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Chapter 1

Probabilities

1.1 Definitions and axioms

Let E be an experiment which provides a finite number of outcomes α1, α2, . . . , αn. We state the
following definitions:

• Trial is the execution of E which leads to a outcome, or sample, α and only one.

• Space or stochastic universe associated with the experiment E is the set S = α1, α2, . . . .αn

of all possible outcomes of E .

• Event is any set A of outcomes and what is a any subset of S.

• An Elementary Event (or Sample Event) is a set E ⊂ S with a single outcome.

• A Certain Event is the event corresponding to S.

• The Impossible Event is the empty set ∅.

• Events can be combined with operations in use in Set theory, obtaining events such as union
(or sum) events, conjunction (or product or intersection) events, complement events, and
difference events.

• We say that in a trial event A occurs if the outcome of the trial belongs to A.

From the above definitions the following properties hold:

• The certain event always occurs;

• The impossible event never occurs;

• A union event occurs if at least one of the component events occurs;

• A joint event occurs if all the components events occur simultaneously;
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• Disjoint events can not occur simultaneously, and for this reasons they are called mutually
exclusive (as for example sample events and complementary events).

Definition
The probability 1 P (A) of an event A ⊂ S is a measure defined on S so as to satisfy the following
axioms:

Axiom I: P (A) is a nonnegative real number associated with the event.

P (A) ≥ 0 (1.1)

Axiom II: the probability of the certain event is one.

P (S) = 1 (1.2)

Axiom III: if A e B are disjoint events

P (A+B) = P (A) + P (B) (1.3)

Directly from these axioms, some corollaries follows:

Corollary 1

P (A) = 1− P (Ā) ≤ 1 (1.4)

In fact we have A+ Ā = S e AĀ = φ and the thesis follows from (1.3).

Corollary 2

P (φ) = 0 (1.5)

In fact we have φ = S̄ and the thesis follows from (1.4).

Corollary 3: If B ⊂ A, then

P (B) ≤ P (A) (1.6)

In fact we have A = B + (AB̄) where B and AB̄ are disjoint events, and the thesis follows from
(1.3) e (1.1).

Corollary 4: If A1, A2, . . . , An are disjoint events, and A = A1 +A2 + . . . +An, then we have

P (A) = P (A1) + P (A2) + . . .+ P (An). (1.7)

The thesis follows from repeated application of (1.3).

1We use the short term ”probability of A” instead of the more correct ”probability that the outcome of a trial is
in A ⊂ S”
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Definition
We say that an experiment E (or probability space S) is completely described from the probabilis-
tic point of view when, for each elementary event Ei it is given, or it is possible to obtain the
corresponding probability

pi = P (Ei)

In this case Corollary 4 allows to derive the probability of any kind of event A as the sum of the
probabilities of the elementary events that compose A.

Definition
If all the nS elementary events Ei are equally probable, the space S is called uniform.

Corollary 5: For a uniform space S of nS elements, the probability of an event A composed of rA
elementary events is:

P (A) =
rA
nS

(1.8)

In fact, being by hypothesis P (ei) = p, (i = 1, 2, . . .) and being the elementary events disjoint by
definition, applying the (1.7) yields

P (A) =
∑

i

P (Ei) = p rA (for every Ei ⊂ A)

and from (1.1) and (1.7)

1 = P (S) =
∑

i

P (Ei) = p nS (for every Ei ⊂ S)

Dividing the right and left sides of the above expressions we get (1.8).

Several of the cases we will consider in the following are related to uniform spaces and, therefore,
probability calculations are performed by counting techniques (as in combinatorial calculus) in
order to get rA and nS .

1.2 Uniform and finite spaces

The experiments that we consider in this section are modeled with the urn model which is an ideal
experiment consisting in drawing k objects (elements) from an urn containing n objects (like e.g.
numbered or colored balls). The model assumes that all possible outcomes consisting of all the
groups that can be formed with k out of n objects are equally probable. Therefore, probabilities
can be evaluated via (1.8).
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Assuming that groups differ in at least one element or in the order they appear in the group, if
objects are drawn together, or one by one with no replacement, the number of such groups is

nS = (n)k = n(n− 1) . . . (n− k + 1) =
n!

(n− k)!
.

While, if objects are drawn one by one with re-insertion/replacement of the drawn element in the
urn, the number of such groups is

nS = nk

If the order does not count in distinguishing different groups we have to divide by the number k!
of possible permutations of different objects, and we get:

nS =

(
n

k

)
=

(n)k
k!

=
n!

k!(n − k)!
,

in the case of drawn with no replacement, and

nS =
nk

k!
,

in the case of with replacement.

Example (1)
In an urn there are ten objects representing the ten digits 0, 1, . . . , 9. Evaluate the probability that,
upon drawing of 3 elements, the three digits form the event

A = {number 567}
B = {number with three consecutive increasing digits.}.

We have nS = (10)3 = 10 · 9 · 8 = 720

rA = 1 P (A) =
1

720

rB = 8 P (B) =
8

720

Example (2)
Like in previous example but assuming that we have three consecutive drawings with the replacement
of the element previously drawn. Evaluate the probability of events A and B of previous example
and of event C = {number with all equal digits. }

nS = 103

rA = 1 P (A) =
1

1000

rB = 8 P (B) =
8

1000

rC = 10 P (C) =
10

1000
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Example (3)
Assuming that people have equal probability to be born any day of the year, evaluate the minimum
number of people k you need to pick so that the probability of having at least two people born on the
same day is greater or equal 0.5.

The experiment is equivalent to drawing k numbers out of an urn that contains 365 objects, each
representing a different day of the year. Denoting with Dk = { extraction k objects all different }
we have

P (Dk) =
(365)k
(365)k

k ≤ 365

The probability that at least two people are born in the same day is:

P (Dk) = 1− P (Dk) = 1− 365!

(365 − k)! 365k
> 0, 5.

The non linear equation can be solved numerically. Calculating some samples we get:

P (D10) = 0, 166 . . . P (D22) = 0, 47576 . . . P (D23) = 0, 5072 . . . P (D30) = 0, 7062 . . .

The result is then k = 23.

1.3 Union of non-disjoint events

Theorem: (1.9)
Given events A and B ⊆ S the following relation holds

P (A+B) = P (A) + P (B)− P (AB) (1.10)

The proof is obtained by writing event A+B as union of two disjoint events (see Figure 1.1):

A−AB (horizontal dash lines); AB (grid); B −AB (vertical dash lines)

From Corollary 4 we have

P (A+B) = P (A−AB) + P (AB) + P (B −AB),
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S

A B

AB

Figure 1.1:

observing that

P (A−AB) = P (A)− P (AB),

P (B −AB) = P (B)− P (AB),

and substituting, we get (1.10).♣

If A e B are disjoint events, (1.10) reduces to (1.3).

Example (4)
In a throw of dice, evaluate the probability that number is either even or less than 3.

Denote the event ”even number” as A and the event ”less than three” as B we have

P (D) = P (A+B) = P (A) + P (B)− P (AB),

We evaluate P (A), P (B), and P (AB) with the counting process and we find

P (A) =
3

6
, P (B) =

2

6
, P (AB) =

1

6
.

Substituting we get

P (D) =
1

3
+

1

2
− 1

6
=

4

6
.

1.4 Conditional spaces, events and probabilities

Assume an experiment E , a space S and a probability measure P (·).
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We want to evaluate the probability that the outcome α of a trial of E verifies event A (α ∈ A)
knowing that event M , with P (M) > 0, also occurs (α ∈ M).

Obviously, knowing that the outcome is in set M gives some additional information on the possible
occurrence of a given α, since all α that do not belong to M are excluded. For this reason the
probability of the occurrence of A is no longer the original one P (A), usually referred to as ”a
priori” probability, but a different one, usually referred to as ”a posteriori” (after knowing α ∈ M).

S

A M=S1

A1

Figure 1.2:

We can formalize this concept by introducing an experiment E1 (conditional experiment) whose
results, α1, are only those of E that also belong to M . In this way the space (conditional) associated
with E1 is S1 ≡ M and event A1 is called ”conditional event”.

Obviously, the probabilistic description P1(·) in S1 ”must” be linked to description P (·) in S, i.e. the
probability of the conditional event A1 must be a function of the probability of the corresponding
event AM (unconditional) in S:

P1(A1) = g[p(AM)].

Given A1 e B1, disjoint events, Axiom III says that

P1(A1 +B1) = P1(A1) + P1(B1),

that is,

g[P (AM +BM)] = g[P (AM)] + g[P (BM)],

which implies that g()̇ is a linear function of the type

g[P ] = αP + β,

α and β being constant values.

Axiom IIIa implies β = 0, whereas Axiom II forces

g[P (M)] = 1,

i.e.

