\#422402
Topic: Arithmetic Progression
In an A.P.,the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that $20{ }^{\text {th }}$ term is -112 .

Solution

First term $=2$.
Let d be the common difference of the A.P.
Therefore, the A.P. is $2,2+d, 2+2 d, 2+3 d, \ldots$
Sum of first five terms $=10+10 d$
Sum of next five terms $=10+35 d$
According to the given condition
$10+10 d=\frac{1}{4}(10+35 d) \Rightarrow 40+40 d=10+35 d \Rightarrow 30=-5 d \Rightarrow d=-6 \therefore a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112$
Thus, the $20^{\text {th }}$ term of the A.P. is -112 .

\#423193

Topic: Arithmetic Progression
The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are a, b, c respectively. Show that $(q-r) a+(r-p) b+(p-q) c=0$

Solution
Let t and d be the first term and the common difference of the A.P. respectively,
The $n^{\text {th }}$ term of an A.P. is given by $a_{n}=t+(n-1) d$ Therefore,
$a_{p}=t+(p-1) d=a \quad \ldots(1) a_{q}=t+(q-1) d=b \quad \ldots(2) a_{r}=t+(r-1) d=c$
Subtracting equation (2) from (1), we obtain
$(p-1-q+1) d=a-b \Rightarrow(p-q) d=a-b \therefore d=\frac{\overline{a-b}}{p-q}$
Subtracting equation (4) from (3), we obtain
$(q-1-r+1) d=b-c \Rightarrow(q-r) d=b-c \Rightarrow d=\overline{\frac{b-c}{q-r}}$
Equating both the values of d obtained in (4) and (5), we obtain
 Thus, the given result is proved.

\#466081

Topic: Arithmetic Progression

In which of the following situations, does the list of numbers involved make an arithmetic progression, and why?
(i) The taxi fare after each km when the fare is Rs. 15 for the first km and Rs .8 for each additional km.
(ii) The amount of air present in a cylinder when a vacuum pump removes $\frac{1}{4}$ of the air remaining in the cylinder at a time.
(iii) The cost of digging a well after every metre of digging, when it costs Rs. 150 for the first metre and rises by Rs. 50 for each subsequent metre.
(iv) The amount of money in the account every year, when Rs. 10000 is deposited at compound interest at 8% per annum.

Solution

(i) Fare for first km = Rs. 15

Fare for second km = Rs. $15+8=$ Rs 23

Fare for third km = Rs. $23+8=31$

Here, each subsequent term is obtained by adding a fixed number (8) to the previous term.

Hence, it is in A.P.
(ii) Let us assume, initial quantity of air $=1$.....1)

Therefore, quantity removed in first step $=\frac{1}{4}$
Remaining quantity after first step
$\left.1-\frac{1}{4}=\frac{3}{4} \ldots .2\right)$
Quantity removed in second step
$=\frac{3}{4} \times \frac{1}{4}=\frac{3}{16}$
Remaining quantity after second step
$\left.=\frac{3}{4}-\frac{3}{16}=\frac{9}{16} \ldots .3\right)$
Here, each subsequent term is not obtained by adding a fixed number to the previous term.

Hence, it is not an AP
(iii) Cost of digging of $1^{\text {st }}$ meter $=150$

Cost of digging of $2^{\text {nd }}$ meter $=150+50=200$

Cost of digging of $3^{\text {rd }}$ meter $=200+50=250$

Here, each subsequent term is obtained by adding a fixed number (50) to the previous term.

Hence, it is an AP.
(iv) Amount in the beginning $=$ Rs. 10000

Interest at the end of $1^{\text {st }}$ year @ $8 \%=10000 \times 8$

Thus, amount at the end of $1^{\text {st }}$ year $=10000+800=10800$

Interest at the end of $2^{\text {nd }}$ year @ $8 \%=10800 \times 8$

Thus, amount at the end of $2^{\text {nd }}$ year $=10800+864=11664$
Since, each subsequent term is not obtained by adding a fixed number to the previous term; hence, it is not an AP.
\#466082
Topic: Arithmetic Progression
Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) $a=10, d=10$
(ii) $a=-2, d=0$
(iii) $a=4, d=-3$
(iv) $a=-1, d=\frac{1}{2}$
(v) $a=-1.25, d=-0.25$

Solution

An arithmetic progression is given by $a,(a+d),(a+2 d),(a+3 d),$.
where $a=$ the first term, $d=$ the common difference
(i) $10,10+10,10+2(10)$ and $10+3(10)=10,20,30$ and 40
(ii) $-2,-2+(0),-2+2(0)$ and $-2+3(0)=-2,-2,-2$ and -2 (this is not an A.P)
(iii) $4,4+(-3), 4+2(-3)$ and $4+3(-3)=4,4-3,4-6$ and $4-9=4,1,-2$ and -5
(iv) $-1,-1+\left(\frac{1}{2}\right),-1+2\left(\frac{1}{2}\right)$ and $-1+3\left(\frac{1}{2}\right)=-1,-\frac{1}{2}, 0$ and $\frac{1}{2}$
$(v)-1.25,-1.25+(-0.25),-1.25+2(-0.25)$ and $-1.25+3(-0.25)=-1.25,-1.50,-1.75$ and -2.0

\#466083

Topic: Arithmetic Progression
For the following APs, write the first term and the common difference:
(i) $3,1,-1,-3, \ldots$.
(ii) $-5,-1,3,7, \ldots \ldots$
(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots$
(iv) $0.6,1.7,2.8,3.9, \ldots$

Solution
(i) $3,1,-1,-3$.

Here, first term, $a=3$
Common difference, $d=$ Second term - First term
$d=1-3=-2$
(ii) $-5,-1,3,7$..

Here, first term, $a=-5$
Common difference, $d=$ Second term - First term
$d=(-1)-(-5)=-1+5=4$
(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}$

Here, first term, $a=\frac{1}{3}$
Common difference, $d=$ Second term - First term
$d=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}$
(iv) $0.6,1.7,2.8,3.9$

Here, first term, $a=0.6$
Common difference, $d=$ Second term - First term
$d=1.7-0.6$
$=1.1$
\#466084
Topic: Arithmetic Progression

Which of the following are APs? If they form an AP, find the common difference d and write three more terms.
(i) $2,4,8,16, \ldots$
(ii) $2, \frac{5}{2}, 3, \frac{7}{2}, \ldots$
(iii) $-1.2,-3.2,-5.2,-7.2, \ldots$
(iv) $-10,-6,-2,2, \ldots$
(v) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}$
(vi) $0.2,0.22,0.222,0.2222, \ldots$.
(vii) $0,-4,-8,-12, \ldots$
(viii) $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}$,
(ix) $1,3,9,27$
(x) $a, 2 a, 3 a, 4 a, \ldots$
(xi) $a, a^{2}, a^{3}, a^{4}, \ldots$
(xii) $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots$
(xiii) $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots$
(xiv) $1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots$
(xv) $1^{2}, 5^{2}, 7^{2}, 73,$.

