NCERT Solutions for Class 11 Maths Chapter 13

Limits and Derivatives Class 11

Chapter 13 Limits and Derivatives Exercise 13.1, 13.2, miscellaneous Solutions

Exercise 13.1: Solutions of Questions on Page Number : 301
Q1 :
Evaluate the Given limit: $\lim _{x \rightarrow 3} x+3$

Answer :

$$
\lim _{x \rightarrow 3} x+3=3+3=6
$$

Q2 :
Evaluate the Given limit: $\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)$

Answer :

$$
\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)=\left(\pi-\frac{22}{7}\right)
$$

Q3 :
Evaluate the Given limit: $\lim _{r \rightarrow 1} \pi r^{2}$

Answer :

$$
\lim _{r \rightarrow 1} \pi r^{2}=\pi(1)^{2}=\pi
$$

Q4 :
Evaluate the Given limit: $\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}$

Answer :
$\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}=\frac{4(4)+3}{4-2}=\frac{16+3}{2}=\frac{19}{2}$

Q5 :
Evaluate the Given limit: $\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}$

Answer:

$$
\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}=\frac{(-1)^{10}+(-1)^{5}+1}{-1-1}=\frac{1-1+1}{-2}=-\frac{1}{2}
$$

Q6:
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}$

Answer :
$\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}$
Put $x+1=y$ so that y Ãфâ€ ' 1 as x Ãфâ€ ' 0 .
Accordingly, $\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}=\lim _{y \rightarrow 1} \frac{y^{5}-1}{y-1}$
$=\lim _{y \rightarrow 1} \frac{y^{5}-1^{5}}{y-1}$
$=5.1^{5-1}$

$$
\left[\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]
$$

$=5$
$\therefore \lim _{x \rightarrow 0} \frac{(x+5)^{5}-1}{x}=5$

Q7 :
Evaluate the Given limit: $\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}$

Answer:

At $x=2$, the value of the given rational function takes the form $\frac{0}{0}$.

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)(3 x+5)}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{3 x+5}{x+2} \\
& =\frac{3(2)+5}{2+2} \\
& =\frac{11}{4}
\end{aligned}
$$

Q8 :
Evaluate the Given limit: $\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}$

Answer :

At $x=2$, the value of the given rational function takes the form $\frac{0}{0}$.

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)\left(x^{2}+9\right)}{(x-3)(2 x+1)} \\
& =\lim _{x \rightarrow 3} \frac{(x+3)\left(x^{2}+9\right)}{2 x+1} \\
& =\frac{(3+3)\left(3^{2}+9\right)}{2(3)+1} \\
& =\frac{6 \times 18}{7} \\
& =\frac{108}{7}
\end{aligned}
$$

Q9:
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}$

Answer :
$\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}=\frac{a(0)+b}{c(0)+1}=b$

Q10 :
Evaluate the Given limit: $\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}$

Answer:
$\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}$
At $z=1$, the value of the given function takes the form $\frac{0}{0}$.
Put $z^{\frac{1}{6}}=x$ so that z Ã $\not \hat{a} €$ ' 1 as x Ã $\notin \hat{€}$ ' 1 .
Accordingly, $\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
$=\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}$
$=2.1^{2-1}$
$\left[\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]$
$=2$
$\therefore \lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}=2$

Q11 :
Evaluate the Given limit: $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}, a+b+c \neq 0$

Answer :

$$
\begin{array}{rlr}
\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a} & =\frac{a(1)^{2}+b(1)+c}{c(1)^{2}+b(1)+a} \\
& =\frac{a+b+c}{a+b+c} \\
& =1 \quad[a+b+c \neq 0]
\end{array}
$$

Q12 :
Evaluate the Given limit: $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$

Answer:

$\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$
At $x=\hat{a} €$ " 2 , the value of the given function takes the form $\frac{0}{0}$.
Now, $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}=\lim _{x \rightarrow-2} \frac{\left(\frac{2+x}{2 x}\right)}{x+2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{1}{2 x} \\
& =\frac{1}{2(-2)}=\frac{-1}{4}
\end{aligned}
$$

Q13 :
Evaluate the Given limit: ${ }^{\lim _{x \rightarrow 0} \frac{\sin a x}{b x}}$

Answer:
$\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$.
Now, $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\lim _{x \rightarrow 0} \frac{\sin a x}{a x} \times \frac{a x}{b x}$

$$
\begin{array}{ll}
=\lim _{x \rightarrow 0}\left(\frac{\sin a x}{a x}\right) \times\left(\frac{a}{b}\right) & \\
=\frac{a}{b} \lim _{a x \rightarrow 0}\left(\frac{\sin a x}{a x}\right) & {[x \rightarrow 0 \Rightarrow a x \rightarrow 0]} \\
=\frac{a}{b} \times 1 & {\left[\lim _{y \rightarrow 0} \frac{\sin y}{y}=1\right]}
\end{array}
$$

$$
=\frac{a}{b}
$$

Q14 :

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, a, b \neq 0$

Answer :
$\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, a, b \neq 0$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$

$$
\text { Now, } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x} & =\lim _{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right) \times a x}{\left(\frac{\sin b x}{b x}\right) \times b x} \\
& =\left(\frac{a}{b}\right) \times \frac{\lim _{a x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)}{\lim _{b x \rightarrow 0}\left(\frac{\sin b x}{b x}\right)}
\end{aligned} \quad\left[\begin{array}{l}
x \rightarrow 0 \Rightarrow a x \rightarrow 0 \\
\text { and } x \rightarrow 0 \Rightarrow b x \rightarrow 0
\end{array}\right]
$$

Q15 :
Evaluate the Given limit: $\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$

Answer:

$\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
It is seen that $x \tilde{A} \not \subset \hat{a} €$ ' $\pi \Rightarrow\left(\pi \hat{a} €^{\prime \prime} x\right) \hat{A} \not \subset \hat{€} €{ }^{\prime} 0$
$\therefore \lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}=\frac{1}{\pi} \lim _{(\pi-x) \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)}$

$$
\begin{array}{ll}
= & \frac{1}{\pi} \times 1 \\
& =\frac{1}{\pi}
\end{array}
$$

Q16 :
Evaluate the given limit: $\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$

Answer :
$\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}=\frac{\cos 0}{\pi-0}=\frac{1}{\pi}$

Q17 :
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}$

Answer:
$\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$
Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1} & =\lim _{x \rightarrow 0} \frac{1-2 \sin ^{2} x-1}{1-2 \sin ^{2} \frac{x}{2}-1} \quad[\cos x=1- \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sin ^{2} \frac{x}{2}}=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin ^{2} x}{x^{2}}\right) \times x^{2}}{\left(\frac{\sin ^{2} \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}}\right) \times \frac{x^{2}}{4}} \\
& =4 \frac{\lim _{x \rightarrow 0}\left(\frac{\sin ^{2} x}{x^{2}}\right)}{\left(\frac{\sin ^{2} \frac{x}{2}}{\sin ^{2}}\right.} \frac{\left.\lim _{x \rightarrow 0}\left(\frac{x}{2}\right)^{2}\right)}{\left(x \rightarrow 0 \Rightarrow \frac{x}{2} \rightarrow 0\right]} \\
& =4 \frac{\left(\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}\right)^{2}}{\left(\lim _{\frac{x}{2} \rightarrow 0} \frac{\sin ^{2} \frac{x}{2}}{\frac{x}{2}}\right)^{2}} \\
& =4 \frac{1^{2}}{1^{2}} \\
& =4
\end{aligned}
$$

Q18 :
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}$

Answer :
$\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$.

Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x} & =\frac{1}{b} \lim _{x \rightarrow 0} \frac{x(a+\cos x)}{\sin x} \\
& =\frac{1}{b} \lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right) \times \lim _{x \rightarrow 0}(a+\cos x) \\
& =\frac{1}{b} \times \frac{1}{\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)} \times \lim _{x \rightarrow 0}(a+\cos x) \\
& =\frac{1}{b} \times(a+\cos 0) \quad \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =\frac{a+1}{b} \quad
\end{aligned}
$$

Q19 :
Evaluate the Given limit: $\lim _{x \rightarrow 0} x \sec x$

Answer :
$\lim _{x \rightarrow 0} x \sec x=\lim _{x \rightarrow 0} \frac{x}{\cos x}=\frac{0}{\cos 0}=\frac{0}{1}=0$

Q20 :
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} a, b, a+b \neq 0$

Answer :

At $x=0$, the value of the given function takes the form $\frac{0}{0}$.
Now,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right) a x+b x}{a x+b x\left(\frac{\sin b x}{b x}\right)} \\
& =\frac{\left(\lim _{a x \rightarrow 0} \frac{\sin a x}{a x}\right) \times \lim _{x \rightarrow 0}(a x)+\lim _{x \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x\left(\lim _{x x \rightarrow 0} \frac{\sin b x}{b x}\right)} \\
& =\frac{\lim _{x \rightarrow 0}(a x)+\lim _{x \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x} \quad[\text { As } x \rightarrow 0 \Rightarrow a x \rightarrow 0 \text { and } b x \rightarrow 0] \\
& =\lim _{x \rightarrow 0}(a x+b x) \\
& \lim _{x \rightarrow 0}(a x+b x) \\
& =\lim _{x \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Q21 :
Evaluate the Given limit: $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$

Answer :

At $x=0$, the value of the given function takes the form $\infty-\infty$.
Now,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x) \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{\sin x}\right) \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1-\cos x}{x}\right)}{\left(\frac{\sin x}{x}\right)} \\
& =\frac{\lim _{x \rightarrow 0} \frac{1-\cos x}{x}}{\lim _{x \rightarrow 0} \frac{\sin x}{x}} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

Q22 :

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}
$$

Answer :
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}$
At $\mathrm{x}=\frac{\pi}{2}$, the value of the given function takes the form $\frac{0}{0}$.
Now, put $\quad \mathrm{x}-\frac{\pi}{2}=\mathrm{y}$ so that $\mathrm{x} \rightarrow \frac{\pi}{2}, \mathrm{y} \rightarrow 0$.

$$
\begin{aligned}
\therefore \lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}} & =\lim _{y \rightarrow 0} \frac{\tan 2\left(y+\frac{\pi}{2}\right)}{y} \\
& =\lim _{y \rightarrow 0} \frac{\tan (\pi+2 y)}{y} \\
& =\lim _{y \rightarrow 0} \frac{\tan 2 y}{y} \quad \quad[\tan (\pi+2 y)=\tan 2 y] \\
& =\lim _{y \rightarrow 0} \frac{\sin 2 y}{y \cos 2 y} \\
& =\lim _{y \rightarrow 0}\left(\frac{\sin 2 y}{2 y} \times \frac{2}{\cos 2 y}\right) \\
& =\left(\lim _{2 y \rightarrow 0} \frac{\sin 2 y}{2 y}\right) \times \lim _{y \rightarrow 0}\left(\frac{2}{\cos 2 y}\right) \quad[y \rightarrow 0 \Rightarrow 2 y \rightarrow 0] \\
& =1 \times \frac{2}{\cos 0} \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =1 \times \frac{2}{1} \\
& =2
\end{aligned}
$$

Q23 :
Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{cases}$

Answer :

The given function is
$f(x)= \begin{cases}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{cases}$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}[2 x+3]=2(0)+3=3$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)=3(0+1)=3$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(x)=3$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=6$

Q24 :
Find $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^{2}-1, & x \leq 1 \\ -x^{2}-1, & x>1\end{cases}$

Answer :
The given function is
$f(x)=\left\{\begin{array}{l}x^{2}-1, x \leq 1 \\ -x^{2}-1, x>1\end{array}\right.$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left[x^{2}-1\right]=1^{2}-1=1-1=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left[-x^{2}-1\right]=-1^{2}-1=-1-1=-2$
It is observed that $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.

Q25 :
Evaluate $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$

Answer :

The given function is
$f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left[\frac{|x|}{x}\right] \\
& =\lim _{x \rightarrow 0}\left(\frac{-x}{x}\right) \quad \text { [When } x \text { is negaitve, }|x|=-x \\
& =\lim _{x \rightarrow 0}(-1) \\
& =-1 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left[\frac{|x|}{x}\right] \quad \\
& \left.=\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \quad \text { [When } x \text { is positive, }|x|=x\right] \\
& =\lim _{x \rightarrow 0}(1) \\
& =1
\end{array}
$$

It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.

Q26 :
Find $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{cases}$

Answer :
The given function is

$$
\begin{aligned}
& \begin{aligned}
f(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 \\
0, & x=0\end{cases} \\
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left[\frac{x}{|x|}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{x}{-x}\right] \quad[\text { When } x<0,|x|=-x] \\
& =\lim _{x \rightarrow 0}(-1) \\
& =-1
\end{aligned} \\
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left[\frac{x}{|x|}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \\
& =\lim _{x \rightarrow 0}(1) \\
& =1
\end{aligned}
\end{aligned} \quad[\text { When } x>0,|x|=x]
\end{aligned}
$$

It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.

Q27 :
Find $\lim _{x \rightarrow 5} f(x)$, where $f(x)=|x|-5$

Answer :
The given function is $f(x)=|x|-5$.

$$
\left.\begin{array}{rlr}
\lim _{x \rightarrow 5^{-}} f(x) & =\lim _{x \rightarrow 5^{-}}[|x|-5] \\
& =\lim _{x \rightarrow 5}(x-5) & \\
& =5-5 \\
& =0
\end{array}\right] \begin{aligned}
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{+}}(|x|-5) \\
& =\lim _{x \rightarrow 5}(x-5) \quad[\text { When } x>0,|x|=x] \\
& =5-5 \\
& =0
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=0$
Hence, $\lim _{x \rightarrow 5} f(x)=0$

Q28 :
Suppose $f(x)=\left\{\begin{array}{ll}a+b x, & x<1 \\ 4, & x=1 \\ b-a x & x>1\end{array}\right.$ and if $\lim _{x \rightarrow 1} f(x)=f(1)$ what are possible values of a and $b ?$

Answer:

The given function is
$f(x)= \begin{cases}a+b x, & x<1 \\ 4, & x=1 \\ b-a x & x>1\end{cases}$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(a+b x)=a+b$
$\lim _{x \rightarrow+^{+}} f(x)=\lim _{x \rightarrow 1}(b-a x)=b-a$
$f(1)=4$
It is given that $\lim _{x \rightarrow 1} f(x)=f(1)$.
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow+^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=f(1)$
$\Rightarrow a+b=4$ and $b-a=4$
On solving these two equations, we obtain $a=0$ and $b=4$.
Thus, the respective possible values of a and b are 0 and 4 .

Q29 :

Let $a_{1}, a_{2}, \ldots, a_{n}$ be fixed real numbers and define a function
$f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$
What is $\lim _{x \rightarrow a_{1}} f(x)$? For some $a \neq a_{1}, a_{2} \ldots, a_{n}$, compute $\lim _{x \rightarrow a} f(x)$.

