angle between the x -axis and the line joining the points $(3,-1)$ and $(4,-2)$ is 135°

Question 11:

The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slope of the lines.

Solution 11:

Let m_{1}, m be the slopes of the two given lines such that $\mathrm{m}_{1}=2 \mathrm{~m}$.
We know that if θ is the angle between the lines l_{1} and l_{2} with slopes m_{1} and m_{2} then $\tan \theta=\left|\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
It is given that the tangent of the angle between the two lines is $\frac{1}{3}$.
$\therefore \frac{1}{3}=\left|\frac{m-2 m}{1+(2 m) \cdot m}\right|$
$\Rightarrow \frac{1}{3}=\left|\frac{-m}{1+2 m^{2}}\right|$
$\Rightarrow \frac{1}{3}=\frac{-m}{1+2 m^{2}}$ or $\frac{1}{3}=-\left(\frac{-m}{1+2 m^{2}}\right)=\frac{m}{1+2 m^{2}}$
$\Rightarrow \frac{1}{3}=\left|\frac{-\mathrm{m}}{1+2 m^{2}}\right|$
$\Rightarrow \frac{1}{3}=\frac{-m}{1+2 m^{2}}$ or $=-\left(\frac{-m}{1+2 m^{2}}\right)=\frac{m}{1+2 m^{2}}$
Case I
$\Rightarrow \frac{1}{3}=\frac{-\mathrm{m}}{1+2 m^{2}}$
$\Rightarrow 1+2 m^{2}=-3 m$
$\Rightarrow 2 m^{2}+3 m+1=0$
$\Rightarrow 2 m^{2}+2 m+m+1=0$
$\Rightarrow 2 m(m+1)+1(m+1)=0$
$\Rightarrow(m+1)(2 m+1)=0$
$\Rightarrow m=-1$ or $m=-\frac{1}{2}$

If $\mathrm{m}=-1$, then the slopes of the lines are -1 and -2 .
If $\mathrm{m}=-\frac{1}{2}$, then the slopes of the lines are $-\frac{1}{2}$ and -1 .
Case II
$\frac{1}{3}=\frac{\mathrm{m}}{1+2 m^{2}}$
$\Rightarrow 2 m^{2}+1=3 m$
$\Rightarrow 2 m^{2}-3 m+1=0$
$\Rightarrow 2 m^{2}-2 m-m+1=0$
$\Rightarrow 2 m(m-1)-1(m-1)=0$
$\Rightarrow(m-1)(2 m-1)=0$
$\Rightarrow m=1$ or $m=\frac{1}{2}$
If $m=1$, then the slopes of the lines are 1 and 2 .
If $\mathrm{m}=\frac{1}{2}$, then the slopes of the lines are $\frac{1}{2}$ and 1 .
Hence, the slopes of the lines are -1 and -2 or $-\frac{1}{2}$ and -1 or 1 and 2 or $\frac{1}{2}$ and 1 .

Question 12:

A line passes through $\left(x_{1}, y_{1}\right)$ and (h, k). If slope of the line is m, show that $k-y_{1}=m\left(h-x_{1}\right)$

Solution 12:

The slope of the line passing through $\left(x_{1}, y_{1}\right)$ and (h, k) is $\frac{k-y_{1}}{h-x_{1}}$.
It is given that the slope of the line is m.
$\therefore \frac{k-y_{1}}{h-x_{1}}=\mathrm{m}$
$\Rightarrow k-y_{1}=m\left(h-x_{1}\right)$
Hence, $k-y_{1}=m\left(h-x_{1}\right)$

Question 13:

If three points $(h, 0),(a, b)$, and $(0, k)$ lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$.

Solution 13:

If the points $\mathrm{A}(h, 0), \mathrm{B}(a, b)$, and $\mathrm{C}(0, k)$ lie on a line, then
Slope of $A B=$ Slope of $B C$
$\frac{b-0}{a-h}=\frac{k-b}{0-a}$
$\Rightarrow \frac{b}{a-h}=\frac{k-b}{-a}$
$\Rightarrow-a b=(k-b)(a-h)$
$\Rightarrow-a b=k a-k h-a b+b h$
$\Rightarrow k a+b h=k h$
On dividing both sides $\mathrm{b} k h$, we obtain
$\frac{k a}{k h}+\frac{b h}{k h}=\frac{k h}{k h}$
$\Rightarrow \frac{a}{h}+\frac{b}{k}=1$
Hence, $\frac{a}{h}+\frac{b}{k}=1$

Question 14:

Consider the given population and year graph. Find the slope of the line $A B$ and using it, find what will be the population in the year 2010?

Solution 14:

Since line AB passes through points A $(1985,92)$ and B $(1995,97)$, its slope is

$$
\frac{97-92}{1995-1985}=\frac{5}{10}=\frac{1}{2}
$$

Let y be the population in the year 2010. Then, according to the given graph, line AB must pass through point C (2010, y).
\therefore Slope of AB $=$ Slope of BC
$\Rightarrow \frac{1}{2}=\frac{y-97}{2010-1995}$
$\Rightarrow \frac{1}{2}=\frac{y-97}{15}$
$\Rightarrow \frac{15}{2}=y-97$
$\Rightarrow y-97=7.5$
$\Rightarrow y=7.5+97=104.5$
Thus, the slope of line AB is $\frac{1}{2}$, while in the year 2010, the population will be 104.5 crores.

Exercise 10.2

Question 1:

Write the equation for the x and y -axes.

Solution 1:

The y -coordinate of every point on the x -axis is 0 .
Therefore, the equation of the x-axis is $y=0$.
The x-coordinate of every point on the y-axis is 0 .
Therefore, the equation of the y-axis is $y=0$.

Question 2:

Find the equation of the line which passes through the point $(-4,3)$ with slope $\frac{1}{2}$.

Solution 2:

We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m , is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$.
Thus, the equation of the line passing through point $(-4,3)$, whose slope is $\frac{1}{2}$, is
$(y-3)=\frac{1}{2}(x+4)$
$2(y-3)=x+4$
$2 y-6=x+4$
i.e., $x-2 y+10=0$

Question 3:

Find the equation of the line which passes through $(0,0)$ with slope m.

Solution 3:

We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m , is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$
Thus, the equation of the line passing through point $(0,0)$, whose slope is m , is
$(\mathrm{y}-0)=\mathrm{m}(\mathrm{x}-0)$
i.e., $y=m x$

Question 4:

Find the equation of the line which passes through $(2,2 \sqrt{3})$ and is inclined with the x -axis at an angle of 75°

Solution 4:

The slope of the line that inclines with the x -axis at an angle of 75° is $\mathrm{m}=\tan 75^{\circ}$
$m=\tan \left(45^{\circ}+30^{\circ}\right)=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \cdot \tan 30^{\circ}}=\frac{1+\frac{1}{\sqrt{3}}}{1-1 \cdot \frac{1}{\sqrt{3}}}=\frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
We know that the equation of the line passing through point $\left(x_{0}, y_{0}\right)$, whose slope is m , is $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$.
Thus, if a line passes through $(2,2 \sqrt{3})$ and inclines with the x -axis at an angle of 75°, then the equation of the line is given as
$(y-2 \sqrt{3})=\frac{\sqrt{3}+1}{\sqrt{3}-1}(x-2)$
$(y-2 \sqrt{3})(\sqrt{3}-1)=(\sqrt{3}+1)(x-2)$
$y(\sqrt{3}-1)-2 \sqrt{3}(\sqrt{3}-1)=x(\sqrt{3}+1)-2(\sqrt{3}+1)$
$(\sqrt{3}+1) x-(\sqrt{3}-1) y=2 \sqrt{3}+2-6+2 \sqrt{3}$
$(\sqrt{3}+1) x-(\sqrt{3}-1) y=4 \sqrt{3}-4$
i.e., $(\sqrt{3}+1) x-(\sqrt{3}-1) y=4(\sqrt{3}-1)$

Question 5:

Find the equation of the line which intersects the x-axis at a distance of 3 units to the left of origin with slope -2 .

Solution 5:

It is known that if a line with slope m makes x-intercept d, then the equation of the line is given as
$\mathrm{Y}=\mathrm{m}(\mathrm{x}-\mathrm{d})$
For the line intersecting the x-axis at a distance of 3 units to the left of the origin, $d=-3$.

The slope of the line is given as $m=-2$
Thus, the required equation of the given line is
$\mathrm{Y}=-2[\mathrm{x}-(-3)]$
$Y=-2 x-6$
i.e., $2 x+y+6=0$

Question 6:

Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes an angle of 30° with the positive direction of the x -axis.

Solution 6:

It is known that if a line with slope m makes y - intercept c , then the equation of the line is given as
$\mathrm{Y}=\mathrm{mx}+\mathrm{c}$
Here, $\mathrm{c}=2$ and $\mathrm{m}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
Thus, the required equation of the given line is
$y=\frac{1}{\sqrt{3}} x+2$
$y=\frac{x+2 \sqrt{3}}{\sqrt{3}}$
$\sqrt{3} y=x+2 \sqrt{3}$
i.e., $\mathrm{x}-\sqrt{3} y+2 \sqrt{3}=0$

Question 7:

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

Solution 7:

It is known that the equation of the passes through points
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{2}}\left(x-x_{1}\right)$
Therefore, the equation of the line passing through the points $(-1,1)$ and $(2,-4)$ is
$(y-1)=\frac{-4-1}{2+1}(x+1)$
$(y-1)=\frac{-5}{3}(x+1)$
$3(y-1)=-5(x+1)$
$3 y-3=-5 x-5$
i.e., $5 x+3 y+2=0$

Question 8:

Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x -axis is 30°.

Solution 8:

If p is the length of the normal from the origin to a line and ω is the angle made by the normal with the positive direction of the x -axis, then the equation of the line given by $\mathrm{x} \cos \omega+\mathrm{y} \sin \omega=\mathrm{p}$.
Here, $\mathrm{p}=5$ units and $\omega=30^{\circ}$
Thus, the required equation of the given line is
$\mathrm{x} \cos 30^{\circ}+\mathrm{y} \sin 30^{\circ}=5$
$x \frac{\sqrt{3}}{2}+y \cdot \frac{1}{2}=5$
i.e., $\sqrt{3} x+y=10$

Question 9:

The vertices of $\triangle P Q R$ are $P(2,1), Q(-2,3)$ and $R(4,5)$. Find equation of the median through the vertex R .