Solution
a, b, c are said to be in AP if the common difference between any two consecutive number of the series is same ie $b-a=c-b \Rightarrow 2 b=a+c$
(I) It is not in AP, as the difference between consecutive terms is different.
(ii) It is in AP with common difference $d=\frac{5}{2}-2=\frac{1}{2}$,
$t_{n}=a+(n-1) d$
$a=2$
$t_{5}=2+(5-1) \frac{1}{2}$
Next three terms are $4, \frac{9}{2}, 5$
(iii) It is in AP with common difference $d=-3.2+1.2=-2$, and $a=-1.2$

Next three terms are
$a+(5-1) d=-9.2$,
$a+(6-1) d=-11.2$,
$a+(7-1) d=-13.2$
(iv) It is in AP with common difference $d=-6+10=4$, and
$a=-10$
Next three terms are
$a+(5-1) d=6$,
$a+(6-1) d=10$,
$a+(7-1) d=14$
(v) It is in AP with common difference $d=3+\sqrt{2}-3=\sqrt{2}$, and
$a=3$
Next three terms are
$a+(5-1) d=3+4 \sqrt{2}$,
$a+(6-1) d=3+5 \sqrt{2}$,
$a+(7-1) d=3+6 \sqrt{2}$
(vi) It is not in AP since $0.22-0.2 \neq 0.222-0.22$
(vii) It is in AP with common difference $d=-4-0=-4$ and $a=0$,

Next three terms are
$a+(5-1) d=-16$,
$a+(6-1) d=-20$,
$a+(7-1) d=-24$
(viii) It is in AP, with common difference 0 , therefore next three terms will also be same as previous ones, i.e., $-\frac{1}{2}$
(ix) It is not in AP since $3-1 \neq 9-3$
(x) It is in AP with common difference $d=2 a-a=a$ and first term is a,
Next three terms are
$a+(5-1) d=5 a$,
$a+(6-1) d=6 a$,
$a+(7-1) d=7 a$
$(x i)$ It is not in AP, as the difference is not constant.
(xii) It is in AP with common difference $d=\sqrt{2}$ and $a=\sqrt{2}$,

Next three terms are
$a+(5-1) d=5 \sqrt{2}=\sqrt{50}$,
$a+(6-1) d=\sqrt{72}$,
$a+(7-1) d=\sqrt{98}$
(xiii) It is not in AP as difference is not constant.
(xiv) It is not in AP as difference is not constant.
$(x v)$ It is in AP with common difference $d=5^{2}-1=24$ and $a=1$,
Next three terms are
$a+(5-1) d=97$,
$a+(6-1) d=121$,
$a+(7-1) d=145$
\#466085
Topic: Arithmetic Progression

| Sr. no. | a | d | n | a_{n} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (i) | 7 | 3 | 8 | ---- |
| (ii) | -18 | ---- | 10 | 0 |
| (iii) | ---- | -3 | 18 | -5 |
| (iv) | -18.9 | 2.5 | ---- | 3.6 |
| (v) | 3.5 | 0 | 105 | ---- |

Fill in the blanks in the following table, given that a is the first term, d the common difference and a_{n} is the $n{ }^{\text {th }}$ term of the AP:

Solution

(i) $a=7, d=3, n=8, a_{n}=$?

We know that,
For an A.P. $a_{n}=a+(n-1) d$
$=7+(8-1) 3$
$=7+(7) 3$
$=7+21=28$
Hence, $a_{n}=28$
(ii) Given that
$a=-18, n=10, a_{n}=0, d=$?
We know that,
$a_{n}=a+(n-1) d$
$0=-18+(10-1) d$
$18=9 d$
$d=\frac{18}{9}=2$
Hence, common difference, $d=2$
(iii) Given that
$d=-3, n=18, a n=-5$
We know that,
$a_{n}=a+(n-1) d$
$-5=a+(18-1)(-3)$
$-5=a+(17)(-3)$
$-5=a-51$
$a=51-5=46$
Hence, $a=46$
(iv) $a=-18.9, d=2.5, a_{n}=3.6, n=$?

We know that,
$a_{n}=a+(n-1) d$
$3.6=-18.9+(n-1) 2.5$
$3.6+18.9=(n-1) 2.5$
$22.5=(n-1) 2.5$
$(n-1)=\frac{22.5}{2.5}=9$
$n-1=9$
$n=10$
Hence, $n=10$
(v) $a=3.5, d=0, n=105, a_{n}=$?

We know that,
$a_{n}=a+(n-1) d$
$a_{n}=3.5+(105-1) 0$
$a_{n}=3.5+104 \times 0$
$a_{n}=3.5$
\#466086
Topic: Arithmetic Progression

Choose the correct choice in the following and justify :
(i) $30^{\text {th }}$ term of the AP: $10,7,4, \ldots$, is
(A) 97 (B) 77 (C) -77 (D) 87
(ii) $11^{\text {th }}$ term of the $A P:{ }_{-3},-\frac{1}{2}, 2, \ldots$, , is
(A) 28 (B) 22 (C) 38 (D) $-48 \frac{1}{2}$

Solution
(i) Given that
A.P. $10,7,4, \ldots$

First term, $a=10$
Common difference, $d=a_{2}=a_{1}=7-10=-3$
We know that $a_{n}=a+(n-1) d$
$a_{30}=10+(30-1)(-3)$
$=10+(29)(-3)$
$=10-87$
$=-77$
Hence, the correct answer is option C.
(ii) A.P. is $-3, \frac{-1}{2}, 2, \ldots \ldots$.

First term $a=-3$
Common difference, $d=a_{2}-a_{1}=\frac{-1}{2}-(-3)=\frac{5}{2}$
We know that, $a_{n}=a+(n-1) d$
$a_{11}=-3+(11-1) \frac{5}{2}=-3+(10) \frac{5}{2}=-3+25=22$
Hence, the answer is option B.