α =
1

P (M)
.
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Then we have

P1(A1) =
P (AM)

P (M)

However, instead of making use of formalization E1 and A1, it is preferable to write the conditional
probability as P (A/M), and then:

P (A/M) =
P (AM)

P (M)
. (1.11)

Relation (1.11) is meaningful only if P (M) 6= 0 and not only excludes M = φ, but also the case
where M is a elementary event in a continuous space. Such a conditional probability is defined
later.

Example (5)
Evaluate the probability that the outcome of a throw of the dice is 2 knowing that the result is even.

We have

S = {1, 2, 3, 4, 5, 6} S1 = {2, 4, 6}

and from (1.11)

P (2/ even) = P1(2) =
1

3

1.5 Total Probability

It is often easy to determine the probability of an event A conditioned by other events Mi. In
this case the probability of A can be determined as a function of the conditional probabilities by
resorting to the Total Probability Theorem:

Theorem: Total Probability (1.12)
Given M1,M2, . . .Mn disjoint events such that M1 + M2 + . . . + Mn = S (or more in general
M1 +M2 . . .MN ⊃ A), we have

P (A) =

n∑

i=1

P (A/Mi)P (Mi). (1.13)

In fact, since events AMi are disjoint, and their union provides A, we can write

P (A) =

n∑

i=1

P (AMi), (1.14)
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and using the relation

P (AMi) = P (A/Mi)P (Mi), (1.15)

attained by reversing (1.11), we get (1.13). ♣

Example (6)
A box contains three types of objects, some of which are defective, in these proportions

type A - 2500 of which 10% defective
type B - 500 of which 40% defective
type C - 1000 of which 30% defective

If we draw an object at random, what is the probability P (D) that, drawing an object, this is found
to be defective?

Conditions are met for the validity of (1.13). The probability to draw an object of type A, B, C
are respectively

P (A) =
2500

4000
=

5

8
; P (B) =

500

4000
=

1

8
; P (C) =

1000

4000
=

2

8
.

Then we have

P (D/A) =
10

100
; P (D/B) =

40

100
; P (D/C) =

30

100
;

and, finally, from (1.13)

P (D) = P (D/A)P (A) + P (D/B)P (B) + P (D/C)P (C) =
3

16

Obviously, in this case the probability can also be obtained as ratio between the number of defective
items and the total number of objects:

P (D) =
250 + 200 + 300

4000
=

3

16

However, in other cases this direct approach is not so easy.

Example (7)
A game is based on the following experiment. A box contains n tags, each one reporting a number
arbitrarily determined. The player draws at first r tags and observes their maximum value mr.
Then, further drawings are performed until a value m is observed such as m > Mr. Player wins if
m = M , where M is the maximum value among those reported on the n tags. We want to evaluate
the probability P (V ) to win, and the value of r = rm for which this probability is maximum.

Since the positions of the maximum are equally likely, the probability that M is in position k is

P (M in k) =
1

n
(1.16)

The probability to win, with M in k, is zero if k ≤ r. For k > r player wins if the maximum mk−1

among the first k − 1 tags is within the first r, and this happens with probability
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Pr(V/M in k) =
r

k − 1
. (1.17)

with k > r. By the Total Probability Theorem (1.13) we have:

Pr(V ) =
n∑

k=1

Pr(V/M in k)P (M in k) =

=

r∑

k=1

Pr(V/M in k)P (M in k) +

n∑

k=r+1

Pr(V/M in k)P (M in k) =

=
n∑

k=r+1

r

k − 1

1

n
=

r

n

n−1∑

k=r

1

k
.

Using this result we can write

Pr(V )− Pr+1(V ) =
1

n
(1− 1

n− 1
− 1

n− 2
− . . .− 1

r + 1
)

When r varies from n − 1 to 1 the above expression changes from positive to negative and the
value rm that maximizes the probability to win is the smallest value of r for which the expression
is positive. For n and r large enough you can derive an approximate result by substituting, into
the expression of Pr(V ), the sum with an integral obtaining

Pr(V ) ≃ r

n

∫ n

r

1

x
dx =

r

n
ln

n

r
.

The above expression presents a maximum at

r

n
= e−1 = 0, 3675 . . .

where it is

P (V ) = e−1 = 0, 3675 . . .

In Table below exact values of rm e P (V ) are reported for some n.

n rm P (V )

3 1 0,5
4 1 0, 4583
5 2 0, 43
7 2 0, 4142 . . .
10 3 0, 3986 . . .
50 18 0, 3742 . . .

100 37 0, 3710 . . .
1000 368 0, 3681 . . .
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1.6 Bayes’ Formula

If we use (1.11) two times in a direct and a reverse way we get:

P (M/A) =
P (AM)

P (A)
= P (A/M)

P (M)

P (A)
. (1.18)

Using the total probability theorem (1.13) for the denominator, the above expression can be re-
written as:

P (Mk/A) =
P (A/Mk)P (Mk)∑n
j=1 P (A/Mj)P (Mj)

. (1.19)

Both formulas above are referred to as the Bayes’ Theorem. In particular, the (1.19) is referred to
as ”Bayes’ rule for the ’a posteriori’ probability”, that is after observing the occurrence of the event
A. In this case, P (Mi) are called ”a priori probabilities” and P (Mi/A) ”a posteriori probabilities”.

Example (8)
An object drawn at random from the box in Example (6) is found to be defective. Evaluate the
probabilities that it is of type A, B and C respectively.

Using Bayes’ formula and the preceding results we have

P (A/D) =
P (D/A)P (A)

P (D)
=

10

30
; P (B/D) =

P (D/B)P (B)

P (D)
=

8

30
.

Similarly we have

P (C/D) =
12

30
.

Note that while ”a priori” the most likely type of object is A, after observing that the object is
defective the most likely type of object is C.

Example (9)
With reference to Example (7), let compute the probability that the maximum M is in position
r = k knowing that those who played won.

We use (1.19) where A represents victory and Mk represents maximum in position k:

P (M in k/V ) =
P (V/M in k)P (M in k)

P (V )

At denominator we have the probability to win already evaluated:

P (V ) =
r

n

n−1∑

k=r

1

k
,
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while at numerator we have:

P (M in k) =
1

n

and

P (V/M in k) =
r

k − 1

Then we have:

P (Mk/V ) =
C

k − 1
k > r

and zero elsewhere, being C the normalization constant:

C =
1∑n−1

k=r
1
k

You can see how the knowledge of a preceding victory significantly modifies the distribution of
the position of the maximum, which is very different from the uniform one we have ”a priori”. In
particular, the ”a posteriori” most probable position is in k = r + 1.

Example (10)
Assume that you are presented with three dices, two of them fair and the other a counterfeit that
always gives 6. If you randomly pick one of the three dices, the probability that it’s the counterfeit
is 1/3. This is the a priori probability of the hypothesis that the dice is counterfeit. Now after
throwing the dice, you get 6 for two consecutive times. Seeing this new evidence, you want to
calculate the revised a posteriori probability that it is the counterfeit.

The ’a priori’ probability of counterfeit dice is

P (Dc) =
1

3
,

while that of a fair dice is

P (Df ) =
2

3
.

We have:

P (66/Df ) =
1

6
× 1

6
=

1

36

P (66/Dc) = 1

and then using Bayes’ formula:

P (Dc/66) =
P (66/Dc)P (Dc)

P (66/Dc)P (Dc) + P (66/Df )P (Df )
=

18

19

Example (11)
A binary communication channel with binary input alphabet, say X0 and X1, a binary output
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alphabet, say Y0 and Y1, and the matrix of probabilities P (Yi/Xi). The communication problem is a
decision problem, that is, to determine which letter among the input alphabet has been transmitted
knowing the output letter.

Among the many decision criteria, the soundest one is the one called Maximum A posteriori Prob-
ability (MAP):

The Bayes’ rule allows to write

P (Xi/Yj) = P (Yj/Xi)
P (Xi)

P (Yj)
. (1.20)

If we know that a given output has occurred, say Y0, we say that it has been trasmitted the one
among X0 and X1 that maximizes (1.20).

For example let us assume that

P (Y0/X0) = 0.8, P (Y1/X0) = 0.2, P (Y0/X1) = 0.2, P (Y1/X1) = 0.8,

(this is called the Binary Symmetric channel). Let also assume that input symbols are equally
probable. Then also output symbols are equally probable and from (1.20), maximizing P (Xi/Yj)
means maximizing P (Yj/Xi).

Assume we receive Y1. Then, being P (Y1/X1) > P (Y1/X0) we must decide that X1 has been
transmitted. Similarly, when we receive Y0 we must decide that X0 has been transmitted.

The following channel is called perfect channel or noiseless channel.