Answer :

The given function is $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$

$$
\begin{aligned}
\lim _{x \rightarrow a_{1}} f(x) & =\lim _{x \rightarrow a_{1}}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right] \\
& =\left[\lim _{x \rightarrow a_{1}}\left(x-a_{1}\right)\right]\left[\lim _{x \rightarrow a_{1}}\left(x-a_{2}\right)\right] \ldots\left[\lim _{x \rightarrow a_{1}}\left(x-a_{n}\right)\right] \\
& =\left(a_{1}-a_{1}\right)\left(a_{1}-a_{2}\right) \ldots\left(a_{1}-a_{n}\right)=0
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a_{1}} f(x)=0$
Now, $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right]$

$$
\begin{aligned}
& =\left[\lim _{x \rightarrow a}\left(x-a_{1}\right)\right]\left[\lim _{x \rightarrow a}\left(x-a_{2}\right)\right] \ldots\left[\lim _{x \rightarrow a}\left(x-a_{n}\right)\right] \\
& =\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots . .\left(a-a_{n}\right)
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a} f(x)=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots\left(a-a_{n}\right)$

Q30 :
If $\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{ll}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0\end{array}\right.$.
For what value (s) of a does $\lim _{x \rightarrow a} f(x)$ exists?

Answer :

The given function is

$$
f(x)= \begin{cases}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0\end{cases}
$$

When $a=0$,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}(|x|+1) \\
& =\lim _{x \rightarrow 0}(-x+1) \quad[\text { If } x<0,|x|=-x] \\
& =-0+1 \\
& =1
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}}(|x|-1)
$$

$$
=\lim _{x \rightarrow 0}(x-1) \quad[\text { If } x>0,|x|=x]
$$

$$
=0-1
$$

$$
=-1
$$

Here, it is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist.
When $a<0$,

$$
\begin{array}{rlr}
\lim _{x \rightarrow a^{-}} f(x) & =\lim _{x \rightarrow a^{-}}(|x|+1) \\
& =\lim _{x \rightarrow a}(-x+1) \quad[x<a<0 \Rightarrow|x|=-x] \\
& =-a+1 \\
\begin{array}{rlr}
\lim _{x \rightarrow a^{+}} f(x) & =\lim _{x \rightarrow a^{+}}(|x|+1) \\
& =\lim _{x \rightarrow a}(-x+1) \quad[a<x<0 \Rightarrow|x|=-x] \\
& =-a+1
\end{array}
\end{array}
$$

$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=-a+1$
Thus, limit of $f(x)$ exists at $x=a$, where $a<0$.
When $a>0$

$$
\begin{array}{rlr}
\lim _{x \rightarrow a^{-}} f(x) & =\lim _{x \rightarrow a^{-}}(|x|-1) & \\
& =\lim _{x \rightarrow a}(x-1) & \\
& =a-1 & {[0<x<a \Rightarrow|x|=x]} \\
& \lim _{x \rightarrow a^{+}} f(x) & =\lim _{x \rightarrow a^{+}}(|x|-1) \\
& =\lim _{x \rightarrow a}(x-1) & \\
& =a-1 &
\end{array}
$$

$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=a-1$
Thus, limit of $f(x)$ exists at $x=a$, where $a>0$.
Thus, $\lim _{x \rightarrow a} f(x)$ exists for all $a \neq 0$.

Q31 :
If the function $f(x)$ satisfies $\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$, evaluate $\lim _{x \rightarrow 1} f(x)$.

Answer :
$\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$
$\Rightarrow \frac{\lim _{x \rightarrow 1}(f(x)-2)}{\lim _{x \rightarrow 1}\left(x^{2}-1\right)}=\pi$
$\Rightarrow \lim _{x \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=\pi \lim _{\mathrm{x} \rightarrow 1}\left(\mathrm{x}^{2}-1\right)$
$\Rightarrow \lim _{x \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=\pi\left(1^{2}-1\right)$
$\Rightarrow \lim _{x \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=0$
$\Rightarrow \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} 2=0$
$\Rightarrow \lim _{x \rightarrow 1} f(x)-2=0$
$\therefore \lim _{x \rightarrow 1} f(x)=2$
$f(x)= \begin{cases}m x^{2}+n, & x<0 \\ n x+m, & 0 \leq x \leq 1 \\ n x^{3}+m, & x>1 \quad . \quad \text { For what integers } m \text { and } n \text { does } \quad \lim _{x \rightarrow 0} f(x) \quad \lim _{x \rightarrow 1} f(x) \text { exist? }\end{cases}$

Answer :
The given function is

$$
f(x)=\left\{\begin{array}{lc}
m x^{2}+n, & x<0 \\
n x+m, & 0 \leq x \leq 1 \\
n x^{3}+m, & x>1
\end{array}\right.
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(m x^{2}+n\right)
$$

$$
=m(0)^{2}+n
$$

$$
=n
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(n x+m)
$$

$$
=n(0)+m
$$

$$
=m
$$

$\lim _{x \rightarrow 0} f(x)$
Thus, $x \rightarrow 0$ exists if $m=n$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1}(n x+m) \\
& =n(1)+m \\
& =m+n
\end{aligned}
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(n x^{3}+m\right)$

$$
=n(1)^{3}+m
$$

$$
=m+n
$$

$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)$.
$\lim _{x \rightarrow 1} f(x)$ exists for any integral value of m and n.

Exercise 13.2 : Solutions of Questions on Page Number : 312
Q1:
Find the derivative of $x^{2}-2$ at $x=10$.

Answer :

Let $f(x)=x^{2} \hat{a} €^{*} 2$. Accordingly,

$$
\begin{aligned}
f^{\prime}(10) & =\lim _{h \rightarrow 0} \frac{f(10+h)-f(10)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(10+h)^{2}-2\right]-\left(10^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{10^{2}+2 \cdot 10 \cdot h+h^{2}-2-10^{2}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{20 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(20+h)=(20+0)=20
\end{aligned}
$$

Thus, the derivative of $x^{2} \hat{a} €^{\prime \prime} 2$ at $x=10$ is 20 .

Q2 :
Find the derivative of $99 x$ at $x=100$.

Answer :

Let $f(x)=99 x$. Accordingly,

$$
\begin{aligned}
f^{\prime}(100) & =\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99(100+h)-99(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 \times 100+99 h-99 \times 100}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 h}{h} \\
& =\lim _{h \rightarrow 0}(99)=99
\end{aligned}
$$

Thus, the derivative of $99 x$ at $x=100$ is 99 .

Q3 :
Find the derivative of x at $x=1$.

Answer :

Let $f(x)=x$. Accordingly,

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Thus, the derivative of x at $x=1$ is 1 .

Q4 :

Find the derivative of the following functions from first principle.
(i) x^{3} â€" 27 (ii) (x â€" 1) (x â€" 2)
(ii) $\frac{1}{x^{2}}$ (iv) $\frac{x+1}{x-1}$

Answer:
(i) Let $f(x)=x^{3} \hat{a} €^{\prime \prime} 27$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-27\right]-\left(x^{3}-27\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+h^{3}+3 x^{2} h+3 x h^{2}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+3 x^{2} h+3 x h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(h^{2}+3 x^{2}+3 x h\right) \\
& =0+3 x^{2}+0=3 x^{2}
\end{aligned}
$$

(ii) Let $f(x)=\left(x \hat{a ̂} €^{\prime \prime} 1\right)\left(x \hat{a ̂} €^{\prime \prime} 2\right)$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{(x+h-1)(x+h-2)-(x-1)(x-2)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left(x^{2}+h x-2 x+h x+h^{2}-2 h-x-h+2\right)-\left(x^{2}-2 x-x+2\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left(h x+h x+h^{2}-2 h-h\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}-3 h}{h} \\
&=\lim _{h \rightarrow 0} \\
&=(2 x+h-3) \\
&=2 x-3-3) \\
& f(x)=\frac{1}{x^{2}} \cdot \text { Accordingly, from the first principle, } \\
& \text { (iii) Let } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{(x+h)^{2}}{h} \frac{1}{x^{2}} \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2}}\right] \\
&=\lim _{h \rightarrow 0}\left[\frac{-h-2 x}{x^{2}(x+h)^{2}}\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-x^{2}-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right] \\
&(x+0)^{2}=\frac{-2}{x^{3}} \\
& x-1 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{x+h+1}{x+h-1}-\frac{x+1}{x-1}\right)}{h} \\
& \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(x-1)(x+h+1)-(x+1)(x+h-1)}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\left(x^{2}+h x+x-x-h-1\right)-\left(x^{2}+h x-x+x+h-1\right)}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 h}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-2}{(x-1)(x+h-1)}\right] \\
& =\frac{-2}{(x-1)(x-1)}=\frac{-2}{(x-1)^{2}}
\end{aligned}
$$