\#466087

Topic: Arithmetic Progression
(i) 2 , \square 26
(ii) \square 13, \square 3
(iii) $5, \square, \square, 9 \frac{1}{2}$
(iv) -4 , \square
\square
\square
\square 6
(v) \square 38, \square
\square
\square . -22

In the following APs, find the missing terms in the boxes:

Solution
(i) For this A.P.,
$a=2$
$a_{3}=26$
We know that, $a_{n}=a+(n-1) d$
$a_{3}=2+(3-1) d$
$26=2+2 d$
$24=2 d$
$d=12$
$a_{2}=2+(2-1) 12$
$=14$

Therefore, 14 is the missing term.
(ii) For this A.P.,
$a_{2}=13$ and
$a_{4}=3$
We know that, $a_{n}=a+(n-1) d$
$a_{2}=a+(2-1) d$
$13=a+d \ldots$ (i)
$a_{4}=a+(4-1) d$
$3=a+3 d \ldots$... (ii)
On subtracting (i) from (ii), we get,
$-10=2 d$
$d=-5$
From equation (i), we get,
$13=a+(-5)$
$a=18$
$a_{3}=18+(3-1)(-5)$
$=18+2(-5)=18-10=8$
Therefore, the missing terms are 18 and 8 respectively.
(iii) For this A.P.,
$a_{1}=5$ and
$a_{4}=9 \frac{1}{2}$
We know that, $a_{n}=a+(n-1) d$
$a_{4}=5+(4-1) d$
$9 \frac{1}{2}=5+3 d$
$d=\frac{3}{2}$
$a_{2}=a+d$
$a_{2}=5+\frac{3}{2}$
$a_{2}=\frac{13}{2}$
$a_{3}=a_{2}+\frac{3}{2}$
$a_{3}=8$
Therefore, the missing terms are $6 \frac{1}{2}$ and 8 respectively.
(iv) For this A.P.,
$a=-4$ and
$a_{6}=6$
We know that,
$a_{n}=a+(n-1) d$
$a_{6}=a+(6-1) d$
$6=-4+5 d$
$10=5 d$
$d=2$
$a_{2}=a+d=-4+2=-2$
$a_{3}=a+2 d=-4+2(2)=0$
$a_{4}=a+3 d=-4+3(2)=2$
$a_{5}=a+4 d=-4+4(2)=4$
Therefore, the missing terms are $-2,0,2$, and 4 respectively.
(v) For this A.P.,
$a_{2}=38$
$a_{6}=-22$
We know that
$a_{n}=a+(n-1) d$
$a_{2}=a+(2-1) d$
$38=a+d \ldots$ (i)
$a_{6}=a+(6-1) d$
$-22=a+5 d \ldots$ (ii)
On subtracting equation (i) from (ii), we get
$-22-38=4 d$
$-60=4 d$
$d=-15$
$a=a_{2}-a=38-(-15)=53$
$a_{3}=a+2 d=53+2(-15)=23$
$a_{4}=a+3 d=53+3(-15)=8$
$a_{5}=a+4 d=53+4(-15)=-7$
Therefore, the missing terms are 53, 23,8 and -7 respectively.
\#466088
Topic: Arithmetic Progression
Which term of the $A P: 3,8,13,18, \ldots$, is 78 ?

Solution
Given A.P. is $3,8,13,18, \ldots$
For the above AP
$a=3$
$d=a_{2}-a_{1}=8-3=5$
Let $n^{\text {th }}$ term of this A.P. be 78 .
$a_{n}=a+(n-1) d$
$78=3+(n-1) 5$
$75=(n-1) 5$
$(n-1)=15$
$n=16$
Hence, $16^{\text {th }}$ term of this A.P. is 78
\#466089
Topic: Arithmetic Progression
Find the number of terms in each of the following APs :
(i) $7,13,19, \ldots, 205$
(ii) $18,15 \frac{1}{2}, 13, \ldots,-47$

Solution
(i) $a=7$
$d=a_{2}-a_{1}=13-7=6$
Considering there are n terms in this A.P.
$a_{n}=205$
We know that $a_{n}=a+(n-1) d$
$205=7+(n-1) 6$
$198=(n-1) 6$
$33=(n-1)$
$n=34$
The series has 34 terms.
(ii) $a=18$
$d=a_{2}-a_{1}=15 \frac{1}{2}-18$
$\Rightarrow d=\frac{31-36}{2}=\frac{-5}{2}$
Considering there are n terms in this A.P.
$a_{n}=-47$
We know, $a_{n}=a+(n-1) d$
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$\Rightarrow-47-18=(n-1)\left(-\frac{5}{2}\right)$
$\Rightarrow-65=(n-1)\left(-\frac{5}{2}\right)$
$\Rightarrow n-1=\frac{-130}{-5}=26$
$\Rightarrow n=27$
The series has 27 terms.
\#466090
Topic: Arithmetic Progression
Check whether -150 is a term of the AP : $11,8,5,2 \ldots$.

Solution
Given series is $11,8,5,2$.
$a=11$ and $d=8-11=-3$
$T_{n}=-150$
$a+(n-1) d=-150$
$11+(n-1)(-3)=-150$
$11-3 n+3=-150$
$14-3 n=-150$
$3 n=-164$
$n=-\frac{164}{3}=-54.66$
n is not an integer.
So, it is not in A.P.

\#466091

Topic: Arithmetic Progression
Find the $31^{\text {st term }}$ of an AP whose $11^{\text {th }}$ term is 38 and the $16^{\text {th }}$ term is 73 .

Solution

Given that,
$a_{11}=38$
$a_{16}=73$
We know that,
$a_{n}=a+(n-1) d$
$a_{11}=a+(11-1) d$
$38=a+10 d \ldots$ (i)
Similarly,
$a_{16}=a+(16-1) d$
$73=a+15 d \ldots$ (ii)
On subtracting (i) from (ii), we get
$35=5 d$
$d=7$
From equation (i),
$38=a+(10)(7)$
$38-70=a$
$a=-32$
$\therefore a_{31}=a+(31-1) d$
$=-32+30(7)$
$=-32+210$
$=178$
Hence, $31^{\text {st }}$ term is 178 .

\#466092

Topic: Arithmetic Progression
An AP consists of 50 terms of which $3^{r d}$ term is 12 and the last term is 106 . Find the $29^{\text {th }}$ term.