P (Y0/X0) = 1, P (Y1/X0) = 0,

P (Y0/X1) = 0, P (Y1/X1) = 1,

This means that when entering X0 the output is always Y0 and when entering X1 the output is
always Y1, so that the decision process is straightforward.

Also consider the following channel

P (Y0/X0) = 0.5, P (Y1/X0) = 0.5,

P (Y0/X1) = 0.5, P (Y1/X1) = 0.5,

The best decision when receiving Y0, is left to the reader.

Since error affects all physical measures, and repeating the measure often provides different values,
the process toward the interpretation of a measure is exactly a decision process as the one shown
above, and shows the importance of the Bayes’ rule.

1.7 Statistical independence

Definition. Two events A and B ⊂ S are said statistically independent if and only if

P (AB) = P (A)P (B) (1.21)
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The meaning of statistical independence and the validity of (1.21) is immediate if we observe that
if the latter is true, the (1.11) results in:

P (A/B) = P (A), P (B/A) = P (B).

Based on the definition of conditional probability, this means that the probability of A is not
influenced by the occurrence of B and vice versa.

It is easy to see also that if two events A andB are statistically independent so are their complements
A and B. Sometimes the statistical independence can be predicted when probabilistic events
correspond to physical events which do not influence each other ”physically”.

Example (12)
In a throw of the dice, check whether the following events

A = {even number }
B = {number one, or two or three}

are statistically independent.

We have

P (A) = 1/2; P (B) = 1/2; P (AB) = 1/6;

that is

P (AB) 6= P (A)P (B)

Hence, events A e B are not statistically independent.

Example (13)
In a throw of the dice, check whether the following events A = {an even number appears}

B = {number one, or two, or three, or four appears} are statistically independent.

We have

P (A) = 1/2; P (B) = 2/3; P (AB) = 2/6

and

P (AB) = P (A)P (B)

Hence, events A e B are indeed statistically independent.

The definition of independence is extended to more than two events in the following way:

Definition
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events A1, A2, . . . An are said statistically independent if and only if

P (AiAj) = P (Ai)P (Aj) (i, j = 1, 2, . . . n), (i 6= j)

P (AiAjAk) = P (Ai)P (Aj)P (Ak) (i, j, k = 1, 2, . . . n), (i 6= j 6= k)

. . . . . . . . . (1.22)

. . . . . . . . .

P (A1A2 . . . An) = P (A1)P (A2) . . . P (An)

The number of relations (1.22) is 2nn − 1 and ensure the independence of any number of joint
events formed by groups extracted from any A1, A2, . . . An.

1.8 Problems for solution

P.1.1 In a throw of three dices, evaluate the probability of having k equal faces, with k ∈ [0; 2; 3].

P.1.2 Throwing a dice three times, evaluate the probability of having at least one 6.

P.1.3 Assuming women and men exist in equal number, and assuming that 5% of the men are
colour blind and that 0,25% of the women are colour blind, evaluate the probability that a
person picked at random is colour blind. Then evaluate the probability that, having picked
a colour-blind person, this is a male.

P.1.4 In a draw of a card from a deck of 52 cards, verify whether the following events are statis-
tically independent:

a) A = {drawing of a picture card}; B = {drawing of a hearth card}

b) What if the king of hearths is missing from the deck of cards?
c) What if a card, at random, is missing?

P.1.5 A dice A has four red faces and two white faces. A dice B, vice-versa, has two red faces and
four white faces. You flip a coin once, if heads the game continues with diceA, otherwise
it continues with dice B. a) throwing the dice, what is the probability to get a red face?
b) and at the second throwing of the same dice? c) If the first two throws show a red face,
what is the probability that also on the third rolling is red? d) If the first n throws show a
red face, what is the probability that you are using dice A?

P.1.6 An urn contains two white balls and two black. A ball is drawn and replaced with a ball
of a different color. Then a second ball is drawn. Calculate the probability p that the first
extracted was white, when the second is white.

P.1.7 The probabilities that three different archers, A, B hit the mark, independently of one an-
other, are respectively 1/6, 1/4 and 1/3. Everyone shoots an arrow. a) Find the probability
that only one hits the mark. b) If only one hits the mark, what is the probability he is
archer A?
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P.1.8 A duel among three people A, B and C is carried out according to the Russian roulette. A
six round revolver is loaded with two cartridges. The duelists pass cyclically the weapon,
spinning the cylinder every time (so that each duelist has 1/3 probability of being on a
loaded chamber) and shooting themselves as long as only one remains alive. Assuming that
A is the first, what is the probability that each duelist is the first to die? b) and to win?

P.1.9 From a deck of 52 cards we draw two cards. Find the probabilities of the following events
A = { first card is a King; the second figure} ={K1;F2} B = { at least one figure}



Chapter 2

Random Variables

2.1 Spaces with infinite outcomes: Random Variables

To deal with spaces S with infinite outcomes, we must add another axiom to the ones already
introduced in Chapter 1 that extends the summation of the probability measure over infinite terms:

Axiom IIIa: If A1, A2, . . . , An . . . are disjoint events and A = A1 +A2 + . . .+An + . . ., then

P (A) = P (A1) + P (A2) + . . .+ P (An) + . . . (2.1)

An example of this type of space is the number of coin flips to get a head. This number is not
limited, as the head could never appear in n trial, whichever n is. These spaces are said countable
(number of elements of the same cardinality of natural numbers), and can be managed with the
methods presented in the previous chapter.

However, we can consider also uncountable spaces, such as is the case when the outcomes is, for
example, a point in an interval, or in any general geometrical space. The problem to assign a
probability measure to such spaces is not as simple as it is in countable spaces. in fact, it is not
straightforward how to extend the method to assign a probability to any subset of the space.

The approach used here is that of ”transforming” the space of outcomes into another one more
convenient for assigning probabilities. In particular, we map outcomes and events (subsets) of S
into the space of real numbers (using integer numbers as a subset to include countable spaces as a
special case), or into vectorial spaces for the multidimensional cases.

Let us consider a real function X(α) defined on the space S of the outcomes that binds the set S
and the set of real numbers R in order to match every α ∈ S with one and only one value X(α)inR.

With this function, each event A ⊂ S corresponds a set I ⊂ R such that for every α ∈ A we have
X(α) ∈ I. In this way the description of an experiment in terms of results α, A and probability
events for PS(A) in S, can be replaced, or rather unified, by the description in terms of real numbers
x, sets I and probabilities PR(I) in R.

A function X(α) which satisfies the above conditions is called ”random variable”. Typically, the

17
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notation is simplified omitting the relation with α and capital letters, such as X, Y, Z, are used to
indicate random variables.

2.1.1 Describing a Random Variable

Let X be a Random Variable (RV) and x a real number. The probability of the event {X ≤ x}
is a function of the real variable x. Such function is denoted by FX(x) (or F (x) when there is no
doubt on the RV to which it refers) and is called ”Cumulative Probability Distribution Function”
(CDF) of X. We have thus,

FX(x) = P (X ≤ x) (2.2)

with the following properties

1. it has the following limits

F (−∞) = 0 F (+∞) = 1 (2.3)

2. it is a monotonic non decreasing function of x:

F (x1) ≤ F (x2) per x1 ≤ x2 (2.4)

3. it is right continuous 1:

F (x+) = F (x) (2.5)

FX(x) completely describes RV X; In fact we have, for any x1, x2 and x:

P (x1 < X ≤ x2) = F (x2)− F (x1) (2.6)

P (X = x) = F (x)− F (x−) (2.7)

Proofs

• Properties 1 comes from the fact that {X ≤ −∞} is the empty set, and {X ≤ ∞} is the
whole space.

• Property (2.4) comes from (1.6) by observing that for x1 < x2, we have {X ≤ x1} ⊂ {X ≤
x2}.

• Furthermore, we have P (X ≤ x + ε) = P (X ≤ x) + P (x < X ≤ x + ε), and for ε → 0 the
second term tend to zero because the corresponding event becomes the empty set; hence (2.5)
2.

• Property (2.6) comes from the fact that

P (x1 < X ≤ x2) = P (X ≤ x2)− P (X ≤ x1)

1We denote F (x+) = limε→0 and F (x−) = limε→0 F (x− ε)
2Notice that if we had set F (x) = P (X < x), this would have been left continuous
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• Property (2.7) comes from (2.6) by setting x1 = x− ε, x2 = x and taking the limit ε → 0.

We say that two RV X and Y are equal if for every α we have X(α) = Y (α), while we say that
they are equally distributed if they have the same CDF, i.e. if FX(z) = FY (z).

We emphasize that given any function G(x) with properties (2.3) (2.4) and (2.5), we can always
build an experiment and define a RV which has G(x) as its CDF. This allows us to manages
distributions without specifying to which experiment it refers.