Solution 9:

It is given that the vertices of $\triangle \mathrm{PQR}$ are $\mathrm{P}(2,1), \mathrm{Q}(-2,3)$ and $\mathrm{R}(4,5)$.
Let RL be the median through vertex R .
Accordingly, L be the mid-point of PQ.
By mid-point formula, the coordinates of point L are given by $\left(\frac{2-2}{2}, \frac{1+3}{2}\right)=(0,2)$

It is known that the equation of the line passing through points
$\left(x_{1}, y_{1}\right)=(4,5)$ and $\left(x_{2}, y_{2}\right)=(0,2)$.
Hence, $\mathrm{y}-5=\frac{2-5}{0-4}(\mathrm{x}-4)$
$\Rightarrow y-5=\frac{-3}{-4}(x-4)$
$\Rightarrow 4(y-5)=3(x-4)$
$\Rightarrow 4 y-20=3 x-12$
$\Rightarrow 3 x-4 y+8=0$

Thus, the required equation of the median through vertex R is $3 x-4 y+8=0$.

Question 10:

Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

Solution 10:

The slope of the line joining the points $(2,5)$ and $(-3,6)$ is $m=\frac{6-5}{-3-2}=\frac{1}{-5}$
We know that two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.
Therefore, slope of the line perpendicular to the line through the points $(2,5)$ and $(-3,6)$ $=-\frac{1}{m}=-\frac{1}{\left(\frac{-1}{5}\right)}=5$
Now, the equation of the line passing through point $(-3,5)$, whose slope is 5 , is
$(y-5)=5(x+3)$
$y-5=5 x+15$
i.e., $5 x-y+20=0$

Question 11:

A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ration 1: n . Find the equation of the line.

Solution 11:

According to the section formula, the coordinates of the point that divides the line segment joining the points $(1,0)$ and $(2,3)$ in the ration $1: \mathrm{n}$ is given by
$\left(\frac{n(1)+1(2)}{1+n}, \frac{n(0)+1(3)}{1+n}\right)=\left(\frac{n+2}{n+1}, \frac{3}{n+1}\right)$
The slope of the line joining the points $(1,0)$ and $(2,3)$ is
$m=\frac{3-0}{2-1}=3$
We know that two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.
Therefore, slope of the line that is perpendicular to the line joining the points $(1,0)$ and $(2,3)$ $=-\frac{1}{m}=-\frac{1}{3}$
Now the equation of the line passing through $\left(\frac{n+2}{n+1}, \frac{3}{n+1}\right)$ and whose slope is $-\frac{1}{3}$ is given by

$$
\begin{aligned}
& \left(y-\frac{3}{n+1}\right)=-\frac{1}{3}\left(x-\frac{n+2}{n+1}\right) \\
& \Rightarrow 3[(n+1) y-3]=-[x(n+1)-(n+2)] \\
& \Rightarrow 3(n+1) y-9=-(n+1) x+n+2 \\
& \Rightarrow(1+n) x+3(1+n) y=n+11
\end{aligned}
$$

Question 12:

Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the points $(2,3)$.

Solution 12:

The equation of a line in the intercept form is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{i}
\end{equation*}
$$

Here, a and b are the intercepts on x and y axes respectively.
It is given that the line cuts off equal intercepts on both the axes. This means that $\mathrm{a}=\mathrm{b}$.
Accordingly, equation (i) reduces to
$\frac{x}{a}+\frac{y}{a}=1$
$\Rightarrow x+y=a$
Since the given line passes through point (2, 3), equation (ii) reduces to $2+3=\mathrm{a} \Rightarrow \mathrm{a}=5$
On substituting the value of a in equation (ii), we obtain
$x+y=5$, which is the required equation of the line.

Question 13:

Find the equation of the line passing through the points $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

Solution 13:

The equation of a line in the intercept form is
$\frac{x}{a}+\frac{y}{b}=1$
Here, a and b are the intercepts on x and y axes respectively.
It is given that $\mathrm{a}+\mathrm{b}=9 \Rightarrow \mathrm{~b}=9-\mathrm{a}$
From equation (i) and (ii), we obtain
$\frac{x}{a}+\frac{y}{9-a}=1$
It is given that the line passes through point $(2,2)$. Therefore, equation (iii) reduces to
$\frac{2}{a}+\frac{2}{9-a}=1$
$\Rightarrow 2\left(\frac{1}{a}+\frac{1}{9-a}\right)=1$
$\Rightarrow 2\left(\frac{9-a+a}{a(9-a)}\right)=1$
$\Rightarrow \frac{18}{9 a-a^{2}}=1$
$\Rightarrow 18=9 a-a^{2}$
$\Rightarrow a^{2}-9 a+18=0$
$\Rightarrow a^{2}-6 a-3 a+18=0$
$\Rightarrow a(a-6)-3(a-6)=0$
$\Rightarrow(a-6)(a-3)=0$
$\Rightarrow a=6$ or $\mathrm{a}=3$
If $\mathrm{a}=6$ and $\mathrm{b}=9-6=3$, then the equation of the line is
$\frac{x}{6}+\frac{y}{3}=1 \Rightarrow x+2 y-6=0$
If $\mathrm{a}=3$ and $\mathrm{b}=9-3=6$, then the equation of the line is
$\frac{x}{3}+\frac{y}{6}=1 \Rightarrow 2 x+y-6=0$

Question 14:

Find equation of the line through the points $(0,2)$ making an angle $\frac{2 \pi}{3}$ with the positive x axis. Also, find the equation of the line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

Solution 14:

The slope of the line making an angle $\frac{2 \pi}{3}$ with the positive x -axis is $\mathrm{m}=\tan \left(\frac{2 \pi}{3}\right)=-\sqrt{3}$
Now, the equation of the line passing through points $(0,2)$ and having a slope $-\sqrt{3}$ is $(y-2)=-\sqrt{3}(x-0)$
i.e., $\sqrt{3} x+y-2=0$

The slope of line parallel to line $\sqrt{3} x+y-2=0$ is $-\sqrt{3}$.
It is given that the line parallel to line $\sqrt{3} x+y-2=0$ crosses the y-axis 2 units below the origin i.e., it passes through point $(0,2)$.
Hence, the equation of the line passing through points $(0,2)$ and having a slope $-\sqrt{3}$ is
$y-(-2)=-\sqrt{3}(x-0)$
$y+2=-\sqrt{3} x$
$\sqrt{3} x+y+2=0$

Question 15:

The perpendicular from the origin to a line meets it at the point $(-2,9)$, find the equation of the line.

Solution 15:

The slope of the line joining the origin $(0,0)$ and point $(-2,9)$ is $m_{1}=\frac{9-0}{-2-0}=-\frac{9}{2}$
Accordingly, the slope of the line perpendicular to the line joining the origin and points (-2 , 9) is
$m_{2}=\frac{1}{m_{1}}=-\frac{1}{\left(-\frac{9}{2}\right)}=\frac{2}{9}$
Now, the equation of the line passing through point $(-2,9)$ and having a slope m_{2} is
$(y-9)=\frac{2}{9}(x+2)$
$9 y-81=2 x+4$
i.e., $2 \mathrm{x}-9 \mathrm{y}+85=0$

Question 16:

The length L (in centimeter) of a copper rod is a linear function of its Celsius temperature C . In an experiment, if $L=124.942$ when $\mathrm{C}=20$ and $\mathrm{L}=125.134$ when $\mathrm{C}=110$, express L in terms of C.

Solution 16:

It is given that when $\mathrm{C}=20$, the value of L is 124.942 , whereas when $\mathrm{C}=110$, the value of L is 125.134 .
Accordingly, points $(20,124.942)$ and $(110,125.134)$ satisfy the linear relation between L and C.

Now, assuming C along the x -axis and L along the y -axis, we have two points i.e., $(20,124.942)$ and $(110,125.134)$ in the XY plane.
Therefore, the linear relation between L and C is the equation of the line passing through points ($20,124.942$) and $(110,125.134)$.
$(\mathrm{L}-124.942)=\frac{125.134-124.942}{110-20}(C-20)$
$(\mathrm{L}-124.942)=\frac{0.192}{90}(C-20)$
i.e., $\mathrm{L}=\frac{0.192}{90}(C-20)+124.942$. which is required linear relation.

Question 17:

The owner of a milk store finds that, he can sell 980 liters of milk each week at Rs $14 / \mathrm{liter}$ and 1220 liters of milk each week at Rs $16 /$ liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs $17 / l i t e r$?

Solution 17:

The relationship between selling price and demand is linear.
Assuming selling price per liter along the x -axis and demand along the y -axis, we have two points i.e., $(14,980)$ and $(16,1220)$ in the XY plane that satisfy the linear relationship between selling price and demand.
Therefore, the line passing through points $(14,980)$ and $(16,1220)$.
$y-980=\frac{1220-980}{16-14}(x-14)$
$y-980=\frac{240}{2}(x-14)$
$y-980=120(x-14)$
i.e., $\mathrm{y}=120(\mathrm{x}-14)+980$

When $x=$ Rs 17/liter,
$\mathrm{y}=120(17-14)+980$
$\Rightarrow y=120 \times 3+980=360+980=1340$
Thus, the owner of the milk store could sell 1340 liters of milk weekly at Rs $17 /$ liter.

Question 18:

$\mathrm{P}(\mathrm{a}, \mathrm{b})$ is the mid-point of a line segment between axes. Show that the equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.

Solution 18:

Let $A B$ be the line segment between the axes and let $P(a, b)$ be its mid-point.