Solution
Given, $a_{3}=12, a_{50}=106$
$a_{n}=a+(n-1) d$
$a_{3}=a+(3-1) d$
$12=a+2 d \ldots$ (i)
$a_{50}=a+(50-1) d$
$106=a+49 d \ldots$ (ii)
On subtracting (i) from (ii), we get
$94=47 d$
$d=2$
From equation (i), we get
$12=a+2(2)$
$a=12-4=8$
$\therefore a_{29}=a+(29-1) d$
$=8+(28) 2$
$=8+56$
$=64$
Therefore, $29^{\text {th }}$ term is 64 .

\#466093

Topic: Arithmetic Progression
If the $3^{r d}$ and the $9^{\text {th }}$ terms of an AP are 4 and -8 respectively, then which term of this AP is zero.

Solution
Given that, $a_{3}=4, a_{9}=-8$
We know that,
$a_{n}=a+(n-1) d$
$a_{3}=a+(3-1) d$
$4=a+2 d \ldots$ (i)
And
$a_{9}=a+(9-1) d$
$-8=a+8 d \ldots$ (ii)
On subtracting equation (i) from (ii), we get,
$-12=6 d$
$d=-2$
From equation (i), we get,
$4=a+2(-2)$
$\Rightarrow a=8$
Let $n^{\text {th }}$ term of this A.P. be zero.
$a_{n}=a+(n-1) d$
$0=8+(n-1)(-2)$
$\Rightarrow n=5$
Hence, 5 th term of this A.P. is 0 .
\#466094
Topic: Arithmetic Progression

The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 7 . Find the common difference

Solution
We know that,
For an A.P $a_{n}=a+(n-1) d$
$a_{17}=a+(17-1) d$
$a_{17}=a+16 d$
Similarly, $a_{10}=a+9 d$
It is given that
$a_{17}-a_{10}=7$
$(a+16 d)-(a+9 d)=7$
$7 d=7$
$\therefore d=1$

Therefore, the common difference is 1

\#466095

Topic: Arithmetic Progression
Which term of the AP: $3,15,27,39, \ldots$ will be 132 more than its $54^{\text {th }}$ term.

Solution

Given A.P. is $3,15,27,39, \ldots$
$a=3$
$d=a_{2}-a_{1}=15-3=12$
$a_{54}=a+(54-1) d$
$=3+(53)(12)$
$=3+636=639$
Then, 132 more than its $54^{\text {th }}$ term is $132+639=771$
We have to find the term of this A.P. which is 771
Let $n^{\text {th }}$ term be 771 .
$a_{n}=a+(n-1) d$
$771=3+(n-1) 12$
$768=(n-1) 12$
$(n-1)=64$
$n=65$
Therefore, $65^{\text {th }}$ term was 132 more than $54^{\text {th }}$ term.

\#466096

Topic: Arithmetic Progression
Two APs have the same common difference. The difference between their $100^{\text {th }}$ terms is 100 , what is the difference between their $100{ }^{\text {th }}$ terms.

Solution

Given that their 100th term's difference is 100
Let the first no. of first series be a_{1} and second series be a_{2}
then, $\left.a_{100}(1)-a_{100}(2)=100--1\right)$
For 1 st series ---- $a_{100}=a_{1}+99 d$
2nd series ---- $a_{100}=a_{2}+99 d$
Put these values in (1)
then,
$a_{1}+99 d-\left(a_{2}+99 d\right)=100$
$a_{1}+99 d-a_{2}-99 d=100$
therefore, $a_{1}-a_{2}=100--2$)
Then, the difference between their 1000th terms is
for 1 st series --- $a_{1000}=a_{1}+999 d$
for 2 nd series --- $a_{1000}=a_{2}+999 d$
their 100th terms difference is
$a_{1000}(1)-a_{1000}(2)$
$a_{1}+999 d-\left(a_{2}+999 d\right)$
$a_{1}+999 d-a_{2}-999 d$
Therefore, we get the value $a_{1}-a_{2}$
from (2), $a_{1}-a_{2}=100$
Therefore, the difference between their 1000th terms is 100

\#466097

Topic: Arithmetic Progression
How many three-digit numbers are divisible by 7 ?

Solution

Three digit numbers which are divisible by 7 are 105, 112, 119, . . . 994 .
These numbers form an AP with $a=105$ and $d=7$.
Let number of three-digit numbers divisible by 7 be n
$a_{n}=994$
$a_{n}=a+(n-1) d=994$
$\Rightarrow 105+(n-1)(7)=994$
$\Rightarrow 7(n-1)=994-105$
$\Rightarrow 7(n-1)=889$
$\Rightarrow n-1=127$
$\Rightarrow n=128$

\#466098

Topic: Arithmetic Progression
How many multiples of 4 lie between 10 and 250 ?

Solution
Since the first multiply by 4 between 10 to 250 is 12 and last term is 248 .
Now a (first term) $=12$ and last term $=248$ and common diff is 4
Let n be total number of terms.
Since $a+(n-1) d=$ last term
Then, $248=12+(n-1) 4$
$236=(n-1) 4$
$n-1=59$
$n=60$
Therefore total number of term is 60 .
\#466099
Topic: Arithmetic Progression
For what value of n, are the $n^{\text {th }}$ terms of two APs: $63,65,67, \ldots$ and $3,10,17, \ldots$ equal ?

Solution

First A.P. is $63,65,67, \ldots$
$\therefore a=63$
$d=65-63=2$
$n^{\text {th }}$ term of this A.P. $=a_{n}=a+(n-1) d$
$a_{n}=63+(n-1) 2=63+2 n-2$
$a_{n}=61+2 n$. ..(1)

Second A.P is $3,10,17, \ldots$
$a=3$
$d=10-3=7$
$n^{\text {th }}$ term of this A.P. $=3+(n-1) 7$
$a_{n}=3+7 n-7$
$a_{n}=7 n-4$.
It is given that, $n^{\text {th }}$ term of these A.P.s are equal to each other.

Equating equations (1) and (2),
$61+2 n=7 n-4$
$61+4=5 n$
$5 n=65$
$n=13$
Therefore, $13^{\text {th }}$ terms of both these A.P.s are equal to each other.
\#466100
Topic: Arithmetic Progression
Determine the AP whose third term is 16 and the $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 ?