2.2 Continuous Random Variables

A RV X is continuous if its CDF FX(x) is a continuous function in R, together with its first
derivative, except at most a countable set of points where the derivative does not exist.

Since for a continuous RV FX(x) is left continuous, we have from (2.7)

P (X = x) = 0.

For this reason, it is useful introducing the probability density function (pdf) of RV X” fX(x)
defined as the derivative of the corresponding CDF:

fX(x) =
dFX(x)

dx
(2.8)

The definition is then completed by assigning arbitrary positive values where the derivative does
not exist.

From the definition and properties of F (x) we have

f(x) ≥ 0 (2.9)
∫ ∞

−∞
f(x)dx = 1 (2.10)

P (X ≤ x) = F (x) =

∫ x

−∞
f(x)dx (2.11)

P (x1 < X ≤ x2) = F (x2)− F (x1) =

∫ x2

x1

f(x)dx (2.12)

Definition (2.8) shows that

f(x) = lim
∆x→0

P (x < X ≤ x+∆x)

∆x
. (2.13)

This shows that the pdf can be interpreted as the normalized probability that the RV belongs to a
small interval around x and, dimensionally, is a density, hence the name.
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1

a b x

FX(x)

a b x

fX(x)

ab −
1

Figure 2.1:

Example (14)
We want to find the CDF and pdf of RV X, defined as the coordinate of a point randomly selected
in interval [a, b] of x axis.

As explained in section 2.2 and by (2.2), we immediately have

FX(x) =





x− a

b− a
(a ≤ x ≤ b)

0 (x < a)
1 (x > b)

(2.14)

and from (2.8) or straightly from (2.13)

f(x) = lim
∆x→0

∆x

b− a

1

∆x

we get

fX(x) =





1

b− a
(a ≤ x ≤ b)

0 elsewhere

(2.15)

A RV that satisfies (2.14) and (2.15) is called ”uniformly distributed” and the pdf is said ”uniform”.

Example (15)
A point P is drawn uniformly on a circumference of radius R and center in the origin of axes.
Find the pdf of RV X, defined as the coordinate of orthogonal projection of P on the horizontal
axis.

To find the pdf let us use the (2.13). With reference to Figure 2.2a, P (x < X ≤ x + ∆x) is the
probability that P lies in one of two small arcs shown in the figure, each having a length

dℓ =
√

dx2 + dy2 = dx

√
1 + (

dy

dx
)2

Being y =
√
R2 − x2, we get:

dy = − xdx√
R2 − x2
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by replacing it in the expression above we get

dℓ = dx

√
1 +

x2(dx)2

R2 − x2
1

(dx)2
=

dx√
1− (

x

R
)2
.

Then we have:

fX(x) = lim
∆x→0

1

∆x

2∆l

2πR
= lim

∆x→0

1

∆x

1

2πR

2∆x√
1− (x/R)2

=
1

πR

1√
1− (x/R)2

for (| x |≤ R) and zero elsewhere.

The graph of fX(x) is shown in Figure 2.2b, by which we see that it is more probable to pick the
point closer to the extremes rather than to the center.

To obtain the pdf we can also derive the CDF (the task is left to the reader) and get:

P (X ≤ x) = FX(x) =





π − acos
x

R
π

(| x |≤ R)

0 (x < −R)

1 (x > R)

Example (16)
A point P is drawn uniformly in a circle of radius R. Derive the pdf of RV Z, defined as the
distance of P from the center O of the circle.

P (z < Z ≤ z + ∆z) is the probability that P is taken in the annulus shown in figure 2.3a whose
area is 2πz∆z.

By (2.13) we get

fZ(z) = lim
∆z→0

2πz∆z

πR2

1

∆z
=

2z

R2
(0 ≤ z ≤ R)

xR-R

R

O
x x+dx

dl

dl

a b

fX(x)

Figure 2.2:
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R

O z

z+dz

R z

fZ(z)

2/R

a b

Figure 2.3:

1

x

FX(x)

x

fX(x)
λ

a b

Figure 2.4: CDF and pdf of RV Negative Exponential.

The graph of fZ(z) is shown in Figure 2.3 b. As we can see P is more likely to be selected next to
the circumference than at the center.

Example (17)
The ”Negative Exponential” pdf (figure 2.4) is defined as :

F (x) = 1− e−λx (x ≥ 0) (2.16)

f(x) = λe−λx (x ≥ 0) (2.17)

2.3 Discrete and mixed RV’s

A discrete RV X is characterized by a CDF FX(x) of a staircase type, with discontinuities in a
countable set of points xi(i = 0,±1,±2 . . .), where it presents steps of value pi (figure 2.5). In this
case from (2.7) we get

P (X = x) =

{
pi x = xi
0 x 6= xi

(2.18)

(2.18) is called Probability Distribution of X (not to be confused with the CDF). We have
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x

FX(x)

x3x2x1

1

p1

p1+p2
p1+p2+p3

Figure 2.5:

x

FX(x)
1

c

a

x

FX(x)
1

1

b

q

Figure 2.6:

pi ≥ 0 (2.19)

∞∑

i=−∞
pi = 1 (2.20)

F (x) =

M∑

i=−∞
pi (2.21)

where M is the maximum i for which xi ≤ x.

If the values xi are integers, then RV X is said an integer RV. It is easy to see that the experiments
of previous chapter can be described with integer RVs.

Interesting special cases are:

• the distribution of a constant c (figura 2.6a) :

P (X = x) =

{
1 for x = c
0 elsewhere

(2.22)
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x

F2(x)

x

F1(x)

x

FX(x)
1

∆1

∆1+∆2

∆1

∆2a

b

c

Figure 2.7:

• the Bernoulli (binary) distribution (figure 2.6b):

P (X = x) =





p for x = 1
1− p = q for x = 0
0 elsewhere

(2.23)

• the uniform distribution

P (X = x) =





1

n
for x = xi (i = 1, . . . , n)

0 elsewhere

(2.24)

already encountered in examples with dices, draws from urns, etc.

A RV X is said of the ”mixed” type if it is not integer and its CDF presents discontinuities (Figure
2.7a). Such a CDF can always be seen as the sum of a suitable staircase function F1(x) (figure
2.7b) and a continuous function F2(x) (figure 2.7c).
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We can observer that for integer and mixed RV’s we can not rigorously define the pdf, which is
often much more convenient description of RVs than the CDF. This difficulty can be overcome by
resorting to the theory of generalized functions.

2.4 Bernoulli trials and the Binomial distribution

Experiments of great relevance are those obtained from repeating a single experiment multiple
times, always under the same conditions, i.e. in such a way that the repeats can be assumed
statistically independent.

Repeated independent trials, each of which with only two possible outcomes, say ”success” (S) and
”failure (F ) are called Bernoulli trials.

Denoted P (S) = p and P (F ) = q = 1 − p, independence ensures that the probability of a partic-
ular sequence of successes or failures is achieved by replacing the symbol S and F with p and q,
respectively. example:

P (SSFSF . . . FFS) = ppqpq . . . qqp

Theorem: (2.25)
The probability P (Sn = k) that in n Bernoulli trials k successes and n − k failures occur is given
by the following distribution

P (Sn = k) =

(
n

k

)
pkqn−k (0 ≤ k ≤ n) (2.26)

In fact, each sequence of k successes and n−k failures has probability pkqn−k, whatever the position

of the successes. The k successes can be in (
n
k

) distinct positions, that represent disjoint events.

The probability of k successes is then the sum of the probabilities of such sequences. ♣

Distribution (2.26) is called Binomial of order n and it represents the generic term of the power
expansion of the binomial

1 = (p+ q)n =

n∑

k=0

(
n
k

)pk qn−k (2.27)

Note that the right hand side represents the probability of the certain event, that is obviously equal
to one.

It is also easy to prove that when k ranges from 0 to n, P (Sn = k) initially grows monotonically and
then decreases monotonically, reaching its maximum value when k = km Integer part of (n + 1)p.
If (n+ 1)p is an integer we have P (Sn = km − 1) = P (Sn = km).
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Example (18)
A quality control process tests some components out of a factory and components are found defective
with a probability p = 10−2. Evaluate the probability that out of 10 components checked there are

A = { only one defective}
B = {two defective}
C = {at least one defective}.

The 10 tests can be modeled as Bernoulli trials with success probability p = 1
100 . Then we have

P (A) = (
10
1

)(
1

100
)1(

99

100
)9 = 0, 0913 . . .

P (B) = (
10
2

)(
1

100
)2(

99

100
)8 = 0, 00415 . . .

P (C) =

10∑

k=1

(
10
k

)(
1

100
)k(

99

100
)10−k = 1− (

10
0

)(
1

100
)0(

99

100
)10 = 0, 0956 . . .