Q5:
For the function
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1$
Prove that $f^{\prime}(1)=100 f^{\prime}(0)$

Answer :

The given function is
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left[\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1\right]$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left(\frac{x^{100}}{100}\right)+\frac{d}{d x}\left(\frac{x^{99}}{99}\right)+\ldots+\frac{d}{d x}\left(\frac{x^{2}}{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)$
On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain
$\frac{d}{d x} f(x)=\frac{100 x^{99}}{100}+\frac{99 x^{98}}{99}+\ldots+\frac{2 x}{2}+1+0$

$$
=x^{99}+x^{98}+\ldots+x+1
$$

$\therefore f^{\prime}(x)=x^{99}+x^{98}+\ldots+x+1$
At $x=0$,
$f^{\prime}(0)=1$
At $x=1$,
$f^{\prime}(1)=1^{99}+1^{98}+\ldots+1+1=[1+1+\ldots+1+1]_{100 \mathrm{tems}}=1 \times 100=100$
Thus, $f^{\prime}(1)=100 \times f^{1}(0)$

Q6 :

Find the derivative of $x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$ for some fixed real number a.

Answer :

Let $f(x)=x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =\frac{d}{d x}\left(x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}\right) \\
& =\frac{d}{d x}\left(x^{n}\right)+a \frac{d}{d x}\left(x^{n-1}\right)+a^{2} \frac{d}{d x}\left(x^{n-2}\right)+\ldots+a^{n-1} \frac{d}{d x}(x)+a^{n} \frac{d}{d x}(1)
\end{aligned}
$$

On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}+a^{n}(0) \\
& =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}
\end{aligned}
$$

Q7 :
For some constants a and b, find the derivative of
(i) $\left(x\right.$ â€" a) $\left(x\right.$ â€" b) (ii) $\left(a x^{2}+b\right)^{2}$ (iii) $\frac{x-a}{x-b}$

Answer :
(i) Let $f(x)=(x$ â€" a) $(x$ â€" b)
$\Rightarrow f(x)=x^{2}-(a+b) x+a b$
$\therefore f^{\prime}(x)=\frac{d}{d x}\left(x^{2}-(a+b) x+a b\right)$
$=\frac{d}{d x}\left(x^{2}\right)-(a+b) \frac{d}{d x}(x)+\frac{d}{d x}(a b)$
On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain
$f^{\prime}(x)=2 x-(a+b)+0=2 x-a-b$
(ii) Let $f(x)=\left(a x^{2}+b\right)^{2}$

$$
\Rightarrow f(x)=a^{2} x^{4}+2 a b x^{2}+b^{2}
$$

$$
\therefore f^{\prime}(x)=\frac{d}{d x}\left(a^{2} x^{4}+2 a b x^{2}+b^{2}\right)=a^{2} \frac{d}{d x}\left(x^{4}\right)+2 a b \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(b^{2}\right)
$$

On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =a^{2}\left(4 x^{3}\right)+2 a b(2 x)+b^{2}(0) \\
& =4 a^{2} x^{3}+4 a b x \\
& =4 a x\left(a x^{2}+b\right)
\end{aligned}
$$

(iii)

Let $f(x)=\frac{(x-a)}{(x-b)}$

$$
\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-a}{x-b}\right)
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-b) \frac{d}{d x}(x-a)-(x-a) \frac{d}{d x}(x-b)}{(x-b)^{2}} \\
& =\frac{(x-b)(1)-(x-a)(1)}{(x-b)^{2}} \\
& =\frac{x-b-x+a}{(x-b)^{2}} \\
& =\frac{a-b}{(x-b)^{2}}
\end{aligned}
$$

Q8:

Find the derivative of $\frac{x^{n}-a^{n}}{x-a}$ for some constant a.

Answer :
Let $f(x)=\frac{x^{n}-a^{n}}{x-a}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{n}-a^{n}}{x-a}\right)$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-a) \frac{d}{d x}\left(x^{n}-a^{n}\right)-\left(x^{n}-a^{n}\right) \frac{d}{d x}(x-a)}{(x-a)^{2}} \\
& =\frac{(x-a)\left(n x^{n-1}-0\right)-\left(x^{n}-a^{n}\right)}{(x-a)^{2}} \\
& =\frac{n x^{n}-a n x^{n-1}-x^{n}+a^{n}}{(x-a)^{2}}
\end{aligned}
$$

Q9:
Find the derivative of
(i) $2 x-\frac{3}{4}$ (ii) $\left(5 x^{3}+3 x\right.$ â€" 1) $(x$ â€" 1)

Answer :
(i) Let $f(x)=2 x-\frac{3}{4}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x-\frac{3}{4}\right) \\
& =2 \frac{d}{d x}(x)-\frac{d}{d x}\left(\frac{3}{4}\right) \\
& =2-0 \\
& =2
\end{aligned}
$$

(ii) Let $f(x)=\left(5 x^{3}+3 x\right.$ â€" 1$)(x$ â " 1$)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(5 x^{3}+3 x-1\right) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}\left(5 x^{3}+3 x-1\right) \\
& =\left(5 x^{3}+3 x-1\right)(1)+(x-1)\left(5.3 x^{2}+3-0\right) \\
& =\left(5 x^{3}+3 x-1\right)+(x-1)\left(15 x^{2}+3\right) \\
& =5 x^{3}+3 x-1+15 x^{3}+3 x-15 x^{2}-3 \\
& =20 x^{3}-15 x^{2}+6 x-4
\end{aligned}
$$

(iii) $\operatorname{Let} f(x)=x^{\mathbf{\beta}^{\epsilon-3}}(5+3 x)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{-3} \frac{d}{d x}(5+3 x)+(5+3 x) \frac{d}{d x}\left(x^{-3}\right) \\
& =x^{-3}(0+3)+(5+3 x)\left(-3 x^{-3-1}\right) \\
& =x^{-3}(3)+(5+3 x)\left(-3 x^{-4}\right) \\
& =3 x^{-3}-15 x^{-4}-9 x^{-3} \\
& =-6 x^{-3}-15 x^{-4} \\
& =-3 x^{-3}\left(2+\frac{5}{x}\right) \\
& =\frac{-3 x^{-3}}{x}(2 x+5) \\
& =\frac{-3}{x^{4}}(5+2 x)
\end{aligned}
$$

(iv) Let $f(x)=x^{5}\left(3 \hat{a} €^{\prime \prime} 6 x^{\frac{\text { ete }}{}}\right)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{5} \frac{d}{d x}\left(3-6 x^{-9}\right)+\left(3-6 x^{-9}\right) \frac{d}{d x}\left(x^{5}\right) \\
& =x^{5}\left\{0-6(-9) x^{-9-1}\right\}+\left(3-6 x^{-9}\right)\left(5 x^{4}\right) \\
& =x^{5}\left(54 x^{-10}\right)+15 x^{4}-30 x^{-5} \\
& =54 x^{-5}+15 x^{4}-30 x^{-5} \\
& =24 x^{-5}+15 x^{4} \\
& =15 x^{4}+\frac{24}{x^{5}}
\end{aligned}
$$

(v) Let $f(x)=x^{\text {se4 }}\left(3\right.$ â $\left.\epsilon^{\prime \prime} 4 x^{\text {ee }}\right)$