Solution

As given $a+2 d=16 \cdots \cdots \cdot 2^{n d}$ term
And $a+6 d-(a+4 d)=12$
Implies $d=6$
$\therefore a+2(6)=16$, then $a=4$
Then A.P is $a, a+d, a+2 d, a+3 d \ldots \ldots \ldots \ldots \ldots$.
So, $4,4+6,4+2(6), 4+3(6), 4+4(6) \ldots \ldots \ldots \ldots$.
$4,10,16,22,28,34$.

\#466101

Topic: Arithmetic Progression
Find the 20 th term from the last term of the $A P: 3,8,13, \ldots, 253$.

Solution

$3,8,13, \ldots, 253$
$d=8-3=5$.

Writing this A.P. in reverse order
$253,248,243, \ldots, 13,8,5$

Now, for the new A.P., we have
$a=253$
$d=248-253$
$d=-5$

We want to find 20th term, so $n=20$
$a_{20}=253+(20-1)(-5)$
$\Rightarrow 1_{20}=253+(19)(-5)$
$\Rightarrow a_{20}=253-95=158$
$20^{\text {th }}$ term from the last term $=158$
\#466102
Topic: Arithmetic Progression
The sum of the $4^{t h}$ and $8^{\text {th }}$ terms of an AP is 24 and the sum of the $6{ }^{\text {th }}$ and $10^{\text {th }}$ terms is 44 . Find the first three terms of the AP.

Solution

We know that,
$a_{n}=a+(n-1) d$
$a_{4}=a+3 d$

Similarly,
$a_{8}=a+7 d$
$a_{6}=a+5 d$
$a_{10}=a+9 d$

Given that,
$a_{4}+a_{8}=24$
$2 a+10 d=24$
$a+5 d=12 \ldots$ (i)
$a_{6}+a_{10}=44$
$a+5 d+a+9 d=44$
$2 a+14 d=44$
$a+7 d=22 \ldots$ (ii)

On subtracting equation (i) from (ii), we get,
$2 d=22-12$
$2 d=10$
$d=5$

From equation (i), we get
$a+5 d=12$
$a+5(5)=12$
$a+25=12$
$a=-13$
$a_{2}=a+d$
$=-13+5=-8$
$a_{3}=a_{2}+d=-8+5=-3$

Therefore, the first three terms of this A.P. are $-13,-8$ and -3 .
\#466103
Topic: Arithmetic Progression
Subba Rao started work in 1995 at an annual salary of Rs. 5000 and received an increment of Rs. 200 each year. In which year did his income reach Rs. 7000 ?

Solution

It can be observed that the incomes that Subba Rao obtained in various years are in A.P. as every year, his salary is increased by Rs 200
Therefore, the salaries of each year after 1995 are
$5000,5200,5400, \ldots$
Here, $a=5000$
$d=200$
Let after $n^{\text {th }}$ year, his salary be Rs 7000
Therefore, $a_{n}=a+(n-1) d$
$7000=5000+(n-1) 200$
$200(n-1)=2000$
$(n-1)=10$
$n=11$
Therefore, in $11^{\text {th }}$ year, his salary will be Rs 7000

\#466104

Topic: Arithmetic Progression
Ramkali saved Rs. 5 in the first week of a year and then increased her weekly savings by Rs. 1.75 . If in the nth week, her weekly savings become Rs. 20.75 . Find n.

Solution
According to the question, $a=5, d=1.75, a_{n}=20.75$
$a_{n}=a+(n-1) d$
Subsituting the values in above equation,
$20.75=5+(n-1) \times 1.75$
$15.75=(n-1)(1.75)$
$\Rightarrow n-1=\frac{15.75}{1.75}$
$\Rightarrow n-1=9$
$\Rightarrow n=10$
$n=10$.

\#466105

Topic: Arithmetic Progression
Find the sum of the following APs
(i) $2,7,12, \ldots$, to 10 terms
(ii) $37,33,29, \ldots$, to 12 terms.
(iii) $0.6,1.7,2.8, \ldots$, to 100 terms.
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots$, to 11 terms.

Solution
(i) $2,7,12 \ldots .$. to $10^{\text {th }}$ term

Here $a=2, n=10$
And $d=7-2=5$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}[2(2)+(10-1) 5]=5(4+9 \times 5)=245$
(ii) 37, 33, 29 to $12^{\text {th }}$ term

Here $a=37, n=12$
And $d=33-37=-4$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{12}=\frac{12}{2}[2(37)+(12-1)(-4]=6(74-11 \times 4)=-180$
(iii) $0.6,1.7,2.8$. to 100 term

Here $a=0.6, n=100$
And $d=1.7-0.6=1.1$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{100}=\frac{100}{2}[2(0.6)+(100-1)(1.1)]=50(1.2-99 \times 1.1)=5505$
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10} \ldots \ldots$ to $11^{\text {th }}$ term
$a=\frac{1}{15}, n=11$
$d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}$
$S_{11}=\frac{11}{2}\left[2\left(\frac{1}{15}+(11-1) \frac{1}{60}\right)\right]$
$=\frac{11}{2}\left(\frac{2}{15}+\frac{10}{60}\right)$
$=\frac{11}{2} \times \frac{9}{30}=\frac{33}{20}$
\#466106
Topic: Arithmetic Progression
Find the sums given below :
(i) $7+10 \frac{1}{2}+14+\ldots+84$
(ii) $34+32+30+\ldots+10$
(iii) $-5+(-8)+(-11)+\ldots+(-230$

Solution
(i) $7,10 \frac{1}{2}, 14 \ldots \ldots . .84$

Here, first $a=7$ and $/=84$
$d=10 \frac{1}{2}-7=3 \frac{1}{2}=\frac{7}{2}$
$a_{n}=a+(n-1) d$
$84=7+(n-1) \frac{7}{2} \Rightarrow 84-7=\frac{7}{2}(n-1) \Rightarrow n-1=22 \Rightarrow n=23$
and last term $/=84$
We know that $S_{n}=\frac{n}{2}(a+1)$
$S_{n}=\frac{23}{2}(7+84)$
$=\frac{23 \times 91}{2}$
$=\frac{2093}{2}$
$=1046 \frac{1}{2}$
(ii) $34,32,30$ \qquad .. 10