2.5 Moments of a pdf

For the pdf we can define some parameters that resume some properties of the function. These are
called moments, and the most used are:

1. k−th order moments (k = 1, 2, . . .)

mk =

∫ +∞

−∞
xk f(x)dx (2.28)

2. k−th order central moments

µk =

∫ +∞

−∞
(x−m1)

kf(x)dx (2.29)

Note that, depending on the specific pdf, some moments may not exist. Parameters of the same
meaning can be given also for discrete variables in the form:

mk =

∞∑

i=−∞
xki pi (2.30)

µk

∞∑

i=−∞
(xi −m1)

k pi (2.31)

In particular, a parameter of paramount importance is the first order moment m1. This can be
considered as the coordinate of the center of mass interpreting the pdf as a mass distribution along
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the x with density f(x). Similarly, m2 is a further index of the dispersion of the distribution from
the origin x = 0 of the axis, whereas µ2 (we have µ1 = 0) provides an index of the dispersion of
the distribution from its x = m1 axis. The moments are obviously linked to the central moments
by some expressions. For example, by the definition we have

µ2 = m2 −m2
1 (2.32)

It can be shown that, if moments of any order exists, then the knowledge of these moments com-
pletely determines the pdf fX(x) (or the CDF in the discrete RV case).

Example (19)
Let us evaluate m1 and µ2 for the following RV’s

a) Bernoulli RV

b) Binomial RV

a) For Bernoulli RV, from (2.30) and (2.31), we get:

m1 = 0 · q + 1 · p = p

µ2 = (0− p)2q + (1− p)2p = pq

b) For Binomial RV we get

m1 =
n∑

k=0

k(
n
k
)pkqn−k =

n∑

k=1

n(
n− 1
k − 1

)pkqn−k = np
n−1∑

h=0

(
n− 1
h

)phqn−h−1 = np

By (2.40) we have

m2 =

n∑

k=0

k2(
n
k
)pkqn−k = np

n∑

k=1

k(
n− 1
k − 1

)pk−1qn−k

= np

n−1∑

h=0

(h+ 1)(
n− 1
h

)phqn−h−1 = np(E[X]n−1 prove + 1) = np[(n− 1)p + 1]

µ2 = m2 −m2
1 = npq
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Example (20)
Let us evaluate m1 and µ2 for the negative exponential RV. WE have

m1 =

∫ ∞

0
xλe−λxdx =

1

λ

σ2 = m2 −m2
1 =

∫ ∞

0
x2λe−λxdx− (

1

λ
)2 =

1

λ2

Theorem: Law of large numbers (2.33)
If X is a RV whose pdf has first order moment m1, denoted X1,X2, . . . , xn the outcomes of the RV
in n independent repetitions of the experiment, and Xn the arithmetic mean of values of Xi, i.e.,

Xn =
1

n

n∑

i=1

Xi

(note that Xn is itself a RV) we have:

P ( lim
n→∞

Xn = m1) = 1 (2.34)

Law (2.34) states that the average performed on a number n of outcomes of n independent trials,
tends with probability 1 to m1 when n tends to infinity. For this reason, m1 is also called the mean
value or expected value of RV X and in this sense, it is also denoted by E[X].

This law is of great importance since it provides a relationship between a pure mathematical
parameter, m1, to another one Xn directly derived from an experiment. Similar laws can also be
given for high order moments, if they exists.

The proof of the above law is quite involved and will not be given here. We however observe that
it can be formulated in another way, tied to probability pA of event A. To this purpose, define the
binary RV X such that it is X = 1 if A occurs and X = 0 otherwise. Then, if we perform n trials
we have

n∑

i=1

Xi = nA

being nA the number of times A occurs. we also observe that

m1(X) = pA

and that

Xn =
nA

n
.

Therefore, the law of large numbers can be written as

P ( lim
n→∞

nA

n
= pA) = 1 ♣ (2.35)
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x

FX(x)
1

Figure 2.8:

The above formulation of the law provides the interpretation of probability P (A) as the limit of
frequencies nA/n.

Other important properties of m1 are:

1. If f(x) is symmetric around a value of a and m1 exists, then m1 = a. In fact

m1 =

∫ +∞

−∞
xf(x)dx =

∫ +∞

−∞
(y + a)f(y + a)dy =

∫ +∞

−∞
yf(y + a)dy + a = a

This come from (2.10) and from the observation that f(y + a) is an even function ;

2. If m1 exists, it can be expressed as

m1 =

∫ ∞

0
(1− F (x))dx −

∫ 0

−∞
F (x)dx (2.36)

that is, as the difference between the dashed and the dotted areas in Figure 2.8.

To prove (2.36) assume at first that f(x) is greater than zero only within a ≤ x ≤ b. Then m1 can
be written as :

m1 =

∫ 0

a
xf(x)dx+

∫ b

0
xf(x)dx

Taking the integration by parts and using F (x) e F (x)− 1 as primitive of f(x) respectively in the
first and second integrals we have:

m1 = [xF (x)]0a −
∫ 0

a
F (z)dx + [x(F (x) − 1)]b0 +

∫ b

0
(1− F (x))dx

Since we have assumed F (a) = 0 e F (b) = 1

m1 =

∫ b

0
(1− F (x))dx−

∫ o

a
F (x)dx

and (2.36) comes out by setting a = −∞ and b = +∞;

3. If FX(x) = 0 for x < 0, for α > 0 the following inequality holds

P (X ≥ α) ≤ E[X]

α
(2.37)
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In fact,

E[X] =

∫ ∞

0
xf(x)dx ≥

∫ ∞

α
xf(x)dx ≥ α

∫ ∞

α
f(x)dx = αP (X ≥ a)

hence the thesis. Setting v =
α

E[X]
we get a different expression of (2.37)

P (X ≥ vE[X]) ≤ 1

v
(2.38)

Inequality (2.38) shows how to establish a constraint upon the part of pdf that lies above the mean
value (v > 1), based on the sole knowledge of the mean value.

µ1 =

∫ +∞

−∞
xf(x)dx−m1 = 0 (2.39)

µ2 =

∫ +∞

−∞
x2f(x)dx− 2m1

∫ +∞

−∞
xf(x)dx+m2 = m2 − 2m2

1 +m2
1 = m2 −m2

1 (2.40)

From the definition we see that µ2 can not be negative; so it must be

m2 ≥ m2
1 (2.41)

Central moment µ2, is also called variance of RV X and denoted by σ2
X , whereas σX is called

standard deviation. The variance represents a measure of the dispersion of f(x) around its average
value as shown in the following:

Tchebichev Inequality

when µ2 = σ2 does exist, we have

P (| X −m1 | ≥ vσ) <
1

v2
(2.42)

In fact:

σ2 =

∫ +∞

−∞
(x−m1)

2f(x)dx ≥
∫

|x−m1| ≥vσ
(x−m1)

2f(x)dx ≥

≥ v2σ2

∫

|x−m1|≥vσ
f(x)dx ≥ v2σ2P (| X −m1 | ≥ vσ)

hence the thesis. By setting vσ = ε we get alternatively

P (m1 − ε < X < m1 + ε) ≥ 1− σ2

ε2
(2.43)

P (|X −m1| ≥ ε) ≤ σ2

ε2
(2.44)
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from which we see that if σ2 is small, there is a high probability that X belongs to a short interval
around m1. From (2.43) we also see that when σ2 = 0, then

P (X = m1) = 1

that is, X provides the same constant value for almost all the outcomes of the experiment.

Example (21)
Let us apply Tchebichev inequality to bound the probability that the frequency of HEADS in
flipping a fair coin n times exceeds 0.5± ε.

The frequency of HEADS in n trials is H/n where H is the RV number of HEADS in n trials. This
has a Binomial distribution with average n/2 and σ2(H) = n/4. Therefore,

m1(H/n) =
1

2

σ2(H/n) =
1

4n

Tchebichev inequality says

P (|H/n −m1| ≥ ε) ≤ σ2

ε2

and substituting

P (|H/n − 0.5| ≥ ε) ≤ 1

4nε2

we have

ε = 0.1, n = 10, P ≤ 2.5(???)

ε = 0.1, n = 100, P ≤ 0.25

ε = 0.1, n = 1000, P ≤ 0.025

ε = 0.1, n = 10000, P ≤ 0.0025

We also see that

lim
n→∞

P (|H/n − 0.5| ≥ ε) = 0, ∀ε > 0

that provides a kind of demonstration of the law of large numbers.♣

Other interesting parameters are
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• absolute moments

m′
k =

∫ +∞

−∞
| xk | f(x)dx (2.45)

• generalized moments

µ
(a)
k =

∫ +∞

−∞
(x− a)kf(x)dx (2.46)

• the mode xm, defined as the most probable value, i.e., the value at which the pdf is maximum;

• the median m, defined as the value exceeded (or not exceeded) with probability 0.5. In
symmetrical pdf the median coincides with the mean m1.