By Leibnitz product rule,

$$
\begin{aligned}
& f^{\prime}(x)=x^{-4} \frac{d}{d x}\left(3-4 x^{-5}\right)+\left(3-4 x^{-5}\right) \frac{d}{d x}\left(x^{-4}\right) \\
&=x^{-4}\left\{0-4(-5) x^{-5-1}\right\}+\left(3-4 x^{-5}\right)(-4) x^{-4-1} \\
&=x^{-4}\left(20 x^{-6}\right)+\left(3-4 x^{-5}\right)\left(-4 x^{-5}\right) \\
&=20 x^{-10}-12 x^{-5}+16 x^{-10} \\
&=36 x^{-10}-12 x^{-5} \\
&=-\frac{12}{x^{5}}+\frac{36}{x^{10}} \\
& \text { (vi) Let } f(x)=\frac{2}{x+1}-\frac{x^{2}}{3 x-1}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{2}{x+1}\right)-\frac{d}{d x}\left(\frac{x^{2}}{3 x-1}\right)
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{(x+1) \frac{d}{d x}(2)-2 \frac{d}{d x}(x+1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(3 x-1)}{(3 x-1)^{2}}\right] \\
& =\left[\frac{(x+1)(0)-2(1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1)(2 x)-\left(x^{2}\right)(3)}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{3 x^{2}-2 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\frac{x(3 x-2)}{(3 x-1)^{2}}
\end{aligned}
$$

Q10 :

Find the derivative of $\cos x$ from first principle.

Answer :

Let $f(x)=\cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\sin x \sin h-\cos x}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =-\cos x\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right) \\
& =-\cos x(0)-\sin x(1) \quad \quad\left[\lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0 \text { and } \lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right]
\end{aligned}
$$

$$
=-\sin x
$$

$\therefore f^{\prime}(x)=-\sin x$

Q11 :
Find the derivative of the following functions:
(i) $\sin x \cos x$ (ii) $\sec x$ (iii) $5 \sec x+4 \cos x$
(iv) $\operatorname{cosec} x(v) 3 \cot x+5 \operatorname{cosec} x$
(vi) $5 \sin x-6 \cos x+7$ (vii) $2 \tan x-7 \sec x$

Answer :
(i) Let $f(x)=\sin x \cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos (x+h)-\sin x \cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[2 \sin (x+h) \cos (x+h)-2 \sin x \cos x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[\sin 2(x+h)-\sin 2 x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}\left[2 \cos \frac{2 x+2 h+2 x}{2} \cdot \sin \frac{2 x+2 h-2 x}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \frac{4 x+2 h}{2} \sin \frac{2 h}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\cos (2 x+h) \sin h] \\
& =\lim _{h \rightarrow 0} \cos (2 x+h) \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos (2 x+0) \cdot 1 \\
& =\cos 2 x
\end{aligned}
$$

(ii) Let $f(x)=\sec x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{\left[\left(\frac{2}{2}\right)\right.}{\left.\sin \left(\frac{2 x+h}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right]} \\
& =\frac{1}{\cos x} \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\sin (x+h)} \frac{\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim _{h \rightarrow 0}^{\sin \left(\frac{2 x+h}{2}\right)} \cos (x+h) \\
& =\frac{1}{\cos x} \cdot 1 \cdot \frac{\sin x}{\cos x} \\
& =\sec x \tan x
\end{aligned}
$$

(iii) Let $f(x)=5 \sec x+4 \cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 \sec (x+h)+4 \cos (x+h)-[5 \sec x+4 \cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{[\sec (x+h)-\sec x]}{h}+4 \lim _{h \rightarrow 0} \frac{[\cos (x+h)-\cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos x \cos h-\sin x \sin h-\cos x] \\
& =\frac{5}{\cos x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[-\cos x(1-\cos h)-\sin x \sin h] \\
& =\frac{5}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right]+4\left[-\cos x \lim _{h \rightarrow 0} \frac{(1-\cos h)}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h}\right] \\
& =\frac{5}{\cos x} \cdot \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}}{\cos (x+h)}\right]+4[(-\cos x) \cdot(0)-(\sin x) \cdot 1] \\
& =\frac{5}{\cos x} \cdot\left[\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos (x+h)} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right]-4 \sin x \\
& =\frac{5}{\cos x} \cdot \frac{\sin x}{\cos x} \cdot 1-4 \sin x \\
& =5 \sec x \tan x-4 \sin x
\end{aligned}
$$

(iv) Let $f(x)=\operatorname{cosec} x$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
&=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
&=\lim _{h \rightarrow 0} \frac{-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin (x+h) \sin x} \\
&=\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\sin \left(\frac{h}{2}\right)} \\
&=\left(\frac{h}{2}\right) \\
&=-\operatorname{cosecx\operatorname {cot}x} \\
&\sin x \sin x) \cdot 1
\end{aligned}
$$

(v) Let $f(x)=3 \cot x+5 \operatorname{cosec} x$. Accordingly, from the first principle,

$$
\begin{align*}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 \cot (x+h)+5 \operatorname{cosec}(x+h)-3 \cot x-5 \operatorname{cosec} x}{h} \\
& =3 \lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]+5 \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \tag{1}
\end{align*}
$$

Now, $\lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h) \sin x-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin x \sin (x+h)}\right]
$$

$$
=-\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\sin x \cdot \sin (x+h)}\right)
$$

$$
\begin{equation*}
=-1 \cdot \frac{1}{\sin x \cdot \sin (x+0)}=\frac{-1}{\sin ^{2} x}=-\operatorname{cosec}^{2} x \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin (x+h) \sin x} \\
& =\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \cdot \frac{\lim _{\frac{h}{2}}^{2} \rightarrow 0}{\sin \left(\frac{h}{2}\right)} \\
& =\left(\frac{-h}{2}\right) \\
& =(\sin x \sin x) \cdot 1 \tag{3}\\
& =-\operatorname{cosec} x \cot x
\end{align*}
$$

From (1), (2), and (3), we obtain
$f^{\prime}(x)=-3 \operatorname{cosec}^{2} x-5 \operatorname{cosec} x \cot x$
(vi) Let $f(x)=5 \sin x$ â $€^{\prime \prime} 6 \cos x+7$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5 \sin (x+h)-6 \cos (x+h)+7-5 \sin x+6 \cos x-7] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5\{\sin (x+h)-\sin x\}-6\{\cos (x+h)-\cos x\}] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h)-\sin x]-6 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+x}{2}\right) \sin \left(\frac{x+h-x}{2}\right)\right]-6 \lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h}{2}\right) \sin \frac{h}{2}\right]-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right] \\
& =5 \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right) \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =5\left[\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right)\right]\left[\frac{\lim _{h}}{2 \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right]-6\left[(-\cos x)\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)\right] \\
& =5 \cos x \cdot 1-6[(-\cos x) \cdot(0)-\sin x \cdot 1] \\
& =5 \cos x+6 \sin x
\end{aligned}
$$

(vii) Let $f(x)=2 \tan x$ â $\epsilon^{\prime \prime} 7 \sec x$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2 \tan (x+h)-7 \sec (x+h)-2 \tan x+7 \sec x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2\{\tan (x+h)-\tan x\}-7\{\sec (x+h)-\sec x\}] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}[\tan (x+h)-\tan x]-7 \lim _{h \rightarrow 0} \frac{1}{h}[\sec (x+h)-\sec x] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos x \cos (x+h)}\right] \\
& =2 \lim _{h \rightarrow 0}\left[\left(\frac{\sin h}{h}\right) \frac{1}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos x \cos (x+h)}\right] \\
& =2\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\cos x \cos (x+h)}\right)-7\left(\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)\left(\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos x \cos (x+h)}\right) \\
& =2.1 \frac{1}{\cos x \cos x}-7.1\left(\frac{\sin x}{\cos x \cos x}\right) \\
& =2 \sec ^{2} x-7 \sec x \tan x
\end{aligned}
$$

Exercise Miscellaneous : Solutions of Questions on Page Number : 317
Q1:
Find the derivative of the following functions from first principle:

(iv) $\cos \left(x-\frac{\pi}{8}\right)$

Answer :
(i) Let $f(x)=$ â€" x. Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=-(\mathrm{x}+\mathrm{h})$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-x-h+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1)=-1 \\
\text { (ii) Let } & f(x)=(-x)^{-1}=\frac{1}{-x}=\frac{-1}{x} . \text { Accordingly, } \quad f(x+h)=\frac{-1}{(x+h)}
\end{aligned}
$$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}-\left(\frac{-1}{x}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}+\frac{1}{x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+(x+h)}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+x+h}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{h}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{x(x+h)} \\
& =\frac{1}{x \cdot x}=\frac{1}{x^{2}}
\end{aligned}
$$

(iii) Let $f(x)=\sin (x+1)$. Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=\sin (\mathrm{x}+\mathrm{h}+1)$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h+1)-\sin (x+1)] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+1+x+1}{2}\right) \sin \left(\frac{x+h+1-x-1}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h+2}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+h+2}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right] \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h+2}{2}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =\cos \left(\frac{2 x+0+2}{2}\right) \cdot 1 \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =\cos (x+1) \\
& f(x)=\cos \left(x-\frac{\pi}{8}\right) \text { Accordingly, }
\end{aligned}
$$

By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \left(x+h-\frac{\pi}{8}\right)-\cos \left(x-\frac{\pi}{8}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \frac{\left(x+h-\frac{\pi}{8}+x-\frac{\pi}{8}\right)}{2} \sin \left(\frac{x+h-\frac{\pi}{8}-x+\frac{\pi}{8}}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right) \sin \frac{h}{2}\right] \\
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right] \\
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right)\right] \lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =-\sin \left(\frac{2 x+0-\frac{\pi}{4}}{2}\right) .1 \\
& =-\sin \left(x-\frac{\pi}{8}\right)
\end{aligned}
$$

Q2 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(x+a)$

Answer:
Let $f(x)=x+a$. Accordingly, $f(x+h)=x+h+a$
By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h+a-x-a}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{h}{h}\right) \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Q3 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-
zero constants and m and n are integers): $(p x+q)\left(\frac{r}{x}+s\right)$

Answer :

Let $f(x)=(p x+q)\left(\frac{r}{x}+s\right)$
By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =(p x+q)\left(\frac{r}{x}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p x+q)^{\prime} \\
& =(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p) \\
& =(p x+q)\left(-r x^{-2}\right)+\left(\frac{r}{x}+s\right) p \\
& =(p x+q)\left(\frac{-r}{x^{2}}\right)+\left(\frac{r}{x}+s\right) p \\
& =\frac{-p r}{x}-\frac{q r}{x^{2}}+\frac{p r}{x}+p s \\
& =p s-\frac{q r}{x^{2}}
\end{aligned}
$$

Q4 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(a x+b)(c x+d)^{2}$

Answer :

Let $f(x)=(a x+b)(c x+d)^{2}$
By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =(a x+b) \frac{d}{d x}(c x+d)^{2}+(c x+d)^{2} \frac{d}{d x}(a x+b) \\
& =(a x+b) \frac{d}{d x}\left(c^{2} x^{2}+2 c d x+d^{2}\right)+(c x+d)^{2} \frac{d}{d x}(a x+b) \\
& =(a x+b)\left[\frac{d}{d x}\left(c^{2} x^{2}\right)+\frac{d}{d x}(2 c d x)+\frac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\frac{d}{d x} a x+\frac{d}{d x} b\right] \\
& =(a x+b)\left(2 c^{2} x+2 c d\right)+\left(c x+d^{2}\right) a \\
& =2 c(a x+b)(c x+d)+a(c x+d)^{2}
\end{aligned}
$$

Q5 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{a x+b}{c x+d}$

Answer :

Let $f(x)=\frac{a x+b}{c x+d}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(c x+d) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}(c x+d)}{(c x+d)^{2}} \\
& =\frac{(c x+d)(a)-(a x+b)(c)}{(c x+d)^{2}} \\
& =\frac{a c x+a d-a c x-b c}{(c x+d)^{2}} \\
& =\frac{a d-b c}{(c x+d)^{2}}
\end{aligned}
$$

Q6 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers):
$\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$

Answer:

Let $f(x)=\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x-1}{x}}=\frac{x+1}{x-1}$, where $x \neq 0$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-1) \frac{d}{d x}(x+1)-(x+1) \frac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{-2}{(x-1)^{2}}, x \neq 0,1
\end{aligned}
$$

Q7 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{1}{a x^{2}+b x+c}$

Answer:
Let $f(x)=\frac{1}{a x^{2}+b x+c}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(a x^{2}+b x+c\right) \frac{d}{d x}(1)-\frac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

Q8:
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{a x+b}{p x^{2}+q x+r}$

Answer :

Let $f(x)=\frac{a x+b}{p x^{2}+q x+r}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{a p x^{2}+a q x+a r-2 a p x^{2}-a q x-2 b p x-b q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{-a p x^{2}-2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}
\end{aligned}
$$

Q9 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{p x^{2}+q x+r}{a x+b}$

Answer :

$$
\text { Let } f(x)=\frac{p x^{2}+q x+r}{a x+b}
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)-\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)}{(a x+b)^{2}} \\
& =\frac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}} \\
& =\frac{2 a p x^{2}+a q x+2 b p x+b q-a p x^{2}-a q x-a r}{(a x+b)^{2}} \\
& =\frac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}
\end{aligned}
$$

Q10 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$

Answer :
Let $f(x)=\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{a}{x^{4}}\right)-\frac{d}{d x}\left(\frac{b}{x^{2}}\right)+\frac{d}{d x}(\cos x) \\
& =a \frac{d}{d x}\left(x^{-4}\right)-b \frac{d}{d x}\left(x^{-2}\right)+\frac{d}{d x}(\cos x) \\
& =a\left(-4 x^{-5}\right)-b\left(-2 x^{-3}\right)+(-\sin x) \quad\left[\frac{d}{d x}\left(x^{\prime \prime}\right)=n x^{\prime \prime-1} \text { and } \frac{d}{d x}(\cos x)=-\sin x\right] \\
& =\frac{-4 a}{x^{3}}+\frac{2 b}{x^{3}}-\sin x
\end{aligned}
$$

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $4 \sqrt{x}-2$

Answer:

$$
\begin{aligned}
& \text { Let } f(x)=4 \sqrt{x}-2 \\
& \begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(4 \sqrt{x}-2)=\frac{d}{d x}(4 \sqrt{x})-\frac{d}{d x}(2) \\
& =4 \frac{d}{d x}\left(x^{\frac{1}{2}}\right)-0=4\left(\frac{1}{2} x^{\frac{1}{2}-1}\right) \\
& =\left(2 x^{-\frac{1}{2}}\right)=\frac{2}{\sqrt{x}}
\end{aligned}
\end{aligned}
$$

Q12 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(a x+b)^{n}$

Answer :

Let $f(x)=(a x+b)^{n}$. Accordingly, $f(x+h)=\{a(x+h)+b\}^{n}=(a x+a h+b)^{n}$
By first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a x+a h+b)^{n}-(a x+b)^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a x+b)^{n}\left(1+\frac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h} \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{\left(1+\frac{a h}{a x+b}\right)^{n}-1}{h} \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{1}{n}\left[\left\{1+n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1)}{\lfloor 2}\left(\frac{a h}{a x+b}\right)^{2}+\ldots\right\}-1\right] \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{1}{h}\left[n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1) a^{2} h^{2}}{\left\lfloor 2(a x+b)^{2}\right.}+\ldots(\text { Terms containing higher degrees of } h)\right] \\
& =(a x+b)^{n} \lim _{h \rightarrow 0}\left[\frac{n a}{(a x+b)}+\frac{n(n-1) a^{2} h}{\left\lfloor 2(a x+b)^{2}\right.}+\ldots\right] \\
& =(a x+b)^{n}\left[\frac{n a}{(a x+b)}+0\right] \\
& =n a \frac{(a x+b)^{n}}{(a x+b)} \\
& =n a(a x+b)^{n-1}
\end{aligned}
$$