Here $a=34, I=10$
$d=32-34=-2$
$a_{n}=a+(n-1) d$
$10=34+(n-1)(-2) \Rightarrow 10-34=(-2)(n-1) \Rightarrow n-1=12 \Rightarrow n=13$
and last term $/=10$
We know that $S_{n}=\frac{n}{2}(a+1)$
$S_{n}=\frac{13}{2}(34+10)$
$=\frac{13 \times 44}{2}$
$=286$
(iii) $-5+(-8)+(-11)+\ldots \ldots \ldots \ldots+(-230)$

Here $a=-5, I=-230$
$d=(-8-(-5))=-3$
$a_{n}=a+(n-1) d$
$230=-5+(n-1)(-3) \Rightarrow-230+5=(-3)(n-1) \Rightarrow n-1=75 \Rightarrow n=76$
and last term $/=-230$

We know that $S_{n}=\frac{n}{2}(a+1)$
$S_{n}=\frac{76}{2}(-5+(-230)$
$=-8930$
\#466107
Topic: Arithmetic Progression

In an AP:
(i) Given $a=5, d=3, a_{n}=50$, find n and S_{n}.
(ii) Given $a=7, a_{13}=35$, find d and S_{13}.
(iii) Given $a_{12}=37, d=3$, find a and S_{12}.
(iv) Given $a_{3}=15, S_{10}=125$, find d and a_{10}.
(v) Given $d=5, S_{9}=75$, find a and a_{9}.
(vi) Given $a=2, d=8, S_{n}=90$, find n and a_{n}.
(vii) Given $a=8, a_{n}=62, S_{n}=210$, find n and d.
(viii) Given $a_{n}=4, d=2, S_{n}=-14$, find n and a.
(ix) Given $a=3, n=8, S=192$, find d.
(x) Given $I=28, S=144$, and there are total 9 terms. Find a.

Solution

We know that in an AP
If first term is $a_{1}=a$, common difference is d then the $n^{\text {th term is }}$
$a_{n}=a+(n-1) d$
Sum of first n terms of this AP is
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}(2 a+(n-1) d)$

Now,
(i)
$a_{1}=a=5$
$d=3$
$a_{n}=50=a+(n-1) d$
$\Rightarrow 50=5+(n-1) 3$
$\Rightarrow n=16$
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\Rightarrow S_{n}=\frac{16}{2}(5+50)$
$\Rightarrow S_{n}=8 \times 55=440$
(ii)
$a_{1}=7$
$a_{13}=35$
$\Rightarrow n=13$
$a_{13}=a_{1}+(n-1) d$
$\Rightarrow 35=7+(13-1) d$
$\Rightarrow d=\frac{7}{3}$
$S_{13}=\frac{13}{2}\left(a_{1}+a_{13}\right)$
$\Rightarrow S_{13}=\frac{13}{2}(7+35)$
$\Rightarrow S_{13}=13 \times 21=273$
(iii)
$a_{12}=37$
$d=3$
$\Rightarrow n=12$

$$
\begin{aligned}
& a_{12}=a_{1}+(n-1) d=a+(12-1) 3 \\
& \Rightarrow 37=a+33 \\
& \Rightarrow a=4 \\
& S_{12}=\frac{n}{2}\left(a_{1}+a_{12}\right) \\
& \Rightarrow s_{12}=\frac{12}{2}(4+37)=6 \times 41=256
\end{aligned}
$$

(iv)
$a_{3}=15$
$\Rightarrow a_{3}=a+(3-1) d \Rightarrow 15=a+2 d \quad \ldots(1)$
$S_{10}=125$
$\frac{10}{2}(2 a+9 d)=125$
$\Rightarrow 2 a+9 d=25$....(2)

From (1) and (2), we get
$d=-1, a=17$
$a_{10}=17+(9)(-1)=8$
(v)
$d=5$
$S_{9}=75=\frac{9}{2}(2 a+8 d)=\frac{9}{2}(2 a+40)=9(a+20)$
$\Rightarrow a=-\frac{35}{3}$
$a_{9}=a+8 d=-\frac{35}{3}+8 \times 5=40-\frac{35}{3}$
$a_{9}=\frac{85}{3}$
(vi)
$a=2$
$d=8$
$S_{n}=90$
$\Rightarrow \frac{n}{2}(2 a+(n-1) d)=90$
$\Rightarrow \frac{n}{2}(8 n-4)=90$
$\Rightarrow n(4 n-2)=90$
$\Rightarrow 2 n^{2}-n-45=0$
$\Rightarrow n=5 \quad\left(\because n>0, \therefore\right.$ we have neglected negative value of $\left.n=-\frac{9}{2}\right)$
$a_{n}=a_{5}=a+(4)(d)=2+4 \times 8=34$
(vii)
$a=8$
$a_{n}=62$
$S_{n}=210=\frac{n}{2}\left(a+a_{n}\right)$
$\Rightarrow 420=n(8+62)=70 n$
$\Rightarrow n=6$
$a_{n}=a+(n-1) d$
$62=8+(5) d$
$\Rightarrow d=\frac{54}{5}$
(viii)
$a_{n}=4$
$d=2$
$a_{n}=a+(n-1) d$
$4=a+(n-1)^{2}$
$\Rightarrow=6=a+2 n \quad$...(1)
$S_{n}=-14$
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$-14=\frac{n}{2}(a+4) \quad \ldots(2)$

From (1) and (2), we get
$n=7$ or $n=-2,(\because n>0$, we have to neglect negative value)
$n=7$, then $a=-8$
(ix)
$a=3$
$n=8$
$S=192$
$S=192=\frac{n}{2}(2 a+(n-1) d)$
$\Rightarrow 48=6+7 d$
$\Rightarrow d=6$
(x)
$1=a_{n}=28$
$S_{n}=144$
$n=9$
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$144=\frac{9}{2}(a+28)$
$\Rightarrow a=4$
\#466108
Topic: Arithmetic Progression
How many terms of the AP:9,17, $25, \ldots$ must be taken to give a sum of 636 ?

Solution

Let there be n terms of this A.P.
For this A.P., $a=9$
$d=17-9=8$
As $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow 636=\frac{n}{2}[9 \times 2+(n-1) 8]$
$636=n[9+4 n-4]$
$636=n(4 n+5)$
$4 n^{2}+5 n-636=0$
$4 n^{2}+53 n-48 n-636=0$
$n(4 n+53)-12(4 n+53)=0$
$(4 n+53)(n-12)=0$
Either $4 n+53=0$ or $n-12=0$
$n=\frac{53}{4}$ or $n=12$
n cannot be $\frac{53}{4}$.(As the number of terms can neither be negative nor fractional.)
Therefore, $n=12$ only.
\#466109
Topic: Arithmetic Progression
The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference.