Example (Persistence of bad luck) (22)
RV X represents the measure of the misfortune experienced in a certain circumstance or trial (wait-
ing time, financial loss, etc..). Denoted by X0 the misfortune I experienced and X1,X2, . . . ,Xn, . . .
the misfortune experienced by others after me in subsequent and independent trials. Denoted by N
the number of the first trial in which one is more unfortunate than me (i.e., N is the smallest value
of n for which Xn > X0), we want to determine the distribution and average value of RV N .

P (N = n) is the probability that among n + 1 trials the most unfortunate trials lies in n and the
second most unfortunate trials lies in 0 (me). The latter event can happen in (n − 1)! different
ways among the (n + 1)! possible outcomes. Therefore we have

P (N = n) =
(n− 1)!

(n+ 1)!
=

1

(n+ 1)n
(n = 1, 2, . . .)

and

E[N ] =
∞∑

n=1

nP (N = n) =
∞∑

n=1

1

n+ 1
= ∞

My bad luck is then without limit!

Example (23)
A gambling is said fair if the average RV V gain (that is negative if one actually loses) is zero.
Check whether the bets on a roulette number is a fair game (36 numbers on which you can bet plus
a zero.

Denoted by C the amount of the bet, the average gain is

V =





35C with probability
1

37

−C with probability
36

37

E[V ] = 35C
1

37
− C

36

37
= − 1

37
C

The game is not fair, as the bank gets an average gain equal to C/37.
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2.6 Conditional Distributions and Densities

Let M be an event of space S where RV X is defined. We define CDF of X conditional to M
(provided that P (M) 6= 0) the function:

FX(x/M) = P (X ≤ x/M) (2.47)

and similarly for the density a

fX(x/M) =
dFX(x/M)

dx
= lim

∆x→0

P (x < X ≤ x+∆x/M)

∆x
(2.48)

It is easy to check that the above defined functions have all the properties of the CDF and pdf.

In particular, we can define the conditional average

E[X/M ] =

∫ +∞

−∞
xfX(x/M)dx (2.49)

and, in the same way, any other conditional moments.

Interesting cases are those where also event M is described in terms of RV X.

2.7 Events conditional to the values of a RV

We define probability of an event A conditional to the value x assumed by a RV X, assuming that
fX(x) 6= 0, as the limit

P (A/X = x) = lim
∆x→0

P (A/x < X ≤ x+∆x) (2.50)

From Bayes formula (1.18) we get:

P (A/X = x) = lim
∆x→0

P (x < X ≤ x+∆x/A)P (A)

P (x < X ≤ x+∆x)

and multiplying by ∆x above and below, and taking the limit, from (2.13) and (2.48) we have
finally

P (A/X = x) =
fX(x/A)P (A)

fX(x)
(2.51)

In this way, definition (1.11) is extended also to the case where P (M) = P (X = x) = 0, provided
that M = {X = x} 6= φ. From (2.51) we have then

∫ +∞

−∞
fX(x/A)P (A)dx =

∫ +∞

−∞
P (A/X = x)fX(x)dx
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Figure 2.9:

and, by observing that

∫ +∞

−∞
fX(x/A)dx = 1, we have

P (A) =

∫ +∞

−∞
P (A/X = x)fX(x)dx (2.52)

Furthermore from (2.51), and using (2.52), we obtain finally

fX(x/A) =
P (A/X = x)fX(x)

P (A)
=

P (A/X = x)fX(x)∫ +∞

−∞
P (A/X = x)fX(x)dx

(2.53)

Relations (2.52) e (2.53) represent respectively the theorem of Total Probability (1.13) and the
Bayes theorem (1.19) extended to the continuous case.

Example (24)
Four points A,B,C and D are chosen uniformly and independently on a circumference. Find the
probability of event I = {intersection of chords AB and CD}.

Denoted by L the length of the circumference and by x the RV length of arc ÂB (oriented, figure
2.9), assumed X = x, we have

P (I/X = x) = P (D ∈ ÂB)P (C ∈ B̂A) + P (D ∈ B̂A)P (C ∈ ÂB) = 2
x(L− x)

L2

From (2.52), and being fX(x) =
1

L
, (0 < x < L), we get

P (I) =

∫ L

0
P (I/X = x)fX(x)dx =

∫ L

0
2
x(L− x)

L3
dx =

1

3

The result can be found also observing that, once A is taken, the sequences derived from the
permutations of the other 3 points are equally likely, and among these only two lead to a chord
intersection.

Example (25)

Let ÂB and B̂A be the two arcs of a circumference of length L originated by two points A e B
randomly chosen on the circumference itself. If we pick a third random point Q. Find:
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a) the probability that Q belongs to ÂB;

b) the pdf and the average length of X, defined as the length of the arc that contains Q.

Denoted by Y e Z the RV that represent the length of ÂB e B̂A we have

fY (x) = fZ(x) =
1

L
(0 ≤ x < L)

E[Y ] = E[Z] =
L

2

a) Using (2.52)

P (Q ∈ ÂB) =

∫ L

0
P (Q ∈ ÂB/Y = y)fY (y)dy =

∫ L

0

y

L

1

L
dy =

1

2

The result could be obtained also by considerations of symmetry.

Similarly P (Q ∈ ÂB) = 1
2

b) From (2.53) we have

fX(x) = fY (x/Q ∈ Y ) = fZ(x/Q ∈ Z) =

x

L

1

L
1

2

=
2x

L2
(0 ≤ x < L)

E[X] =
2

3
L

2.8 Vectorial RVs

We extend here the concepts and definitions of a scalar RV to the case of two RV’s. The extension
to the case of more than two RVs is straightforward.

Consider two RV X(α) and Y (α) defined in the same result space S (e.g. the coordinates of a
point in the plane, the height and the weight of a person, etc.). By means of this pair of functions
a correspondence arises between each event A ⊂ S and a set Dxy of the Cartesian plane, such that
for every α ∈ A the point with coordinates X(α) and Y (α) belongs to Dxy. Thus, a joint event in
S is represented by a domain Dxy in the Cartesian plane.

The probability of the joint events (Figure 2.10a)

{X ≤ x, Y ≤ y} = {X ≤ x}{Y ≤ y}

Is a function of the pair of real variables x and y. Such a function, denoted by FX,Y (x, y), is called
joint CDF of RVs X and Y .
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Figure 2.10:

We have then

FXY (x, y) = P (X ≤ x, Y ≤ y) (2.54)

From the definition we can easily verify the following relations:

F (x,∞) = FX(x); F (∞, y) = FY (y) (2.55)

F (∞,∞) = 1 (2.56)

F (x,−∞) = 0; F (−∞, y) = 0 (2.57)

P (x1 < X ≤ x2, y1 < Y ≤ y2) = F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) (2.58)

The latter property can be easily deduced from (2.54) observing Figure 2.10b.

Relations (2.55), (2.56), (2.57) represent sufficient conditions to let a function of two variables
represent a joint CDF.

Assuming now that FXY (x, y) has the derivatives that are needed, the joint pdf of RVs X and Y is

fXY (x, y) =
∂2F (x, y)

∂x∂y
(2.59)

From the properties previously described we also have

f(x, y) ≥ 0 (2.60)

∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1 (2.61)

Furthermore, from the definition of the joint derivative we have

f(x, y) = lim
∆x,∆y→0

P (x < X < x+∆x, y < Y < y +∆y)

∆x∆y
(2.62)

Relation (2.62) can be often used as starting point to derive the pdf in several problems.
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Figure 2.11:

Denoted by {(X,Y )} the event of all results α where X(α) and Y (α) belong to domain D, it can
be written as a union or intersection of elementary events of the type

{x < X ≤ x+∆x, y < Y ≤ y +∆y}

and, therefore, we have

P ((X,Y ) ∈ D) =

∫ ∫

D
f(x, y)dxdy (2.63)

where the integral is extended over the domain D. It also follows

fX(x) =

∫ ∞

−∞
f(x, y)dy; fY (y) =

∫ ∞

−∞
f(x, y)dx (2.64)

The concept of joint pdf can then be extended to the case of discrete and mixed RVs by proceeding
as in Chapter 2.

When dealing with multiple RVs, the distributions and the densities of a single RV are called
marginal to emphasize the difference with joint CDFs and pdf’s.