Q13 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(a x+b)^{n}(c x+d)^{m}$

Answer:
Let $f(x)=(a x+b)^{n}(c x+d)^{m}$
By Leibnitz product rule,

$$
\begin{equation*}
f^{\prime}(x)=(a x+b)^{n} \frac{d}{d x}(c x+d)^{m}+(c x+d)^{m} \frac{d}{d x}(a x+b)^{n} \tag{1}
\end{equation*}
$$

Now, let $f_{1}(x)=(c x+d)^{m}$

$$
\begin{aligned}
& f_{1}(x+h)=(c x+c h+d)^{m} \\
& \begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(c x+c h+d)^{m}-(c x+d)^{m}}{h} \\
& =(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{c h}{c x+d}\right)^{m}-1\right]
\end{aligned}
\end{aligned}
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{m c h}{(c x+d)}+\frac{m(m-1)}{2} \frac{\left(c^{2} h^{2}\right)}{(c x+d)^{2}}+\ldots\right)-1\right]
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{m c h}{(c x+d)}+\frac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\ldots(\text { Terms containing higher degrees of } h)\right]
$$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\frac{m c}{(c x+d)}+\frac{m(m-1) c^{2} h}{2(c x+d)^{2}}+\ldots\right]
$$

$$
=(c x+d)^{m}\left[\frac{m c}{c x+d}+0\right]
$$

$$
=\frac{m c(c x+d)^{m}}{(c x+d)}
$$

$$
=m c(c x+d)^{m-1}
$$

$$
\begin{equation*}
\frac{d}{d x}(c x+d)^{m \prime \prime}=m c(c x+d)^{m-1} \tag{2}
\end{equation*}
$$

Similarly, $\frac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$
Therefore, from (1), (2), and (3), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c x+d)^{m}\left\{n a(a x+b)^{n-1}\right\} \\
& =(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]
\end{aligned}
$$

Q14 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\sin (x+a)$

Answer :

Let $f(x)=\sin (x+a)$
$f(x+h)=\sin (x+h+a)$
By first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h+a)-\sin (x+a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right] \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =\cos \left(\frac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =\cos (x+a)
\end{aligned}
$$

Q15 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\operatorname{cosec} x \cot x$

Answer :

Let $f(x)=\operatorname{cosec} x \cot x$
By Leibnitz product rule,
$f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime}$
Let $f_{1}(x)=\cot x$. Accordingly, $f_{1}(x+h)=\cot (x+h)$
By first principle,

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cot (x+h)-\cot x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin (x+h)}\right] \\
& =\frac{-1}{\sin x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\sin (x+h)}\right) \\
& =\frac{-1}{\sin x} \cdot 1 \cdot\left(\frac{1}{\sin (x+0)}\right) \\
& =\frac{-1}{\sin { }^{2} x} \\
& =-\operatorname{cosec}^{2} x
\end{aligned}
$$

$$
\begin{equation*}
\therefore(\cot x)^{\prime}=-\operatorname{cosec}^{2} x \tag{2}
\end{equation*}
$$

Now, let $f_{2}(x)=\operatorname{cosec} x$. Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$
By first principle,

$$
\begin{aligned}
f_{2}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{2}(x+h)-f_{2}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x]
\end{aligned}
$$

$$
\begin{align*}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(\frac{-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\frac{-\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)} \\
& =\frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos \left(\frac{2 x+0}{2}\right)}{\sin (x+0)} \\
& =\frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
& =-\cos \operatorname{ecx} \cdot \cot x \tag{3}
\end{align*}
$$

$\therefore(\operatorname{cosec} x)^{\prime}=-\operatorname{cosec} x \cdot \cot x$
From (1), (2), and (3), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x) \\
& =-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x
\end{aligned}
$$

Q16 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{\cos x}{1+\sin x}$

Answer :
Let $f(x)=\frac{\cos x}{1+\sin x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\sin x) \frac{d}{d x}(\cos x)-(\cos x) \frac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-1}{(1+\sin x)^{2}} \\
& =\frac{-(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{-1}{(1+\sin x)}
\end{aligned}
$$

Q17 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-
zero constants and m and n are integers): $\frac{\sin x+\cos x}{\sin x-\cos x}$

Answer :
Let $f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\sin x-\cos x) \frac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \frac{d}{d x}(\sin x-\cos x)}{(\sin x-\cos x)^{2}} \\
& =\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \\
& =\frac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x-\cos x)^{2}} \\
& =\frac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x-\cos x)^{2}} \\
& =\frac{-[1+1]}{(\sin x-\cos x)^{2}} \\
& =\frac{-2}{(\sin x-\cos x)^{2}}
\end{aligned}
$$

Q18 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{\sec x-1}{\sec x+1}$

Answer:

Let $f(x)=\frac{\sec x-1}{\sec x+1}$
$f(x)=\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1}=\frac{1-\cos x}{1+\cos x}$
By quotient rule,

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}} \\
&=\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}} \\
&=\frac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}} \\
&=\frac{2 \sin x}{(1+\cos x)^{2}} \\
&=\frac{2 \sin x}{\left(1+\frac{1}{\sec x}\right)^{2}}=\frac{2 \sin x}{\frac{(\sec x+1)^{2}}{\sec 2}} \\
&=\frac{2 \sin x \sec { }^{2} x}{(\sec x+1)^{2}} \\
&=\frac{2 \sin x}{\cos x} \sec x \\
&(\sec x+1)^{2} \\
&=\frac{2 \sec x \tan x}{(\sec x+1)^{2}}
\end{aligned}
$$

Q19 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\sin ^{\boldsymbol{n}} \boldsymbol{x}$

Answer :
Let $y=\sin ^{n} x$.
Accordingly, for $n=1, y=\sin x$.
$\therefore \frac{d y}{d x}=\cos x$, i.e., $\frac{d}{d x} \sin x=\cos x$
For $n=2, y=\sin ^{2} x$.

$$
\begin{align*}
\therefore \frac{d y}{d x} & =\frac{d}{d x}(\sin x \sin x) \\
& =(\sin x)^{\prime} \sin x+\sin x(\sin x)^{\prime} \quad \text { [By Leibnitz product rule] } \\
& =\cos x \sin x+\sin x \cos x \\
& =2 \sin x \cos x
\end{align*}
$$

For $n=3, y=\sin ^{3} x$.

$$
\therefore \frac{d y}{d x}=\frac{d}{d x}\left(\sin x \sin ^{2} x\right)
$$

$$
=(\sin x)^{\prime} \sin ^{2} x+\sin x\left(\sin ^{2} x\right)^{\prime}
$$

[By Leibnitz product rule]

$$
=\cos x \sin ^{2} x+\sin x(2 \sin x \cos x)
$$

$$
[\text { Using (1)] }
$$

We assert that $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
Let our assertion be true for $n=k$.
i.e., $\frac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x$

Consider

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{k+1} x\right) & =\frac{d}{d x}\left(\sin x \sin ^{k} x\right) \\
& =(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{\prime} \\
& =\cos x \sin ^{k} x+\sin x\left(k \sin ^{(k-1)} x \cos x\right) \\
& =\cos x \sin ^{k} x+k \sin ^{k} x \cos x \\
& =(k+1) \sin ^{k} x \cos x
\end{aligned}
$$

Thus, our assertion is true for $n=k+1$.
Hence, by mathematical induction, $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$

Q20 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{a+b \sin x}{c+d \cos x}$

Answer :