Let the coordinates of A and B be $(0, y)$ and $(x, 0)$ respectively. Since $P(a, b)$ is the mid-point of $A B$,
$\left(\frac{0+x}{2}, \frac{y+0}{2}\right)=(a, b)$
$\Rightarrow\left(\frac{x}{2}, \frac{y}{2}\right)=(a, b)$
$\Rightarrow \frac{x}{2}=a$ and $\frac{y}{2}=b$
$\therefore x=2 a$ and $\mathrm{y}=2 \mathrm{~b}$
Thus, the respective coordinates of A and B are ($0,2 \mathrm{~b}$) and ($2 \mathrm{a}, 0$).
The equation of the line passing through points $(0,2 b)$ and $(2 a, 0)$ is
$(\mathrm{y}-2 \mathrm{~b})=\frac{(0-2 b)}{(2 a-0)}(x-0)$
$y-2 b=\frac{-2 b}{2 a}(x)$
$a(y-2 b)=-b x$
$a y-2 a b=-b x$
i.e., $b x+a y=2 a b$

On dividing both sides by ab, we obtain
$\frac{b x}{a b}+\frac{a y}{a b}=\frac{2 a b}{a b}$
$\Rightarrow \frac{x}{a}+\frac{y}{b}=2$

Question 19:

Point $\mathrm{R}(\mathrm{h}, \mathrm{k})$ divides a line segment between the axes in the ratio 1:2. Find equation of the line.

Solution 19:

Let $A B$ be the line segment between the axes such that point $R(h, k)$ divides $A B$ in the ratio 1:2.

Let the respective coordinates of A and B be ($\mathrm{x}, 0$) and ($0, \mathrm{y}$).
Since point $\mathrm{R}(\mathrm{h}, \mathrm{k})$ divides AB in the ratio $1: 2$, according to the section formula,
$(h, k)=\left(\frac{1 \times 0+2 \times x}{1+2}, \frac{1 \times y+2 \times 0}{1+2}\right)$
$\Rightarrow(h, k)=\left(\frac{2 x}{3}, \frac{y}{3}\right)$
$\Rightarrow h=\frac{2 x}{3}$ and $k=\frac{y}{3}$
$\Rightarrow x=\frac{3 h}{2}$ and $y=3 k$
Therefore, the respective coordinates of A and B are $\left(\frac{3 h}{2}, 0\right)$ and $(0,3 \mathrm{k})$.
Now, the equation of the line AB passing through points $\left(\frac{3 h}{2}, 0\right)$ and $(0,3 \mathrm{k})$ is
$(y-0)=\frac{3 k-0}{0-\frac{3 h}{2}}\left(x-\frac{3 h}{2}\right)$
$y=-\frac{2 k}{h}\left(x-\frac{3 h}{2}\right)$
$h y=-2 k x+3 h k$
i.e., $2 k x+h y=3 h k$

Thus, the required equation of a line is $2 k x+h y=3 h k$

Question 20:

By using the concept of equation of a line, prove that the three points $(3,0),(-2,-2)$ and $(8,2)$ are collinear.

Solution 20:

In order to show that the points $(3,0),(-2,-2)$ and $(8,2)$ are collinear, it suffices to show that the line passing through points $(3,0)$ and $(-2,-2)$ also passes through point $(8,2)$.
The equation of the line passing through points $(3,0)$ and $(-2,-2)$ is
$(y-0)=\frac{(-2-0)}{(-2-3)}(x-3)$
$y=\frac{-2}{-5}(x-3)$
$5 y=2 x-6$
i.e., $2 \mathrm{x}-5 \mathrm{y}=6$

It is observed that at $x=8$ and $y=2$,
L.H.S $=2 \times 8-5 \times 2=16-10=6=$ R.H.S .

Therefore, the line passing through points $(3,0)$ and $(-2,-2)$ also passes through point $(8,2)$.
Hence, points $(3,0),(-2,-2)$, and $(8,2)$ are collinear.

Exercise 10.3

Question 1:

Reduce the following equation into slope-intercept form and find their slopes and the y intercepts.
(i) $x+7 y=0$ (ii) $6 x+3 y-5=0$ (iii) $y=0$

Solution 1:

(i) The given equation is $x+7 y=0$.

It can be written as
$y=-\frac{1}{7} x+0$
This equation is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where $m=-\frac{1}{7}$ and $\mathrm{c}=0$
Therefore, equation (1) is the slope-intercept form, where the slope and the y-intercept are $-\frac{1}{7}$ and 0 respectively.
(ii) The given equation is $6 x+3 y-5=0$.

It can be written as

$$
\begin{align*}
& y=\frac{1}{3}(-6 x+5) \\
& y=-2 x+\frac{5}{3} \tag{2}
\end{align*}
$$

This equation is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where $\mathrm{m}=-2$ and $\mathrm{c}=\frac{5}{3}$.
Therefore, equation (2) s in the slop-intercept form, where the slope and the y-intercept are -2 and $\frac{5}{3}$ respectively.
(iii) The given equation is $\mathrm{y}=0$.

It can be written as
$y=0 . x+0$
This equation is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where $\mathrm{m}=0$ and $\mathrm{c}=0$.
Therefore, equation (3) is in the slope-intercept form, where the slope and the y-intercept are 0 and 0 respectively.

Question 2:

Reduce the following equations into intercept form and find their intercepts on the axes.
(i) $3 x+2 y-12=0$ (ii) $4 x-3 y=6$ (iii) $3 y+2=0$.

Solution 2:

(i) The given equation is $3 \mathrm{x}-2 \mathrm{y}-12=0$

It can be written as
$3 x+2 y=12$
$\frac{3 x}{12}+\frac{2 y}{12}=1$
i.e., $\frac{x}{4}+\frac{y}{6}=1$

This equation is of the form $\frac{x}{a}+\frac{y}{b}=1$, where $\mathrm{a}=4$ and $\mathrm{b}=6$.
Therefore, equation (1) is in the intercept form, where the intercepts on the x and y axes are 4 and 6 respectively.
(ii) The given equation is $4 x-3 y=6$.

It can be written as
$\frac{4 x}{6}-\frac{3 y}{6}=1$
$\frac{2 x}{3}-\frac{y}{2}=1$
i.e., $\frac{x}{\left(\frac{3}{2}\right)}+\frac{y}{(-2)}=1$

Therefore, equation (2) is in the intercept form, where the intercepts on x and y axes are $\frac{3}{2}$ and -2 respectively.
(iii) The given equation is $3 y+2=0$.

It can be written as
$3 y=-2$
i.e., $\frac{y}{\left(-\frac{2}{3}\right)}=1$

Therefore, equation is in the $\frac{x}{a}+\frac{y}{b}=1$, where $\mathrm{a}=0$ and $\mathrm{b}=-\frac{2}{3}$.
Therefore, equation (3) is in the intercept form, where the intercept on the y-axis is $-\frac{2}{3}$ and it has no intercept on the x -axis.

Question 3:

Reduce the following equations into normal form. Find their perpendicular distance from the origin and angle between perpendicular and the positive x -axis.
(i) $x-\sqrt{3} y+8=0$ (ii) $y-2=0$ (iii) $x-y=4$

Solution 3:

(i) The given equation is $x-\sqrt{3} y+8=0$

It can be written as:
$x-\sqrt{3} y=-8$
$\Rightarrow-x+\sqrt{3} y=8$
On dividing both sides by $\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2$, we obtain
$-\frac{x}{2}+\frac{\sqrt{3}}{2} y=\frac{8}{2}$
$\Rightarrow\left(-\frac{1}{2}\right) x+\left(\frac{\sqrt{3}}{2}\right) y=4$
$\Rightarrow x \cos 120^{\circ}+y \sin 120^{\circ}=4$
Equation (1) is in the normal form.
On comparing equation (1) with the normal form of equation of the line $x \cos \omega+y \sin \omega=p$, we obtain $\omega=120^{\circ}$ and $\mathrm{p}=4$.
Thus, the perpendicular distance of the line from the origin is 4 , while the angle between the perpendicular and the positive x -axis is 120°.
(ii) The given equation is $\mathrm{y}-2=0$.

It can be reduced as $0 . x+1 . y=2$
On dividing both sides by $\sqrt{0^{2}+1^{2}}=1$, we obtain $0 . x+1 . y=2$
$\Rightarrow x \cos 90^{\circ}+y \sin 90^{\circ}=2$
Equation (2) is in the normal form.
On comparing equation (2) with the normal form of equation of line $x \cos \omega+y \sin \omega=p$, we obtain $\omega=90^{\circ}$ and $\mathrm{p}=2$.
Thus, the perpendicular distance of the line from the origin is 2 , while the angle between the perpendicular and the positive x -axis is 90°.
(iii) The given equation is $x-y=4$.

It can be reduced as 1. $\mathrm{x}+(-1) \mathrm{y}=4$
On dividing both sides by $\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$, we obtain

$$
\begin{align*}
& \frac{1}{\sqrt{2}} x+\left(-\frac{1}{\sqrt{2}}\right) y=\frac{4}{\sqrt{2}} \\
& \Rightarrow x \cos \left(2 \pi-\frac{\pi}{4}\right)+y \sin \left(2 \pi-\frac{\pi}{4}\right)=2 \sqrt{2} \\
& \Rightarrow x \cos 315^{\circ}+y \sin 315^{\circ}=2 \sqrt{2} \tag{3}
\end{align*}
$$

Equation (3) is in the normal form.
On comparing equation (3) with the normal form of the equation of the line
$x \cos \omega+y \sin \omega=p$, we obtain $\omega=315^{\circ}$ and $\mathrm{p}=2 \sqrt{2}$.
Thus, the perpendicular distance of the line from the origin is $2 \sqrt{2}$, while the angle between the perpendicular and the positive x -axis is 315°.

Question 4:

Find the distance of the points $(-1,1)$ from the line $12(x+6)=5(y-2)$.

Solution 4:

The given equation of the line is $12(x+6)=5(y-2)$.
$\Rightarrow 12 \mathrm{x}+72=5 \mathrm{y}-10$
$\Rightarrow 12 \mathrm{x}-5 \mathrm{y}+82=0$
On comparing equation (1) with general equation of line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, we obtain $\mathrm{A}=12$, $\mathrm{B}=-5$, and $\mathrm{C}=82$.
It is known that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $\mathrm{d}=\frac{\left|\mathrm{Ax}_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
The given point is $\left(x_{1}, y_{1}\right)=(-1,1)$.
Therefore, the distance of point $(-1,1)$ from the given line
$=\frac{|12(-1)+(-5)(1)+82|}{\sqrt{(12)^{2}+(-5)^{2}}}$ units $=\frac{|-12-5+82|}{\sqrt{169}}$ units $=\frac{|65|}{13}$ units $=5$ units

Question 5:

Find the points on the x -axis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ are 4 units.