Solution

According to the question,
$a=5, a_{n}=45, S_{n}=400$
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
Subsituting the values,
$400=\frac{n}{2}[5+45]$
$400=\frac{n}{2}[50]$
$n=16$
$a_{n}=a+(n-1) d$
$45=5+(16-1) d$
$40=15 d$
$d=\frac{40}{15}$
$d=\frac{8}{3}$
\#466110
Topic: Arithmetic Progression
The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?

Solution

According to the question, $a=17, a_{n}=350, d=9$
To find n,
$a_{n}=a+(n-1) d$
Subsituting the values
$350=17+(n-1) 9$
$333=(n-1) 9$
$(n-1)=37$
$n=38$
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$S_{38}=\frac{13}{2}(17+350)$
$=19 \times 367$
$=6973$
Number of terms $=38$
Sum of the terms $=6973$.
\#466111
Topic: Arithmetic Progression
Find the sum of first 22 terms of an AP in which $d=7$ and $22^{\text {nd }}$ term is 149 .

Solution

$d=7, a_{22}=149$
We want to find S_{22}.
$a_{n}=a+(n-1) d$
$a_{22}=a+(22-1) 7$
$149=a+(21)(7)$
$149=a+147$
$a=2$
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$S_{22}=\frac{22}{2}(2+149)$
$=11 \times 151$
$=1661$

\#466112

Topic: Arithmetic Progression
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Solution
$a_{2}=14, a_{3}=18$
$d=18-14=4$
$a_{2}=a+d$
$14=a+4$
$\Rightarrow a=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{51}=\frac{51}{2}[2 \times 10+(51-1) 4]=\frac{51}{2}(20+200)$
$S_{51}=51 \times 110=5610$
\#466113
Topic: Arithmetic Progression
If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first n terms.

Solution
Given
$S_{7}=49$ and $S_{17}=289$
$S_{7}=\frac{7}{2}[2 a+(7-1) d]=49$
$\Rightarrow 49=\frac{7}{2}[2 a+(7-1) d]$
$\Rightarrow 49=\frac{7}{2}(2 a+6 d)$
$\Rightarrow 7=a+3 d$

$S_{17}=\frac{17}{2}[2 a+(17-1) d]=289$
$\Rightarrow 289=\frac{17}{2}[2 a+(17-1) d]$
$\Rightarrow 289=\frac{17}{2}(2 a+16 d)$
$\Rightarrow 17=a+8 d$

Substituting (i) from (ii), we get
$5 d=10$ or $d=2$

From equation (i),
$a+3(2)=7$
$a+6=7$ or $a=1$
$S_{n}=\frac{n}{2}[2(1)+(n-1) 2]$
$=\frac{n}{2}[2+(n-1) 2]$
$=\frac{n}{2}(2+2 n-2)=n^{2}$

\#466114

Topic: Arithmetic Progression
Show that $a_{1}, a_{2}, \ldots, a_{n}$ form an AP where a_{n} is defined as below :
(i) $a_{n}=3+4 n$
(ii) $a_{n}=9-5 n$

Also find the sum of the first 15 terms in each case.

Solution
(i) $a_{n}=3+4 n$
$a_{1}=3+4(1)=7$
$a_{2}=3+4(2)=11$
$a_{2}=3+4(3)=15$
$d=a_{3}-a_{1}=11-7=4$

Here $a=7, d=4$ and $n=15$
$S_{15}=\frac{15}{2}[2 \times 7+(15-1) 4]$
$=\frac{15}{2}(14+56)$
$=\frac{15}{2} \times 70=525$
(ii) $a_{n}=9-5 n$
$a_{1}=9-5(1)=9-5=4$
$a_{2}=9-5(2)=9-10=-1$
$a_{3}=9-5(3)=9-15=-6$
$d=a_{2}-a_{1}=-6-(-1)=-5$

Here $a=4, d=-5$ and $n=15$
$S_{15}=\frac{15}{2}[2 \times 4+(15-1)(-5)]$
$=\frac{15}{2}(8-70)$
$=\frac{15}{2} \times(-62)=-465$

\#466115

Topic: Arithmetic Progression
 the nth terms.

Solution

If Sum of first $\$ \$ n \$$ terms of an AP
$S_{n}=4 n-n^{2}$
Then, first term will be when $n=1$ in above expression
$S_{1}=a=4(1)-(1)^{2}=3$

Sum of first two terms,
$n=2, S_{2}=4(2)-2^{2}=4$
So, second term will be
$a_{2}=S_{2}-S_{1}=4-3=1$

Similarly
$n=3, S_{3}=4(3)-3^{2}=3$
$a_{3}=S_{3}-S_{2}=3-4=-1$
$n=9, S_{9}=4(9)-9^{2}=-45$
$n=10, s_{10}=4(10)-(10)^{2}=-60$
$a_{10}=S_{10}-S_{9}=-60-(-45)=-15$
$a_{n}=S_{n}-S_{(n-1)}$
$a_{n}=4 n-n^{2}-\left(4(n-1)-(n-1)^{2}\right)$
$\Rightarrow a_{n}=5-2 n$

\#466116

Topic: Arithmetic Progression
Find the sum of the first 40 positive integers divisible by 6 .

Solution

The first 40 positive integers that are divisible by 6 are $6,12,18,24 \ldots$
$a=6$ and $d=6$.
We need to find S_{40}
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{40}=\frac{40}{2}[2(6)+(40-1) 6]$
$=20[12+(39) 6]$
$=20(12+234)$
$=20 \times 246$
$=4920$
\#466117
Topic: Arithmetic Progression
Find the sum of the first 15 multiples of 8.

Solution

The multiples of 8 are $8,16,24,32$..
These are in an A.P., having first term as 8 and common difference as 8.
Therefore, $a=8, d=8, S_{15}=$?
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{15}=\frac{15}{2}[2(8)+(15-1) 8]$
$=\frac{15}{2}[6+(14)(8)]$
$=\frac{15 \times 128}{2}$
$=960$
\#466118
Topic: Arithmetic Progression
Find the sum of the odd numbers between 0 and 50 .