Let $f(x)=\frac{a+b \sin x}{c+d \cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(c+d \cos x) \frac{d}{d x}(a+b \sin x)-(a+b \sin x) \frac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}} \\
& =\frac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}} \\
& =\frac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}} \\
& =\frac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(c+d \cos x)^{2}} \\
& =\frac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}
\end{aligned}
$$

Q21 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{\sin (x+a)}{\cos x}$

Answer :

Let $f(x)=\frac{\sin (x+a)}{\cos x}$
By quotient rule,
$f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a) \frac{d}{d x} \cos x}{\cos ^{2} x}$
$f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a)(-\sin x)}{\cos ^{2} x}$
Let $g(x)=\sin (x+a)$. Accordingly, $g(x+h)=\sin (x+h+a)$
By first principle,

$$
\begin{align*}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h+a)-\sin (x+a)] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right] \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right] \\
& =\left(\cos \frac{2 x+2 a}{2}\right) \times 1 \quad \quad\left[\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right] \\
& =\cos (x+a) \quad \text { (ii) } \quad\left[\begin{array}{l}
\text { (i) }
\end{array}\right]
\end{align*}
$$

From (i) and (ii), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos x \cdot \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x} \\
& =\frac{\cos (x+a-x)}{\cos ^{2} x} \\
& =\frac{\cos a}{\cos ^{2} x}
\end{aligned}
$$

Q22 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\boldsymbol{x}^{4}(5 \sin x-3 \cos x)$

Answer :
Let $f(x)=x^{4}(5 \sin x-3 \cos x)$
By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{4} \frac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{4}\right) \\
& =x^{4}\left[5 \frac{d}{d x}(\sin x)-3 \frac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{4}\right) \\
& =x^{4}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right) \\
& =x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]
\end{aligned}
$$

Q23 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): ($x^{2}+1$) $\cos x$

Answer:

Let $f(x)=\left(x^{2}+1\right) \cos x$
By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}+1\right) \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}\left(x^{2}+1\right) \\
& =\left(x^{2}+1\right)(-\sin x)+\cos x(2 x) \\
& =-x^{2} \sin x-\sin x+2 x \cos x
\end{aligned}
$$

Q24 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\left(a x^{2}+\sin x\right)(p+q \cos x)$

Answer :

$$
\text { Let } f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)
$$

By product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(a x^{2}+\sin x\right) \frac{d}{d x}(p+q \cos x)+(p+q \cos x) \frac{d}{d x}\left(a x^{2}+\sin x\right) \\
& =\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x) \\
& =-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)
\end{aligned}
$$

Q25 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(x+\cos x)(x-\tan x)$

Answer :
Let $f(x)=(x+\cos x)(x-\tan x)$
By product rule,

$$
\begin{aligned}
& \begin{aligned}
f^{\prime}(x) & =(x+\cos x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\cos x) \\
& =(x+\cos x)\left[\frac{d}{d x}(x)-\frac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x) \\
& =(x+\cos x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)(1-\sin x)
\end{aligned} \\
& \text { Let } g(x)=\tan x . \text { Accordingly, } g(x+h)=\tan (x+h)
\end{aligned}
$$

By first principle,

$$
\begin{align*}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h)}\right) \\
& =\frac{1}{\cos x} \cdot 1 \cdot \frac{1}{\cos (x+0)} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x \tag{ii}
\end{align*}
$$

Therefore, from (i) and (ii), we obtain

$$
\begin{aligned}
f^{\prime}(x) & =(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)
\end{aligned}
$$

Q26 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{4 x+5 \sin x}{3 x+7 \cos x}$

Answer :
Let $f(x)=\frac{4 x+5 \sin x}{3 x+7 \cos x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(3 x+7 \cos x) \frac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \frac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}} \\
& =\frac{(3 x+7 \cos x)\left[4 \frac{d}{d x}(x)+5 \frac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \frac{d}{d x} x+7 \frac{d}{d x} \cos x\right]}{(3 x+7 \cos x)^{2}} \\
& =\frac{(3 x+7 \cos x)(4+5 \cos x)-(4 x+5 \sin x)(3-7 \sin x)}{(3 x+7 \cos x)^{2}} \\
& =\frac{12 x+15 x \cos x+28 \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35 \sin ^{2} x}{(3 x+7 \cos x)^{2}} \\
& =\frac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}} \\
& =\frac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}
\end{aligned}
$$

Q27 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers):

$$
x^{2} \cos \left(\frac{\pi}{4}\right)
$$

$\sin x$

Answer:
Let $f(x)=\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(\sin x)}{\sin ^{2} x}\right] \\
& =\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \cdot 2 x-x^{2} \cos x}{\sin ^{2} x}\right] \\
& =\frac{x \cos \frac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}
\end{aligned}
$$

Q28 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{x}{1+\tan x}$

Answer :

Let $f(x)=\frac{x}{1+\tan x}$
$f^{\prime}(x)=\frac{(1+\tan x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$
$f^{\prime}(x)=\frac{(1+\tan x)-x \cdot \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$

Let $g(x)=1+\tan x$. Accordingly, $g(x+h)=1+\tan (x+h)$.
By first principle,

$$
\begin{align*}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{1+\tan (x+h)-1-\tan x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right] \\
& =\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right) \\
& =1 \times \frac{1}{\cos { }^{2} x}=\sec ^{2} x \\
\Rightarrow \frac{d}{d x} & (1+\tan x)=\sec ^{2} x \tag{ii}
\end{align*}
$$

From (i) and (ii), we obtain

$$
f^{\prime}(x)=\frac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}
$$

Q29 :
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $(x+\sec x)(x-\tan x)$

Answer :
Let $f(x)=(x+\sec x)(x-\tan x)$
By product rule,

$$
\begin{align*}
f^{\prime}(x) & =(x+\sec x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\sec x) \\
& =(x+\sec x)\left[\frac{d}{d x}(x)-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[\frac{d}{d x}(x)+\frac{d}{d x} \sec x\right] \\
& =(x+\sec x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[1+\frac{d}{d x} \sec x\right] \tag{i}
\end{align*}
$$

Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$
Accordingly, $f_{1}(x+h)=\tan (x+h)$ and $f_{2}(x+h)=\sec (x+h)$

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0}\left(\frac{f_{1}(x+h)-f_{1}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right) \\
& =\lim _{h \rightarrow 0}\left[\frac{\tan (x+h)-\tan x}{h}\right]
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right]
$$

$$
=\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right)
$$

$$
=1 \times \frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

$$
\begin{equation*}
\Rightarrow \frac{d}{d x} \tan x=\sec ^{2} x \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \frac{d}{d x} \sec x=\sec x \tan x \tag{iii}
\end{equation*}
$$

From (i), (ii), and (iii), we obtain

$$
f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)
$$

$$
\begin{aligned}
& f_{2}^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f_{2}(x+h)-f_{2}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\sec (x+h)-\sec x}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\frac{1}{\cos x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right\}}{\cos (x+h)}\right] \\
& =\sec x \cdot \frac{\left\{\lim _{h \rightarrow 0} \sin \left(\frac{2 x+h}{2}\right)\right\}\left\{\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right\}}{\lim _{h \rightarrow 0} \cos (x+h)} \\
& =\sec x \cdot \frac{\sin x \cdot 1}{\cos x}
\end{aligned}
$$

Q30 :

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed nonzero constants and m and n are integers): $\frac{x}{\sin ^{n} x}$

Answer :

Let $f(x)=\frac{x}{\sin ^{n} x}$
By quotient rule,
$f^{\prime}(x)=\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$
It can be easily shown that $\frac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$
Therefore,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x} \\
& =\frac{\sin ^{n} x \cdot 1-x\left(n \sin ^{n-1} x \cos x\right)}{\sin ^{2 n} x} \\
& =\frac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x} \\
& =\frac{\sin x-n x \cos x}{\sin ^{n+1} x}
\end{aligned}
$$