Solution 5:

The given equation of line is
$\frac{x}{3}+\frac{y}{4}=1$
Or, $4 \mathrm{x}+3 \mathrm{y}-12=0$
On comparing equation (1) with general equation of line $A x+B y+C=0$, we obtain $A=4$, B $=3$, and $\mathrm{C}=-12$.
Let $(a, 0)$ be the point on the x-axis whose distance from the given line is 4 units.
It is known that the perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point
$\left(x_{1}, y_{1}\right)$ is given by $\mathrm{d}=\frac{\left|\mathrm{Ax}_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
Therefore,

$$
\begin{aligned}
& 4=\frac{|4 a+3 \times 0-12|}{\sqrt{4^{2}+3^{2}}} \\
& \Rightarrow 4=\frac{|4 a-12|}{5} \\
& \Rightarrow|4 a-12|=20 \\
& \Rightarrow \pm(4 a-12)=20 \\
& \Rightarrow(4 a-12)=20 \text { or }-(4 a-12)=20 \\
& \Rightarrow 4 a=20+12 \text { or } 4 \mathrm{a}=-20+12 \\
& \Rightarrow a=8 \text { or }-2
\end{aligned}
$$

Thus, the required points on x -axis are $(-2,0)$ and $(8,0)$.

Question 6:

Find the distance between parallel lines
(i) $15 \mathrm{x}+8 \mathrm{y}-34=0$ and $15 \mathrm{x}+8 \mathrm{y}+31=0$
(ii) $l(\mathrm{x}+\mathrm{y})+\mathrm{p}=0$ and $l(\mathrm{x}+\mathrm{y})-\mathrm{r}=0$

Solution 6:

It is known that the distance (d) between parallel lines $A x+B y+C_{1}=0$ and $\mathrm{Ax}+\mathrm{By}+\mathrm{C}_{2}=0$ is given by $d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}$.
(i)The given parallel lines are $15 \mathrm{x}+8 \mathrm{y}-34=0$ and $15 \mathrm{x}+8 \mathrm{y}+31=0$

Here, $\mathrm{A}=15, \mathrm{~B}=8, C_{1}=-34$, and $C_{2}=31$.
Therefore, the distance between the parallel lines is
$d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|-34-31|}{\sqrt{(15)^{2}+(8)^{2}}}$ units $=\frac{|-65|}{\sqrt{289}}$ units $=\frac{65}{17}$ units
(ii)The given parallel lines are $l(\mathrm{x}+\mathrm{y})+\mathrm{p}=0$ and $l(\mathrm{x}+\mathrm{y})-\mathrm{r}=0$
$l x+l y+p=0$ and $l x+l y-r=0$
Here, $\mathrm{A}=l, \mathrm{~B}=l, C_{1}=p$, and $C_{2}=-r$.
Therefore, the distance between the parallel lines is
$d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}=\frac{|p+r|}{\sqrt{l^{2}+l^{2}}}$ units $=\frac{|p+r|}{\sqrt{2 l^{2}}}$ units $=\frac{|p+r|}{l \sqrt{2}}$ units $=\frac{1}{\sqrt{2}} \frac{|p+r|}{l}$ units

Question 7:

Find equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2$, $3)$.

Solution 7:

The equation of the given line is
$3 \mathrm{x}-4 \mathrm{y}+2=0$
Or $\mathrm{y}=\frac{3 x}{4}+\frac{2}{4}$
or $\mathrm{y}=\frac{3}{4} x+\frac{1}{2}$, Which is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
\therefore Slope of the given line $=\frac{3}{4}$
It is known that parallel lines have the same slope.
\therefore Slope of the other line $=\mathrm{m}=\frac{3}{4}$
Now, the equation of the line that has a slop of $\frac{3}{4}$ and passes through the points $(-2,3)$ is
$(y-3)=\frac{3}{4}\{x-(-2)\}$
$4 y-12=3 x+6$
i.e., $3 \mathrm{x}-4 \mathrm{y}+18=0$

Question 8:

Find the equation of the line perpendicular to the line $\mathrm{x}-7 \mathrm{y}+5=0$ and having x intercept 3 .

Solution 8:

The given equation of the line is $x-7 y+5=0$.
Or, $y=\frac{1}{7} x+\frac{5}{7}$, which is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
\therefore Slope of the given line $=\frac{1}{7}$
The slope of the line perpendicular to the line having a slope of $\frac{1}{7}$ is $m=-\frac{1}{\left(\frac{1}{7}\right)}=-7$
The equation of the line with slope -7 and x-intercept 3 is given by
$\mathrm{y}=\mathrm{m}(\mathrm{x}-\mathrm{d})$
$\Rightarrow y=-7(x-3)$
$\Rightarrow y=-7 x+21$
$\Rightarrow 7 x+y=21$

Question 9:

Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.

Solution 9:

The given lines are $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$

$$
\begin{equation*}
y=-\sqrt{3} x+1 \quad \ldots(1) \quad \text { and } y=-\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} \tag{2}
\end{equation*}
$$

The slope of line (1) is $m_{1}=-\sqrt{3}$, while the slope of line (2) is $m_{2}=-\frac{1}{\sqrt{3}}$.
The acute angle i.e., θ between the two lines is given by
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\left|\frac{-\sqrt{3}+\frac{1}{\sqrt{3}}}{1+(-\sqrt{3})\left(-\frac{1}{\sqrt{3}}\right)}\right|$
$\tan \theta=\left|\frac{\frac{-3+1}{\sqrt{3}}}{1+1}\right|=\left|\frac{-2}{2 \times \sqrt{3}}\right|$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
Thus, the angle between the given lines is either 30° or $180^{\circ}-30^{\circ}=150^{\circ}$.

Question 10:

The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$. At right angle. Find the value of h.

Solution 10:

The slope of the line passing through points $(h, 3)$ and $(4,1)$ is
$m_{1}=\frac{1-3}{4-h}=\frac{-2}{4-h}$
The slope of line $7 x-9 y-19=0$ or $y=\frac{7}{9} x-\frac{19}{9}$ is $m_{2}=\frac{7}{9}$.
It is given that the two lines are perpendicular.
$\therefore m_{1} \times \mathrm{m}_{2}=-1$
$\Rightarrow \frac{-14}{36-9 h}=-1$
$\Rightarrow 14=36-9 h$
$\Rightarrow 9 h=36-14$
$\Rightarrow h=\frac{22}{9}$
Thus, the value of h is $\frac{22}{9}$

Question 11:

Prove that the line through the point $\left(x_{1}, y_{1}\right)$ and parallel to the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is.
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$

Solution 11:

The slope of line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ or $y=\left(\frac{-A}{B}\right) x+\left(\frac{-C}{B}\right)$ is $\mathrm{m}=-\frac{\mathrm{A}}{\mathrm{B}}$
It is known that parallel lines have the same slope.
\therefore Slope of the other line $=\mathrm{m}=-\frac{\mathrm{A}}{\mathrm{B}}$
The equation of the line passing through point $\left(x_{1}-y_{1}\right)$ and having a slope $m=-\frac{A}{B}$ is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-y_{1}=-\frac{\mathrm{A}}{\mathrm{B}}\left(x-x_{1}\right)$
$B\left(y-y_{1}\right)=-A\left(x-x_{1}\right)$
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$
Hence, the line through point $\left(x_{1}-y_{1}\right)$ and parallel to line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$

Question 12:

Two lines passing through the points $(2,3)$ intersects each other at an angle of 60°. If slope of one line is 2 , find equation of the other line.

Solution 12:

It is given that the slope of the first line, $m_{1}=2$.
Let the slope of the other line be m_{2}.
The angle between the two lines is 60°.
$\therefore \tan 60^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{2} m_{2}}\right|$
$\Rightarrow \sqrt{3}=\left|\frac{2-m_{2}}{1+2 m_{2}}\right|$
$\Rightarrow \sqrt{3}= \pm\left(\frac{2-m_{2}}{1+2 m_{2}}\right)$
$\Rightarrow \sqrt{3}=\frac{2-m_{2}}{1+2 m_{2}}$ or $\sqrt{3}=-\left(\frac{2-m_{2}}{1+2 m_{2}}\right)$
$\Rightarrow \sqrt{3}\left(1+2 m_{2}\right)=2-m_{2}$ or $\sqrt{3}\left(1+2 m_{2}\right)=-\left(2-m_{2}\right)$
$\Rightarrow \sqrt{3}+2 \sqrt{3} m_{2}+m_{2}=2$ or $\sqrt{3}+2 \sqrt{3} m_{2}-m_{2}=-2$
$\Rightarrow \sqrt{3}+(2 \sqrt{3}+1) m_{2}=2$ or $\sqrt{3}+(2 \sqrt{3}-1) m_{2}=-2$
$\Rightarrow m_{2}=\frac{2-\sqrt{3}}{(2 \sqrt{3}+1)}$ or $_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$
Case 1 :

$$
m_{2}=\left(\frac{2-\sqrt{3}}{(2 \sqrt{3}+1)}\right)
$$

The equation of the line passing through point $(2,3)$ and having a slope of $\frac{2-\sqrt{3}}{(2 \sqrt{3}+1)}$ is

$$
\begin{aligned}
& (\mathrm{y}-3)=\frac{(2-\sqrt{3})}{(2 \sqrt{3}+1)}(\mathrm{x}-2) \\
& (2 \sqrt{3}+1) y-3(2 \sqrt{3}+1)=(2-\sqrt{3}) x-(2-\sqrt{3}) 2 \\
& (\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-4+2 \sqrt{3}+6 \sqrt{3}+3 \\
& (\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}
\end{aligned}
$$

In this case, the equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3}$

Case II : $\quad \mathrm{m}_{2}=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$
The equation of the line passing through points $(2,3)$ and having a slope of $\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}$ is
$(y-3)=\frac{-(2+\sqrt{3})}{(2 \sqrt{3}-1)}(x-2)$
$(2 \sqrt{3}-1) y-3(2 \sqrt{3}-1)=-(2 \sqrt{3}-1) x+2(2 \sqrt{3}-1)$
$(2 \sqrt{3}-1) y+(2 \sqrt{3}-1) x=4+2 \sqrt{3}+6 \sqrt{3}-3$
$(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$
If this case, the equation of the other line is $(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$
Thus, the required equation of the other line is $(\sqrt{3}-2) x+(2 \sqrt{3}+1) y=-1+8 \sqrt{3} \operatorname{or}(2+\sqrt{3}) x+(2 \sqrt{3}-1) y=1+8 \sqrt{3}$

Question 13:

Find the equation of the right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.