Example (26)
Find the joint and marginal pdf of RV’s X and Y Cartesian coordinates of a point Q chosen
uniformly in a

a) square of side L and centered at the origin (Figure 2.11a)

b) circle of radius R and center at the origin (Figure 2.11b)

To find the joint density we use (2.62). In this expression the probability at the numerator the
probability Q lies into the rectangle of coordinates x, x + ∆x, y, y + ∆y, but since Q is picked
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uniformly, this probability takes value
∆x∆y

S
, S being the area of the domain, regardless of the

location of the small rectangle. Therefore, we obtain

f(x, y) =





1

S
for(x, y) ∈ S

0 elsewhere

(2.65)

Such a pdf is still called Uniform in S and the value of the constant 1/S depends only from the
area of the domain and not by its shape.

About the marginal pdf we have
a)

fX(x) =

∫ +∞

−∞
f(x, y)dy =

∫ L

2

−L

2

1

L2
dy =

1

L
;

(
−L

2
< x <

L

2

)

and similarly

fY (y) =
1

L
;

(
−L

2
< y <

L

2

)

In this case, the marginal pdf are uniform.
b)

fX(x) =

∫ +∞

−∞
f(x, y)dy =

∫ √
R2−x2

−
√
R2−x2

1

πR2
dy =

2

πR2

√
R2 − x2; (| x |< R)

Here, the marginal pdf’s are no longer uniform. In fact, the shape of the domain of point (X,Y )
influences the result.

Example (27)
Find the joint and marginal pdf’s of RV’s Z and Θ, polar coordinates of the point A in the previous
example.

Again from (2.62), noting that the area of the elementary surface whose corners have coordinates
z, z + dz, θ, θ + dθ (see Figure 2.12a) amounts to dz × zdθ, we get

fZΘ(z, θ) =
z

S
((z, θ) ∈ S)

We then have

b)

f(z, θ) =
z

πR2
; (0 ≤ z < R)(−π < θ ≤ π)

fZ(z) =

∫ π

−π
f(z, θ)dθ =

2

R2
z (0 ≤ z < R)
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Figure 2.13:

2.9 Conditional pdf’s

The extension to the case of two or more RV’s of definitions and theorems of paragraph 2.7 are
obtained immediately. Here, we limit ourselves to show the new cases of

• pdf of RV Y conditioned by the value assumed by another RV X

fY (y/X = x) =
fXY (x, y)

fX(x)
(2.66)

• Total Probability Theorem

fY (y) =

∫ +∞

−∞
fY (y/X = x)fX(x)dx (2.67)

• Bayes’ Theorem

fY (y/X = x) =
fX(x/Y = y)fY (y)

fX(x)
(2.68)

• Conditional mean

E[Y/X = x] =

∫ +∞

−∞
yfY (y/X = x) (2.69)

• Total Probability Theorem with respect to the mean

E[Y ] =

∫ +∞

−∞
E[Y/x]fX(x)dx (2.70)

The demonstration of the relations shown above, their validity in the average values as well as the
extension to the case of more RV’s, is obtained in the usual way.

Example (28)
A point of coordinate X is uniformly selected within interval [0;L] of x axis; Another point of
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Figure 2.14:

coordinate Y is uniformly selected within interval [X;L]. Find the joint pdf of X,Y , the marginal
pdf of Y and the probability P that the three segments of length X, Y , and Y − X can form a
triangle.

We have

fX(x) =
1

L
; (0 < x < L)

fY (y/X = x) =
1

L− x
; (x < y < L)

Using (2.66) we get

fXY (x, y) =
1

L(L− x)
; (0 < x < y < L)

and from (2.67), by observing that the expression under integration is zero for x > y, we have

fY (y) =

∫ y

0

1

L(L− x)
dx =

1

L
ln

L

L− y
; (0 < y < L)

The domain D where X and Y are such as to allow the construction of the triangle, is shown in
Figure 2.14a,) and we thus have

p =

∫ L

2

0
dx

∫ x+L

2

L

2

1

L(L− x)
dy = ln2− 1

2
= 0, 1931 . . .

Example (29)
Find the joint and marginal pdf’s of the coordinates X and Y of a point P uniformly chosen on a
circumference of unit radius and center at the origin 0. (Figura 2.14b)

The marginal pdf of X has been already evaluated in Example 15 as

fX(x) =
1/π√
1− x2

; (| x |≤ 1)
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and by symmetry fY (y) = fX(y).

The joint density is degenerate because is different from zero only on the circumference x2+y2 = 1.
You can, however, make use (2.66) and the impulse function, to write

fY (y/X = x) =
1

2
δ(y −

√
1− x2) +

1

2
δ(y +

√
1− x2)

In fact, for X = x, Y can take only the two values ±
√
1− x2 withe same probability.

From (2.66) we obtain

fXY (x, y) =
1

2
(δ(y −

√
1− x2) + δ(y +

√
1− x2))

1/π√
1− x2

or, by simmetry

fXY (x, y) =
1

2
(δ(x −

√
1− y2) + δ(x+

√
1− y2))

1/π√
1− y2

.

2.10 Statistically independent RV’s

Two RV X and Y are said to be statistically independent if events {X ≤ x} e {Y ≤ y} are
statistically independent for each x and y.

It follows then that two random RV are independent if one of the following relations holds

FXY (x, y) = FX(x)FY (y)

fXY (x, y) = fX(x)fY (y)

fX(x/Y = y) = fX(x)

fY (y/X = x) = fY (y)

Similarly, from (1.22) when we have more than two RV’s.

Example (30)
Check which pairs of RV’s treated in previous examples are statistically independent.

In Example (26) X and Y are independent in case a) but not in the case b), whereas in Example
(27) Z and θ are independent in b) but not in a). As we see, the statistical dependence may be
linked to the choice of the variables used to describe a phenomenon.

Example (28) X and Y are not (obviously) independent.

Example (29) X and Y are tied together by a deterministic relation.
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Example (31)
Given two RV’s X and Y independent and exponentially distributed with the same average 1/λ,
find:

a) the probability of the event {Y > αX} with α real positive;

b) the pdf fY (y/Y > αX).

a) We could use the (2.63), being D the domain in which y > αx, and given the independence we
have

fXY (x, y) = fX(x)fY (y) = λ2e−λ(x+y) (x, y > 0)

More immediately we can use the Total Probability Theorem

P (Y > αX) =

∫ ∞

0
P (Y > αX/X = x)fX(x)dx =

∫ ∞

0
e−λαx λe−λxdx =

=
1

α+ 1

∫ ∞

0
λ(α+ 1)e−λ(α+1)xdx =

1

(α+ 1)

b) From the definition of conditional pdf, and from the result of point a) we get:

fY (y/Y > αX) = lim
∆y→0

1

∆y

P (y < Y ≤ y +∆y, Y > αX)

P (Y > αX)
=

= lim
∆y→0

1

∆y

P (y < Y ≤ y +∆y,X < y/α)

P (Y > αX)
=

=

∫ y/α

0
fXY (x, y)dx

P (Y > αX)
=

λe−λy

∫ y/α

0
λe−λxdx

1/(α + 1)
=

= (α+ 1)λe−λy(1− e−λy/α) (y > 0)

The same result could be easily found by using the Bayes’ Theorem in the following way:

fY (y/Y > αX) = P (Y > αX/Y = y)
fY (y)

P (Y > αX)
(2.71)

Note that the limit expressions of the derived pdf for α → 0 and α → ∞ are respectively λe−λy e
λ2ye−λy (Erlang-2).



F. Borgonovo - 2.11. JOINT MOMENTS OF TWO RV’S 44

2.11 Joint Moments of two RV’s

Given two RV’s X and Y the joint moments of order h and k are defined as

mhk =

∫ ∫
xhykfxy(x, y)dxdy

and the central moments of order h and k

µhk =

∫ ∫
(x−mx)

h(y −my)
kfxy(x, y)dxdy.

Note that the marginal moments occur when one of the two indices h or k is zero; they coincide
with the moments of the same order of the single RV that is, for example:

m0k =

∫ ∫
ykfxy(x, y)dxdy =

∫
ykfy(y)dy

mh0 =

∫
xhfX(x)dx

and also

m10 = mX

m01 = mY

µ20 = σ2
X

µ02 = σ2
Y

The mixed second-order central moment µ11, said also Covariance of V.C. X and Y , is of particular
interest. It is linked to m11 by the following relation

µ11 = m11 −m10m01 (2.72)

From the definitions we see that if X and Y are statistically independent the integral splits into
the product of two separate integrals, and we have

mhk = mh0 ·m0k

µhk = µh0 · µ0k

Specifically, for independent RVs (2.72) shows that

µ11 = 0 (2.73)

Note, however, that zero covariance does not imply independence among the variables. We only
sat that RVs with zero covariance are uncorrelated. Also, the following inequalities are valid.

m2
11 ≤ m20 m02

(2.74)

µ2
11 ≤ µ20 µ02 (2.75)
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2.12 Problems for solution

Chapter 2

P.2.1 Given the function f(x) =
C

α2 + x2
, determine the relationship between C e α in order to

make f(x) a pdf. (Cauchy). (3.1)

P.2.2 A point P uniformly chosen in a square of Side L centered at the origin and the x-axis.
Find the pdf of RV X, coordinate of the orthogonal projection of P on the horizontal axis.