Solution 13:

The right bisector of a line segment bisects the line segment at 90°.
The end-points of the line segment are given as $\mathrm{A}(3,4)$ and $\mathrm{B}(-1,2)$.
Accordingly, mid-point of $\mathrm{AB}=\left(\frac{3-1}{2}, \frac{4+2}{0}\right)=(1,3)$
Slope of $\mathrm{AB}=\frac{2-4}{-1-3}=\frac{-2}{-4}=\frac{1}{2}$
\therefore Slope of the line perpendicular to $\mathrm{AB}=-\frac{1}{\left(\frac{1}{2}\right)}=-2$
The equation of the line passing through $(1,3)$ and having a slope of -2 is
$(y-3)=-2(x-1)$
$Y-3=-2 x+2$
$2 x+y=5$
Thus, the required equation of the line is $2 x+y=5$.

Question 14:

Find the coordinates of the foot of perpendicular from the points $(-1,3)$ to the line $3 x-4 y-16=0$.

Solution 14:

Let (a, b) be the coordinates of the foot of the perpendicular from the points $(-1,3)$ to the line $3 x-4 y-16=0$.

Slope of the line joining $(-1,3)$ and $(\mathrm{a}, \mathrm{b}), m_{1}=\frac{b-3}{a+1}$
Slope of the line $3 x-4 y-16=0$ or $y=\frac{3}{4} x-4, m_{2}=\frac{3}{4}$
Since these two lines are perpendicular, $m_{1} m_{2}=-1$
$\therefore\left(\frac{b-3}{a+1}\right) \times\left(\frac{3}{4}\right)=-1$
$\Rightarrow \frac{3 b-9}{4 a+4}=-1$
$\Rightarrow 3 b-9=-4 a-4$
$\Rightarrow 4 a+3 b=5$
Point (a, b) lies on line $3 \mathrm{x}-4 \mathrm{y}=16$.
$\therefore 3 a-4 b=16$
On solving equations (1) and (2), we obtain
$a=\frac{68}{25}$ and $\mathrm{b}=-\frac{49}{25}$
Thus, the required coordinates of the foot of the perpendicular are $\left(\frac{68}{25},-\frac{49}{25}\right)$

Question 15:

The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the values of m and c.

Solution 15:

The given equation of line is $y=m x+c$.
It is given that the perpendicular from the origin meets the given line at $(-1,2)$.
Therefore, the line joining the points $(0,0)$ and $(-1,2)$ is perpendicular to the given line.
\therefore slope of the line joining $(0,0)$ and $(-1,2)=\frac{2}{-1}=-2$
The slope of the given line is m .
$\therefore \mathrm{m} \times-2=-1 \quad$ [The two lines are perpendicular]
$\Rightarrow \mathrm{m}=\frac{1}{2}$
Since points $(-1,2)$ lies on the given line, it satisfies the equation $y=m x+c$.
$\therefore 2=\mathrm{m}(-1)+\mathrm{c}$
$\Rightarrow 2=2+\frac{1}{2}(-1)+c$
$\Rightarrow \mathrm{c}=2+\frac{1}{2}=\frac{5}{2}$
Thus, the respective values of m and c are $\frac{1}{2}$ and $\frac{5}{2}$.

Question 16:

If p and q are the lengths of perpendicular from the origin to the lines $\mathrm{x} \cos \theta-\mathrm{y} \sin \theta=\mathrm{k}$
$\cos 2 \theta$ and $\mathrm{x} \sec \theta+\mathrm{y} \operatorname{cosec} \theta=\mathrm{k}$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$

Solution 16:

The equation of given lines are
$\mathrm{x} \cos \theta-\mathrm{y} \sin \theta=\mathrm{k} \cos 2 \theta \quad \ldots$ (1)
$\mathrm{x} \sec \theta+\mathrm{y} \operatorname{cosec} \theta=\mathrm{k}$
The perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point $\left(x_{1}, x_{2}\right)$ is given by $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
On comparing equation (1) to the general equation of line i.e., $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, we obtain A $=\cos \theta, \mathrm{B}=-\sin \theta$, and $\mathrm{C}=-\mathrm{k} \cos 2 \theta$.
It is given that p is the length of the perpendicular from $(0,0)$ to line (1).
$\therefore p=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k \cos 2 \theta|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=|-k \cos 2 \theta|$
On comparing equation (2) to the general equation of line i.e., $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, we obtain A $=\sec \theta, \mathrm{B}=\operatorname{cosec} \theta$, and $\mathrm{C}=-\mathrm{k}$.
It is given that q is the length of the perpendicular from $(0,0)$ to line (2).
$\therefore q=\frac{|A(0)+B(0)+C|}{\sqrt{A^{2}+B^{2}}}=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}}$
From (3) and (4), we have

$$
\begin{aligned}
& p^{2}+4 q^{2}=(|-k \cos 2 \theta|)^{2}+4\left(\frac{|-k|}{\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}}\right)^{2} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+\frac{4 k^{2}}{\left(\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}\right)} \\
& =k^{2} \cos ^{2} 2 \theta+4 k^{2} \sin ^{2} \theta \cos ^{2} \theta \\
& =k^{2} \cos ^{2} 2 \theta+k^{2}\left(2 \sin \theta{\cos \theta)^{2}}^{=k^{2} \cos ^{2} 2 \theta+k^{2} \sin ^{2} 2 \theta}\right. \\
& =k^{2}\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) \\
& =k^{2}
\end{aligned}
$$

Hence, we proved that $p^{2}+4 q^{2}=k^{2}$

Question 17:

In the triangle ABC with vertices $\mathrm{A}(2,3), \mathrm{B}(4,-1)$ and $\mathrm{C}(1,2)$, find the equation and length of altitude from the vertex A .

Solution 17:

Let $A D$ be the altitude of triangle $A B C$ from vertex A.
Accordingly, ADLBC

The equation of the line passing through point $(2,3)$ and having a slope of 1 is
$(\mathrm{y}-3)=1(\mathrm{x}-2)$
$\Rightarrow x-y+1=0$
$\Rightarrow y-x=1$
Therefore, equation of the altitude from vertex $\mathrm{A}=\mathrm{y}-\mathrm{x}=1$.

Length of $\mathrm{AD}=$ Length of the perpendicular from $\mathrm{A}(2,3)$ to BC
The equation of $B C$ is
$(y+1)=\frac{2+1}{1-4}(x-4)$
$\Rightarrow(y+1)=-1(x-4)$
$\Rightarrow y+1=-x+4$
$\Rightarrow x+y-3=0$
The perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
On comparing equation (1) to the general equation of line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, we obtain $\mathrm{A}=1$,
$\mathrm{B}=1$, and $\mathrm{C}=-3$.
\therefore Length of $\mathrm{AD}=\frac{|1 \times 2+1 \times 3-3|}{\sqrt{1^{2}+1^{2}}}$ units $=\frac{|2|}{\sqrt{2}}$ units $=\frac{2}{\sqrt{2}}$ units $=\sqrt{2}$ units
Thus, the equation and length of the altitude from vertex A are $y-x=1$ and $\sqrt{2}$ units respectively.

Question 18:

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a , and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Solution 18:

It is known that the equation of a line whose intercepts on the axes are a and b is
$\frac{x}{a}+\frac{y}{b}=1$
Or $b x+a y=a b$
Or $b x+a y-a b=0$
The perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
On comparing equation (1) to the general equation of line $\mathrm{Ax}-\mathrm{By}+\mathrm{C}=0$, we obtain $\mathrm{A}=\mathrm{b}$, $\mathrm{B}=\mathrm{a}$, and $\mathrm{C}=-\mathrm{ab}$.
Therefore, if p is the length of the perpendicular from point $\left(x_{1}, y_{1}\right)=(0,0)$ to line (1),
We obtain
$p=\frac{|A(0)+B(0)-a b|}{\sqrt{b^{2}+a^{2}}}$
$\Rightarrow p=\frac{|-a b|}{\sqrt{b^{2}+a^{2}}}$
On squaring both sides, we obtain
$p^{2}=\frac{(-a b)^{2}}{a^{2}+b^{2}}$
$\Rightarrow p^{2}\left(a^{2}+b^{2}\right)=a^{2} b^{2}$
$\Rightarrow \frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{1}{p^{2}}$
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
Hence, we showed that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Miscellaneous Exercise

Question 1:

Find the value of k for which the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is
(a) Parallel to x-axis,
(b) Parallel to y-axis,
(c) Passing through the origin.

Solution 1:

The given equation of line is
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$
(a) If the given line is parallel to the x-axis , then

Slope of the given line $=$ Slope of the x-axis
The given line can be written as
$\left(4-k^{2}\right) y=(k-3) x+k^{2}-7 k+6=0$
$y=\frac{(\mathrm{k}-3)}{\left(4-\mathrm{k}^{2}\right)} x+\frac{\mathrm{k}^{2}-7 k+6}{\left(4-\mathrm{k}^{2}\right)}$, which is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
\therefore Slope of the given line $=\frac{(k-3)}{\left(4-k^{2}\right)}$
Slope of the x -axis $=0$

$$
\begin{aligned}
& \therefore \frac{(k-3)}{\left(4-k^{2}\right)}=0 \\
& \Rightarrow k-3=0 \\
& \Rightarrow k=3
\end{aligned}
$$

Thus, the given line is parallel to x -axis, then the value of k is 3 .
(b) If the given line is parallel to the y-axis, it is vertical. Hence, its slope will be undefined.

The slope of the given line is $\frac{(k-3)}{\left(4-k^{2}\right)}$
Now, $\frac{(k-3)}{\left(4-k^{2}\right)}$ is undefined at $\mathrm{k}^{2}=4$
$\mathrm{k}^{2}=4$
$\Rightarrow \mathrm{k}= \pm 2$
Thus, if the given line is parallel to the y -axis, then the value of k is ± 2.
(c) If the given line is passing through the origin, then point $(0,0)$ satisfies the given equation of line.
$(k-3)(0)-\left(4-\mathrm{k}^{2}\right)(0)+\mathrm{k}^{2}-7 k+6=0$
$\mathrm{k}^{2}-7 k+6=0$
$\mathrm{k}^{2}-6 k-k+6=0$
$(k-6)(k-1)=0$
$\mathrm{k}=1$ or 6
Thus, if the given line is passing through the origin, then the value of k is either 1 or 6 .

Question 2:

Find the values of θ and p , if the equation $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{p}$ is the normal form of the line $\sqrt{3} x+y+2=0$

Solution 2:

The equation of the given line is $\sqrt{3} x+y+2=0$
This equation can be reduced as
$\sqrt{3} x+y+2=0$
$\Rightarrow-\sqrt{3} x-y=2$
On dividing both sides by $\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2$, we obtain
$-\frac{\sqrt{3}}{2} x-\frac{1}{2} y=\frac{2}{2}$
$\Rightarrow\left(-\frac{\sqrt{3}}{2}\right) x+\left(-\frac{1}{2}\right) y=1$
On comparing equation (1) to $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{p}$, we obtain $\cos \theta=-\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2}$, and $\mathrm{p}=1$
Since the value of $\sin \theta$ and $\cos \theta$ are negative, $\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
Thus, the respective values of θ and p are $\frac{7 \pi}{6}$ and 1 .

Question 3:

Find the equation of the line, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

Solution 3:

Let the intercepts cut by the given lines on the axes be a and b.

It is given that
$a+b=1$
$a b=-6$
On solving equations (1) and (2), we obtain
$a=3$ and $b=-2$ or $a=-2$ and $b=3$
It is known that the equation of the line whose intercepts on the axes are a and b is
$\frac{x}{a}+\frac{y}{b}=1$ or $\mathrm{bx}+\mathrm{ay}-\mathrm{ab}=0$
Case I: $\mathrm{a}=3$ and $\mathrm{b}=-2$
In case, the equation of the line is $-2 x+3 y+6=0$, i.e., $2 x-3 y=6$.
Case II: $\mathrm{a}=-2$ and $\mathrm{b}=3$
In this case, the equation of the line is $3 x-2 y+6=0$, i.e., $-3 x+2 y=6$.
Thus, the required equation of the lines are $2 x-3 y=6$ and $-3 x+2 y=6$.

Question 4:

What are the points on the y -axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

Solution 4:

Let $(0, \mathrm{~b})$ be the point on y -axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.
The given line can be written as $4 x+3 y-12=0$
On comparing equation (1) to the general equation of line $A x+B y+C=0$, we obtain $A=4$, $\mathrm{B}=3, \mathrm{C}=-12$.
It is known that the perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
Therefore, if $(0, b)$ is the point on the y-axis whose distance from line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units, then:
$4=\frac{|4(0)+3(b)-12|}{\sqrt{4^{2}+3^{2}}}$
$\Rightarrow 4=\frac{|3 b-12|}{5}$
$\Rightarrow 20=|3 b-12|$
$\Rightarrow 20= \pm(3 b-12)$
$\Rightarrow 20=(3 b-12)$ or $20=-(3 b-12)$
$\Rightarrow 3 b=20+12$ or $3 b=-20+12$
$\Rightarrow b=\frac{32}{3}$ orb $=-\frac{8}{3}$

Thus, the required points are $\left(0, \frac{32}{3}\right)$ and $\left(0,-\frac{8}{3}\right)$

Question 5:

Find the perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$

Solution 5:

The equation of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ is given by $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$
$y-\sin \theta=\frac{\sin \phi-\sin \theta}{\cos \phi-\cos \theta}(x-\cos \theta)$
$y(\cos \phi-\cos \theta)-\sin \theta(\cos \phi-\cos \theta)=x(\sin \phi-\sin \theta)-\cos \theta(\sin \phi-\sin \theta)$
$x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\cos \theta \sin \phi-\cos \theta \sin \theta-\sin \theta \cos \phi+\sin \theta \cos \theta=0$
$x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\sin (\phi-\theta)=0$
$A x+B y+C=0$, where $A=\sin \theta-\sin \phi, B=\cos \phi-\cos \theta$, and $C=\sin (\phi-\theta)$
It is known that the perpendicular distance (d) of a line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ from a point $\left(x_{1}, y_{1}\right)$ is given by
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
Therefore, the perpendicular distance (d) of the given line from point $\left(x_{1}, y_{1}\right)=(0,0)$ is
$d=\frac{|(\sin \theta-\sin \phi)(0)+(\cos \phi-\cos \theta)(0)+\sin (\phi-\theta)|}{\sqrt{(\sin \theta-\sin \phi)^{2}+(\cos \phi-\cos \theta)^{2}}}$
$=\frac{|\sin (\phi-\theta)|}{\sqrt{\sin ^{2} \theta+\sin ^{2} \phi-2 \sin \theta \sin \phi+\cos ^{2} \phi+\cos ^{2} \theta-2 \cos \phi \cos \theta}}$
$=\frac{|\sin (\phi-\theta)|}{\sqrt{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)-2(\sin \theta \sin \phi+\cos \phi \cos \theta)}}$
$=\frac{|\sin (\phi-\theta)|}{\sqrt{1+1-2(\cos (\phi-\theta))}}$
$=\frac{|\sin (\phi-\theta)|}{\sqrt{2(1-\cos (\phi-\theta))}}$
$=\frac{|\sin (\phi-\theta)|}{\sqrt{2\left(2 \sin ^{2}\left(\frac{\phi-\theta}{2}\right)\right)}}$
$=\frac{|\sin (\phi-\theta)|}{\left|2 \sin \left(\frac{\phi-\theta}{2}\right)\right|}$

Question 6:

Find the equation of the line parallel to y-axis and draw through the point of intersection of the lines $x-7 y+5=0$ and $3 x+y=0$.

Solution 6:

The equation of any line parallel to the y-axis is of the form
$\mathrm{x}=\mathrm{a}$
The two given lines are
$x-7 y+5=0$
$3 x+y=0$
On solving equation (2) and (3), we obtain $x=-\frac{5}{22}$ and $y=\frac{15}{22}$
Therefore, $\left(-\frac{5}{22}, \frac{15}{22}\right)$ is the point of intersection of lines (2) and (3).
Since line $\mathrm{x}=$ a passes through point $\left(-\frac{5}{22}, \frac{15}{22}\right), \mathrm{a}=-\frac{5}{22}$
Thus, the required equation of the line is $x=-\frac{5}{22}$

Question 7:

Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point, where it meets the y-axis.

Solution 7:

The equation of the given line is $\frac{x}{4}+\frac{y}{6}=1$
This equation can also be written as $3 \mathrm{x}+2 \mathrm{y}-12=0$
$y=\frac{-3}{2} x+6$, which is of the form $y=m x+c$
\therefore Slope of the given line $=\frac{-3}{2}$
\therefore Slope of line perpendicular to the given line $=-\frac{1}{\left(-\frac{3}{2}\right)}=\frac{2}{3}$
Let the given line intersect the y -axis at $(0, \mathrm{y})$.
On Substituting X with 0 in the equation of the given line, we obtain $\frac{y}{6}=1 \Rightarrow y=6$
\therefore The given line intersects the y-axis at $(0,6)$.
The equation of the line that has a slope of $\frac{2}{3}$ and passes through point $(0,6)$ is
$(y-6)=\frac{2}{3}(x-0)$
$3 y-18=2 x$
$2 x-3 y+18=0$
Thus, the required equation of the line is $2 x-3 y+18=0$

Question 8:

Find the area of the triangle formed by the line $y-x=0, x+y=0$ and $x-k=0$.

Solution 8:

The equation of the given lines are
$y-x=0$
$x+y=0$
$\mathrm{x}-\mathrm{k}=0$

The point of intersection of lines (1) and (2) is given by $x=0$ and $y=0$
The point of intersection of lines (2) and (3) is given by $x=k$ and $y=-k$
The point of intersection of lines (3) and (1) is given by $x=k$ and $y=k$
Thus, the vertices of the triangle formed by the three given lines are $(0,0),(k,-k)$, and (k, k).
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of the triangle formed by the three given lines
$=\frac{1}{2}|0(-k-k)+k(k-0)+k(0+k)|$ square units
$=\frac{1}{2}\left|k^{2}+k^{2}\right|$ square units
$=\frac{1}{2}\left|2 k^{2}\right|$ square units
$=k^{2}$ square units

Question 9:

Find the value of p so that the three lines $3 x+y-2=0, p x+2 y-3=0$ and $2 x-y-3=0$ may intersect at one point.

Solution 9:

The equation of the given lines are
$3 \mathrm{x}+\mathrm{y}-2=0$
$\mathrm{px}+2 \mathrm{y}-3=0$
$2 \mathrm{x}-\mathrm{y}-3=0$
On solving equations (1) and (3), we obtain
$x=1$ and $y=-1$
Since these three lines may intersect at one point, the point of intersection of lines (1) and (3) will also satisfy line (2).
$\mathrm{p}(1)+2(-1)-3=0$
$\mathrm{p}-2-3=0$
$\mathrm{p}=5$
Thus, the required value of p is 5 .

Question 10:

If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$, and $y=m_{2} x+c_{2}$ are concurrent, then show that $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$

Solution 10:

The equation of the given lines are

$$
\begin{align*}
& y=m_{1} x+c_{1} \tag{1}\\
& y=m_{2} x+c_{2} \tag{2}\\
& y=m_{2} x+c_{3} \tag{3}
\end{align*}
$$

On subtracting equation (1) from (2) we obtain
$0=\left(m_{2}-m_{1}\right) x+\left(c_{2}-c_{1}\right)$
$\Rightarrow\left(m_{1}-m_{2}\right) x=c_{2}-c_{1}$
$\Rightarrow x=\frac{c_{2}-c_{1}}{m_{1}-m_{2}}$
On substituting this value of x in (1), we obtain
$y=m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1}$
$y=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1}$
$y=\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}}$
$y=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}$
$\therefore\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)$ is the point of intersection of line (1) and (2).
It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy equation (3).
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3}$
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}+m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}}$
$m_{1} c_{2}-m_{2} c_{1}-m_{3} c_{2}+m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}=0$
$m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
Hence, $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$

Question 11:

Find the equation of the line through the points $(3,2)$ which make an angle of 45° with the line $\mathrm{x}-2 \mathrm{y}=3$.