P.2.3 A point P uniformly chosen in a circle of radius R centered at the origin and the x-axis. Find
the pdf of RV X, coordinate of the orthogonal projection of P on the horizontal axis.(3.2)

P.2.4 Find the first order moment of pdf f(x) = λ2xe−λx, x ≥ 0, and 0 elsewhere.

P.2.5 Find the first order moment of the integer distributions

1. P (X = k) = (1− p)k−1p, k ≥ 1;

2. P (X = k) = (1− p)kp, k ≥ 0.

P.2.6 2 points are chosen uniformly and independently in a segment of length L. Find the pdf of
RV X distance to the origin of the point closest to the origin. Find the joint pdf of (X,Y )
where Y is distance to the origin of the point farthest to the origin. Extend the result to
the case of n points.(3.6)

P.2.7 2 points are chosen uniformly and independently in a circle of radius R. Find the pdf of RV
X distance to the center of the point closest to the center.(3.8)

P.2.8 Take a number X from one to six, throw three dices. You win C if X appears once, 2C if
X appears twice, 3C if it appears three times, and you lose C if X does not appear. Check
whether this is a fair game. (3.12)

P.2.9 Assume the RV X, lifespan of a component, is uniform in [0;L]. We know that the compo-
nent age is z; find the pdf of its lifespan. Find the pdf of Y , remaining lifespan.

P.2.10 Repeat the previous exercise assuming that the pdf of X is negative exponential. Find the
fair amount a a customer of age z must pay to get a capital C if he dies before the year.

P.2.11 Check whether functions of x and y below can represent joint pdfs’ and if so check whether
X and Y are statistically independent. (5.1)

1. f(x, y) = 4xy (0 ≤ x ≤ 1; 0 ≤ y ≤ 1),

2. f(x, y) = 8xy (0 ≤ x ≤ y; 0 ≤ y ≤ 1),

3. f(x, y) = 4x2y (0 ≤ x ≤ 1; 0 ≤ y ≤ 1)

P.2.12 A person in phone booth makes a phone call whose duration is represented by RV X, with
negative exponential pdf with mean value 1/µ. A second person comes after a time Y . RV
negative exponentially with average 1/λ, independent of X. Find the pdf of RV W , the
time the latter has to wait to the end of the call. (5.6)

P.2.13 Given two independent RVs’ X, and Y , find the probability of the event {Y ≤ X} when
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1. fX , fY are uniform within intervals respectively [−1; 3], [0; 4];

2. fX , fY with the same pdf (you do not need to know the pdf).

What about event {Y ≤ X/2}?

P.2.14 Find the pdf of RV Z = min(X,Y ), where X and Y are two independent negative exponen-
tial RVs’ with parameters λ and µ respectively. (Hint: observe that min(X,Y ) > z if x > z
and Y > z. Also, we may take the condition Y = y...)

P.2.15 Take interval [0,X], where X is a RV Erlang-2. Then take a point P uniformly within the
preceding interval. Find the pdf of Y , length of 0P .

P.2.16 n points are uniformly taken within [0;T ]. Find the probability that k out of n point lie
within an interval [0;X] where RV X is uniform in [0;T ].

P.2.17 Two RVs’ X and Y are independent and uniformly distributed in [0; 1]. Find fX(x|X > Y ),
fXY (x, y|X > Y ) and P (X > 2Y |X > Y ).



Chapter 3

Functions of RV’s

3.1 The sum of two continuous RV’s

Given the two continuous RV’s X e Y , whose joint pdf is known, we want to find the pdf of their
sum

Z = X + Y (3.1)

To this purpose, we note that

fZ(z/X = x) = fY (z − x/X = x) (3.2)

From the total probability theorem we have

fZ(z) =

∫
fZ(z/X = x)fX(x)dx =

∫
fY (z − x/X = x)fX(x)dx (3.3)

which provides the final formula

fZ(z) =

∫
fXY (x, z − x)dx (3.4)

Symmetrically we have

fZ(z) =

∫
fXY (z − y, y)dy (3.5)

If X and Y are statistically independent the two above become

fZ(z) =

∫
fX(x)fY (z − x)dx (3.6)

fZ(z) =

∫
fX(z − y)fY (y)dy (3.7)

The operation in (3.6) and (3.7) are known as the convolution of pdf’s. In fact, the convolution of
functions f(x) and g(y) (need not to be pdf’s) is defined as

47
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f(z) ∗ g(z) =
∫

f(x)g(z − x)dx =

∫
f(z − x)g(x)dx

Example (32)
Find the pdf of RV Z = X + Y where X and Y are independent RVs with the same pdf, namely

a) f(x) =
1

a
(0 < x < a)

b) f(x) = λe−λx (x > 0)

a) The integrating function in (3.6) is different from zero when both the following conditions apply:

{
0 < x < a
0 < z − x < a

or
{

0 < x < a
z − a < x < z

Such conditions depend on z and, therefore, we must distinguish the following cases:

• for z ≤ 0 fZ(z) = 0

• for 0 ≤ z < a condition 0 < x < z holds, and therefore we have

fZ(z) =
1

a2

∫ z

0
dz =

z

a2
;

• for a < z ≤ 2a condition z − a < x < a holds, and therefore we have

fZ(z) =
1

a2

∫ a

z−a
dx =

2− z

a2
;

• for z > 2a fZ(z) = 0;

The seeked pdf is shown in Figure 3.1.

b) The integrating function in (3.6) is different from zero when

{
x > 0
z − x > 0

that is

{
x > 0
x < z

and,

therefore, we have

fZ(z) =

∫ z

0
λe−λxλe−λ(z−x)dx = λ2ze−λz (z > 0)

The pdf we get is called Erlang-2. This is a pdf out of family

Ek(x) = fk(x) =
(λx)k−1

(k − 1)!
λe−λx, x ≥ 0 (3.8)
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fZ(z)

za 2a

Figure 3.1:

called the Erlang family. Actually the Erlang-1 coincides with the negative exponential. Indeed we
have

Em = E∗m
1 (3.9)

Em ∗ En = Em+n (3.10)

Property (3.10) can be stated saying that the Erlang family is closed with respect to the convolution.

3.2 The sum of two integer RV’s

Much as in the previous case we can write the distribution of the sum Z = X + Y , with X and Y
integer RV’s as

P (Z = k) =
∑

j

P (X = j, Y (k − j) =
∑

j

P (X = k − j, Y (j), (3.11)

which, again, becomes the convolution if the two RV’s are independent.

Example (33)
Find the distribution of RV Z = X +Y where X and Y are Binomial RV’s of order n and m with
the same success probability p.

A Binomial RV X of order n represents the number of successes in n Bernoulli independent trials
and as such can be seen as a sum of n binary independent RV’s Vi whose distribution is

P (Vi = 1) = p P (Vi = 0) = q = 1− p

where p is the probability of a successful trial. It follows that the sum of two V.C. Independent
binomial of order h and k with the same success probability p is still a binomial of order k + h,
and, therefore, also the Binomial family is closed respect to the operation of convolution.

It is left to the reader to verify the above by expressly applying the convolution operation.♣

By the definition we see that the average function is interchangeable with a linear operation and,
therefore, we have
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E[X + Y ] = E[X] + E[Y ] (3.12)

We have also, and the proof is left to the reader,

VAR[X + Y ] = VAR[X] + VAR[Y ] + COVAR[XY ] (3.13)

Of course, RVs are independent, or just uncorrelated, we have

VAR[X + Y ] = VAR[X] + VAR[Y ] (3.14)

In particular, the variance of the average of n values, Xn, is

VAR[Xn] =
VAR[X]

n
(3.15)

which explains the law of large numbers, as the variance of Xn decreases as n → ∞

3.3 Problems for solution

Chapter 3

P.3.1 fX , fY are uniform within intervals respectively [0; 5] [−3,−1]. Find the pdf of RVs’ (6.1)

1. Z = X + Y

2. W = X − Y

P.3.2 Let X e Y be independent RVs’ with negative exponential pdfs’ and average value 1
λ . Find

the pdf of RVs (6.2)

1. Z = X − Y

2. W = X +
Y

2

P.3.3 Find P (Z = n) where Z = X + Y is the sum of the numbers that appear in the rolling of
two dices. (6.6)