Solution 11:

Let the slope of the required line be m_{1}.
The given line can be written as $\mathrm{y}=\frac{1}{2} \mathrm{x}-\frac{3}{2}$, which is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
\therefore Slope of the given line $=m_{2}=\frac{1}{2}$
It is given that the angle between the required line and line $x-2 y=3$ is 45°.
We know that if θ is the acute angle between lines l_{1} and l_{2} with slopes m_{1} and m_{2} respectively, then
$\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$
$\therefore \tan 45^{\circ}=\frac{\left|m_{2}-m_{1}\right|}{1+m_{1} m_{2}}$
$\Rightarrow 1=\left|\frac{\frac{1}{2}-m_{1}}{1+\frac{m_{1}}{2}}\right|$
$\Rightarrow 1=\left|\frac{\left(\frac{1-2 m_{1}}{2}\right)}{\frac{2+m_{1}}{2}}\right|$
$\Rightarrow 1=\left|\frac{1-2 m_{1}}{2+m_{1}}\right|$
$\Rightarrow 1= \pm\left(\frac{1-2 m_{1}}{2+m_{1}}\right)$
$\Rightarrow 1=\frac{1-2 m_{1}}{2+m_{1}}$ or $1=-\left(\frac{1-2 m_{1}}{2+m_{1}}\right)$
$\Rightarrow 2+m_{1}=1-2 m_{1}$ or $2+m_{1}=-1+2 m_{1}$
$\Rightarrow m_{1}=-\frac{1}{3}$ or $m_{1}=3$
Case I: $m_{1}=3$
The equation of the line passing through $(3,2)$ and having a slope of 3 is:
$y-2=3(x-3)$
$y-2=3 x-9$
$3 x-y=7$
Case II: $m_{1}=-\frac{1}{3}$
The equation of the line passing through $(3,2)$ and having a slope of $-\frac{1}{3}$ is :
$y-2=-\frac{1}{3}(x-3)$
$3 y-6=-x+3$
$x+3 y=9$
Thus, the equations of the line are $3 \mathrm{x}-\mathrm{y}=7$ and $x+3 y=9$.

Question 12:

Find the equation of the line passing through the point of intersection of the line $4 x+7 y-3$ $=0$ and $2 \mathrm{x}-3 \mathrm{y}+1=0$ that has equal intercepts on the axes.

Solution 12:

Let the equation of the line having equal intercepts on the axes be
$\frac{x}{a}+\frac{y}{a}=1$
Or $\mathrm{x}+\mathrm{y}=\mathrm{a}$
On solving equations $4 x+7 y-3=0$ and $2 x-3 y+1=0$, we obtain $x=\frac{1}{13}$ and $y=\frac{5}{13}$
$\therefore\left(\frac{1}{13}, \frac{5}{13}\right)$ is the point of the intersection of the two given lines.
Since equation (1) passes through point $\left(\frac{1}{13}, \frac{5}{13}\right)$,

$$
\begin{aligned}
& \frac{1}{13}+\frac{5}{13}=a \\
& \Rightarrow a=\frac{6}{13}
\end{aligned}
$$

\therefore Equation (1) becomes $\mathrm{x}+\mathrm{y}=\frac{6}{13}$, i.e., $13 \mathrm{x}+13 \mathrm{y}=6$.
Thus, the required equation of the line $13 x+13 y=16$.

Question 13:

Show that the equation of the line passing through the origin and making an angle θ with the line
$y=m x+c$, is $\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$

Solution 13:

Let the equation of the line passing through the origin be $\mathrm{y}=m_{1} x$.
If this line makes an angle of θ with line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, then angle θ is given by
$\therefore \tan \theta=\left|\frac{m_{1}-m}{1+m_{1} m}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right|$
$\Rightarrow \tan \theta= \pm\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
$\Rightarrow \tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$ or $\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
$\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$

Case I:

$\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$
$\Rightarrow \tan \theta+\frac{y}{x} m \tan \theta=\frac{y}{x}-m$
$\Rightarrow m+\tan \theta=\frac{y}{x}(1-m \tan \theta)$
$\Rightarrow \frac{y}{x}=\frac{m+\tan \theta}{1-m \tan \theta}$

Case II: $\tan \theta=-\left(\frac{\frac{x}{y}-m}{1+\frac{y}{x} m}\right)$
$\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
$\Rightarrow \tan \theta+\frac{y}{x} m \tan \theta=-\frac{y}{x}+m$
$\Rightarrow \frac{y}{x}(1+m \tan \theta)=m-\tan \theta$
$\Rightarrow \frac{y}{x}=\frac{m-\tan \theta}{1+m \tan \theta}$
Therefore, the required line is given by $\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$

Question 14:

In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divisible by the line $x+y=4$?
Solution 14:
The equation of the line joining the points $(-1,1)$ and $(5,7)$ is given b y
$y-1=\frac{7-1}{5+1}(x+1)$
$y-1=\frac{6}{6}(x+1)$
$x-y+2=0$
The equation of the given line is
$X+y-4=0$
The points of intersection of line (1) and (2) is given by $\mathrm{x}=1$ and $\mathrm{y}=3$

Let point $(1,3)$ divide the line segment joining $(-1,1)$ and $(5,7)$ in the ratio $1: k$.
Accordingly, by section formula,

$$
\begin{aligned}
& (1,3)=\left(\frac{k(-1)+1(5)}{1+k}, \frac{k(1)+1(7)}{1+k}\right) \\
& \Rightarrow(1,3)=\left(\frac{-k+5}{1+k}, \frac{k+7}{1+k}\right) \\
& \Rightarrow \frac{-k+5}{1+k}=1, \frac{k+7}{1+k}=3 \\
& \therefore \frac{-k+5}{1+k}=1 \\
& \Rightarrow-k+5=1+k \\
& \Rightarrow 2 k=4 \\
& \Rightarrow k=2
\end{aligned}
$$

Thus, the line joining the points $(-1,1)$ and $(5,7)$ id divided by line $x+y=4$ in the ratio $1: 2$.

Question 15:

Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

Solution 15:

The given lines are
$2 x-y=0$
$4 x+7 y+5=0$
A $(1,2)$ is a point on line (1).
Let B be the point intersection of line (1) and (2).

On solving equations (1) and (2), we obtain $x=\frac{-5}{18}$ and $y=\frac{-5}{9}$
\therefore Coordinates of point B are $\left(\frac{-5}{18}, \frac{-5}{9}\right)$.
By using distance formula, the distance between points A and B can be obtained as
$A B=\sqrt{\left(1+\frac{5}{18}\right)^{2}+\left(2+\frac{5}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{18}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{2 \times 9}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
$=\sqrt{\left(\frac{23}{9}\right)^{2}+\left(\frac{1}{4}+1\right)}$ units
$=\frac{23}{9} \sqrt{\frac{5}{4}}$ units
$=\frac{23}{9} \times \frac{\sqrt{5}}{2}$ units
$=\frac{23 \sqrt{5}}{18}$ units
Thus, the required distance is $\frac{23 \sqrt{5}}{18}$ units .

Question 16:

Find the direction in which a straight line must be drawn through the points $(-1,2)$ so that its point of intersection with line $x+y=4$ may be at a distance of 3 units from this point.

Solution 16:

Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ be the line through point $(-1,2)$.
Accordingly, $2=m(-1)+c$.
$\Rightarrow 2=-m+c$
$\Rightarrow c=m+2$
$\therefore y=m x+m+2$
The given line is
$x+y=4$
On solving equation (1) and (2), we obtain
$x=\frac{2-m}{m+1}$ and $y=\frac{5 m+2}{m+1}$
$\therefore\left(\frac{2-m}{m+1}, \frac{5 m+2}{m+1}\right)$ is the point of intersection of line (1) and (2).
Since this point is at a distance of 3 units from points ($-1,2$), accordingly to distance formula,

$$
\begin{aligned}
& \sqrt{\left(\frac{2-m}{m+1}+1\right)^{2}+\left(\frac{5 m+2}{m+1}-2\right)^{2}}=3 \\
& \Rightarrow\left(\frac{2-m+m+1}{m+1}\right)^{2}+\left(\frac{5 m+2-2 m-2}{m+1}\right)^{2}=3^{2} \\
& \Rightarrow \frac{9}{(m+1)^{2}}+\frac{9 m^{2}}{(m+1)^{2}}=9 \\
& \Rightarrow \frac{1+m^{2}}{(m+1)^{2}}=1 \\
& \Rightarrow 1+m^{2}=m^{2}+1+2 m \\
& \Rightarrow 2 m=0 \\
& \Rightarrow m=0
\end{aligned}
$$

Thus, the slope of the required line must be zero i.e., the line must be parallel to the x-axis.

Question 17:

The hypotenuse of a right angled triangle has its ends at the points $(1,3)$ and $(-4,1)$. Find the equation of the legs (perpendicular sides) of the triangle.

Solution 17:

Let ABC be the right angles triangle, where $\angle \mathrm{C}=90^{\circ}$
There are infinity many such lines.
Let m be the slope of AC.
\therefore Slope of BC $=-\frac{1}{m}$
Equation of AC: $\quad y-3=m(x-1)$
$\Rightarrow x-1=\frac{1}{m}(y-3)$
Equation of BC: $\quad y-1=-\frac{1}{m}(x+4)$
$\Rightarrow \mathrm{x}+4=-\mathrm{m}(\mathrm{y}-1)$
For a given value of m, we can get these equations
For $m=0, y-3=0 ; \quad x+4=0$
For $\mathrm{m} \rightarrow \infty, \mathrm{x}-1=0 ; \quad \mathrm{y}-1=0$

Question 18:

Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

Solution 18:

The equation of the given line is
$x+3 y=7$
Let point $\mathrm{B}(\mathrm{a}, \mathrm{b})$ be the image of point $\mathrm{A}(3,8)$.
Accordingly, line (1) is the perpendicular bisector of AB.

Slope of $\mathrm{AB}=\frac{b-8}{a-3}$, while the slope of the line $(1)=-\frac{1}{3}$
Since line (1) is perpendicular to $A B$,
$\left(\frac{b-8}{a-3}\right) \times\left(-\frac{1}{3}\right)=-1$
$\Rightarrow \frac{b-8}{3 a-9}=1$
$\Rightarrow b-8=3 a-9$
$\Rightarrow 3 a-b=1$
Mid-Point of AB $=\left(\frac{a+3}{2}, \frac{b+8}{2}\right)$
The mid-point of the line segment AB will also satisfy line (1).
Hence, from equation (1), we have
$\left(\frac{a+3}{2}\right)+3\left(\frac{b+8}{2}\right)=7$
$\Rightarrow a+3+3 b+24=14$
$\Rightarrow a+3 b=-13$
On solving equations (2) and (3), we obtain $a=-1$ and $b=-4$.
Thus, the image of the given point with respect to the given line is $(-1,-4)$.

Question 19:

If the lines $y=3 x+1$ and $2 y=x+3$ are equally indicated to the line $y=m x+4$, find the value of m.

Solution 19:

The equation of the given lines are
$y=3 x+1 \ldots(1)$
$2 y=x+3 \quad \ldots$ (2)
$y=m x+4 \ldots$...3)
Slope of line (1), $m_{1}=3$

Slope of line (2), $m_{2}=\frac{1}{2}$
Slope of line (3), $m_{3}=m$
It is given that lines (1) and (2) are equally inclined to line (3). This means that the given angle between lines (1) and (3) equals the angle between lines (2) and (3).
$\therefore\left|\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}\right|=\left|\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}\right|$
$\Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{\frac{1}{2}-m}{1+\frac{1}{2} m}\right|$
$\Rightarrow\left|\frac{3-m}{1+3 m}\right|=\left|\frac{1-2 m}{m+2}\right|$
$\Rightarrow \frac{3-m}{1+3 m}= \pm\left(\frac{1-2 m}{m+2}\right)$
$\Rightarrow \frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$ or $\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$
If $\frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$, then
$(3-m)(m+2)=(1-2 m)(1+3 m)$
$\Rightarrow-m^{2}+m+6=1+m-6 m^{2}$
$\Rightarrow 5 m^{2}+5=0$
$\Rightarrow\left(m^{2}+1\right)=0$
$\Rightarrow m=\sqrt{-1}$, which is not real
Hence, this case is not possible.
If $\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$,then
$\Rightarrow(3-m)(m+2)=-(1-2 m)(1+3 m)$
$\Rightarrow-m^{2}+m+6=-\left(1+m-6 m^{2}\right)$
$\Rightarrow 7 m^{2}-2 m-7=0$
$\Rightarrow m=\frac{2 \pm \sqrt{4-4(7)(-7)}}{2(7)}$
$\Rightarrow m=\frac{2 \pm 2 \sqrt{1+49}}{14}$
$\Rightarrow m=\frac{1 \pm 5 \sqrt{2}}{7}$
Thus, the required value of m is $\frac{1 \pm 5 \sqrt{2}}{7}$

Question 20:

If sum of the perpendicular distance of a variable point $P(x, y)$ from the lines $x+y-5=0$ and $3 x-2 y+7=0$ is always 10 . Show that P must move on a line.

Solution 20:

The equation of the given lines are

$$
\begin{equation*}
x+y-5=0 \tag{1}
\end{equation*}
$$

$3 \mathrm{x}-2 \mathrm{y}+7=0$
The perpendicular distance of $P(x, y)$ from lines (1) and (2) are respectively given by
$d_{1}=\frac{|x+y-5|}{\sqrt{(1)^{2}+(1)^{2}}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{(3)^{2}+(-2)^{2}}}$
i.e., $d_{1}=\frac{|x+y-5|}{\sqrt{2}}$ and $d_{2}=\frac{|3 x-2 y+7|}{\sqrt{13}}$

It is given that $d_{1}+d_{2}=10$
$\therefore \frac{|x+y-5|}{\sqrt{2}}+\frac{|3 x-2 y+7|}{\sqrt{13}}=10$
$\Rightarrow \sqrt{13}|x+y-5|+\sqrt{2}|3 x-2 y+7|-10 \sqrt{26}=0$
$\Rightarrow \sqrt{13}(x+y-5)+\sqrt{2}(3 x-2 y+7)-10 \sqrt{26}=0$
[Assuming $(x+y-5)$ and $(3 x-2 y+7)$ are positive]
$\Rightarrow \sqrt{13} x+\sqrt{13} y-5 \sqrt{13}+3 \sqrt{2 x}-2 \sqrt{2 y}+7 \sqrt{2}-10 \sqrt{26}=0$
$\Rightarrow x(\sqrt{13}+3 \sqrt{2})+y(\sqrt{13}-2 \sqrt{2})+(7 \sqrt{2}-5 \sqrt{13}-10 \sqrt{26})=0$, which is the equation of a line.
Similarly, we can obtain the equation of line for any signs of $(x+y-5)$ and $(3 x-2 y+7)$.
Thus, point P must move on a line.

Question 21:

Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+$ $6=0$.

Solution 21:

The equation of the given lines are
$9 x+6 y-7=0 \ldots$... 1)
$3 x+2 y+6=0 \ldots$ (2)
Let $\mathrm{p}(\mathrm{h}, \mathrm{k})$ be the arbitrary point is equidistant from lines (1) and (2). The perpendicular distance of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ from line (1) is given by
$d_{1}=\frac{|9 h+6 k-7|}{(9)^{2}+(6)^{2}}=\frac{|9 h+6 k-7|}{\sqrt{117}}=\frac{|9 h+6 k-7|}{3 \sqrt{13}}$
The perpendicular distance of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ from line (2) is given by
$d_{2}=\frac{|3 h+2 k+6|}{\sqrt{(3)^{2}+(2)^{2}}}=\frac{|3 h+2 k+6|}{\sqrt{13}}$
Since $\mathrm{p}(\mathrm{h}, \mathrm{k})$ is equidistant from lines (1) and (2), $d_{1}=d_{2}$
$\therefore \frac{|9 h+6 k-7|}{3 \sqrt{13}}=\frac{|3 h+2 k+6|}{\sqrt{13}}$
$\Rightarrow|9 h+6 k-7|=3|3 h+2 k+6|$
$\Rightarrow|9 h+6 k-7|= \pm 3(3 h+2 k+6)$
$\Rightarrow 9 h+6 k-7=3(3 h+2 k+6)$ or $9 h+6 k-7=-3(3 h+2 k+6)$
The case $9 h+6 k-7=3(3 h+2 k+6)$ is not possible as
$9 h+6 k-7=3(3 h+2 k+6) \Rightarrow-7=18$ (which is absurd)
$\therefore 9 h+6 k-7=-3(3 h+2 k+6)$
$9 h+6 k-7=-9 h-6 k-18$
$\Rightarrow 18 h+12 k+11=0$
Thus, the required equation of the line is $18 x+12 y+11=0$

Question 22:

A ray of light passing through the point $(1,2)$ reflects on the x-axis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.

Solution 22:

Let the coordinates of point A be $(a, 0)$.
Draw a line (AL) perpendicular to the x -axis.

We know that angle of incidence is equal to angle of reflection. Hence, let $\angle B A L=\angle C A L=\phi$
Let $\angle C A X=\theta$
$\therefore \angle O A B=180^{\circ}-(\theta+2 \phi)=180^{\circ}-\left[\theta+2\left(90^{\circ}-\theta\right)\right]$
$=180^{\circ}-\theta-180^{\circ}+2 \phi$
$=\theta$
$\therefore \angle B A X=180^{\circ}-\theta$
Now, slope of line $A C=\frac{3-0}{5-a}$
$\Rightarrow \tan \theta=\frac{3}{5-a}$
SLope of line $A B=\frac{2-0}{1-a}$
$\Rightarrow \tan \left(180^{\circ}-\theta\right)=\frac{2}{1-\mathrm{a}}$
$\Rightarrow-\tan \theta=\frac{2}{1-\mathrm{a}}$
$\Rightarrow \tan \theta=\frac{2}{\mathrm{a}-1}$
From equation (1) and (2), we obtain
$\frac{3}{5-a}=\frac{2}{a-1}$
$\Rightarrow 3 a-3=10-2 a$
$\Rightarrow a=\frac{13}{5}$
Thus, the coordinates of point A are $\left(\frac{13}{5}, 0\right)$.

Question 23:

Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{\mathrm{x}}{\mathrm{a}} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

Solution 23:

The equation of the given line is
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
Or, bx $\cos \theta+a y \sin \theta-a b=0$
Length of the perpendicular from point $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to line (1) is
$p_{1}=\frac{\left|b \cos \theta\left(\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}$
Length of the perpendicular from point $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to line (2) is

$$
p_{2}=\frac{\left|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}
$$

On multiplying equations (2) and (3), we obtain

$$
\begin{aligned}
& p_{1} p_{2}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\left(\sqrt{\left.b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)^{2}}\right.} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}\right)^{2}-(a b)^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|b^{2} \cos ^{2} \theta\left(a^{2}-b^{2}\right)-a^{2} b^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left|a^{2} b^{2} \cos ^{2} \theta-b^{4} \cos ^{2} \theta-a^{2} b^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& =\frac{b^{2}\left|-\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
& =\frac{b^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)} \\
& =b^{2}
\end{aligned}
$$

Hence, proved.

Question 24:

A person standing at the junction (crossing) of two straight paths represented by the equation $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

Solution 24:

The equations of the given lines are
$2 x-3 y+4=0$
$3 x+4 y-5=0$
$6 \mathrm{x}-7 \mathrm{y}+8=0$
The person is standing at the junction of the paths represented by lines (1) and (2).
On solving equations (1) and (2), we obtain $x=-\frac{1}{17}$ and $y=\frac{22}{17}$
Thus, the person is standing at point $\left(-\frac{1}{17}, \frac{22}{17}\right)$
The person can reach path (3) in the least time if he walks along the perpendicular line to (3) from point $\left(-\frac{1}{17}, \frac{22}{17}\right)$.
Slope of the line (3) $=\frac{6}{7}$
\therefore Slope of the line perpendicular to line $(3)=-\frac{1}{\left(\frac{6}{7}\right)}=-\frac{7}{6}$
The equation of the line passing through $\left(-\frac{1}{17}, \frac{22}{17}\right)$ and having a slope of $-\frac{7}{6}$ is given by $\left(y-\frac{22}{17}\right)=-\frac{7}{6}\left(x+\frac{1}{17}\right)$
$6(17 y-22)=-7(17 x+1)$
$102 y-132=-119 x-7$
$119 x+102 y=125$
Hence, the path that the person should follow is $119 x+102 y=125$.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