Solution

The odd numbers between 0 and 50 are 1, 3, 5, 7, 9... 49
Therefore, it can be observed that these odd numbers are in an A.P.
$a=1, d=2, I=49$
$I=a+(n-1) d$
$49=1+(n-1) 2$
$48=2(n-1)$
$n-1=24$
$n=25$
$S_{n}=\frac{n}{2}(a+1)$
$S_{25}=\frac{25}{2}(1+49)$
$=\frac{25 \times 50}{2}=625$

\#466119

Topic: Arithmetic Progression

 work by 30 days.

Solution

It can be observed that these penalties are in an A.P. having first term as 200 and common difference as 50 .
$a=200, d=50$
Penalty that has to be paid if he has delayed the work by 30 days $=S_{30}$
$=S_{30}=\frac{30}{2}[2(200)+(30-1) 50]$
$=15[400+1450]$
$=15(1850)$
$=27750$
Therefore, the contractor has to pay Rs 27750 as penalty.

\#466120

Topic: Arithmetic Progression
A sum of Rs. 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs. 20 less than its preceding prize, find the value of each of the prizes.

Solution

Let the cost of 1_{1} st prize be p.
Cost of $2^{\text {nd }}$ prize $=P-20$
And cost of $3^{r d}$ prize $P-40$
It can be observed that the cost of these prizes are in an A.P. having common difference as -20 and first term as P.
$a=P, d=-20$

Given that,
$S_{7}=700$
$\frac{7}{2}[2 a+(7-1)(-20)]$
$\frac{2 a+6(-20)}{2}=100$
$a+3(-20)=100$
$a-60=100$
$a=160$

Therefore, the value of each of the prizes was Rs 160 , Rs 140 , Rs 120 , Rs 100 , Rs 80 , Rs 60 and Rs 40 .

\#466121

Topic: Arithmetic Progression

sections of each class. How many trees will be planted by the students?

Solution

It can be observed that the number of trees planted by the students is in an AP.
$1,2,3,4,5$. \qquad .12

First term, $a=1$

Common difference, $d=2-1=1$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{12}=\frac{12}{2}[2(1)+(12-1)(1)]$
$=6(2+11)$
$=6(13)$
$=78$

Therefore, number of trees planted by 1 section of the classes $=78$
Number of trees planted by 3 sections of the classes $=3 \times 78=234$
Therefore, 234 trees will be planted by the students.
\#466122
Topic: Arithmetic Progression

A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii $0.5 \mathrm{~cm}, 1.0 \mathrm{~cm}, 1.5 \mathrm{~cm}, 2.0 \mathrm{~cm}, \ldots$ as shown in Fig. What is the total length of such a spiral made up of thirteen consecutive semicircles?

Solution

Circumference of first semicircle $=\pi r=0.5 \pi$
Circumference of second semicircle $=\pi r=\pi$
Circumference of third semicircle $=\pi r=1.5 \pi$
It is clear that $a=0.5 \pi, d=0.5 \pi$ and $n=13$
Hence, length of spiral can be calculated as follows:
$S=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{13}{2}(2 \times 0.5 \pi+12 \times 0.5 \pi)$
$=\frac{13}{2} \times 7 \pi$
$=\frac{13}{2} \times 7 \times \frac{22}{7}$
$=143 \mathrm{~cm}$
\#466123
Topic: Arithmetic Progression

200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on (see Fig.). In how many rows are the 200 logs placed and how many logs are in the top row.

Solution

It can be observed that the numbers of logs in rows are in an A.P.
$20,19,18 \ldots$
For this A.P.,
$a=20, d=19-20=-1$
Let a total of 200 logs be placed in n rows.
$S_{n}=200$
$S_{n}=\frac{n}{2}(a+(n-1) d$
$200=\frac{n}{2}[2(20)+(n-1)(-1)]$
$400=n(40-n+1)$
$400=n(41-n)$
$400=41 n-n^{2}$
$n^{2}-16 n-25 n+400$
$n(n-16)-25(n-16)=0$
$(n-16)(n-25)=0$
Either $(n-16)=0$ or $n-25=0$
$n=16$ or $n=25$
$a_{n}=a+(n-1) d$
$a_{16}=20+(16-1)(-1)$
$a_{16} 20-15$
$a_{16}=5$
Similarly,
$a_{25}=20+(25-1)(-1)$
$a_{25}=20-24$
$=-4$
Clearly, the number of logs in $16^{\text {th }}$ row is 5 . However, the number of logs in $25^{\text {th }}$ row is negative, which is not possible.
Therefore, 200 logs can be placed in 16 rows and the number of logs in the $16^{\text {th }}$ row is 5 .
\#466124
Topic: Arithmetic Progression

 in the line (see Fig.).
 and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run? [Hint : To pick up the first potato and the second potato, the total distance (in metres) run by a competitor is $2 \times 5+2 \times(5+3)$]

Solution

The distances of potatoes from the bucket are 5, 8, 11, 14...
Distance run by the competitor for collecting these potatoes are two times of the distance at which the potatoes have been kept. Therefore, distances to be run are
10, 16, 22, 28, 34,
$a=10, d=16-10=16$
To find: S_{10}
$S_{10}=\frac{10}{2}[2(10)+(10-1) 6]$
$=5[20+54]$
$=5(74)$
$=370$
Therefore, the competitor will run a total distance of 370 m .
\#466125
Topic: Arithmetic Progression
Which term of the $A P: 121,117,113, \ldots$, is its first negative term?
[Hint : Find n for $a_{n}<0$]

Solution
Given A.P is $121,117,113$ \qquad
$a=121$ and $d=117-121=-4$
$a_{n}=a+(n-1) d$
$=121+(n-1)(-4)$
$=121-4 n+4$
$=125-4 n$
We have find the first term of this A.P.
Therefore $a_{n}<0$
$125-4 n<0$
$124<4 n$
$n>\frac{125}{4}$
$n>31.25$
$n=32$

\#466126

Topic: Arithmetic Progression
The sum of the third and the seventh terms of an $A P$ is 6 and their product is 8 . Find the sum of first sixteen terms of the $A P$

Solution

We know that,
$a_{n}=a+(n-1) d$
$a_{3}=a+(3-1) d$
$a_{3}=a+2 d$

Similarly, $a_{7}=a+6 d$

Given that, $a_{3}+a_{7}=6$
$(a+2 d)+(a+6 d)=6$
$2 a+8 d=6$
$a+4 d=3$
$a=3-4 d \ldots$...(i)

Also, it is given that $a_{3} \times a_{7}=8$
$(a+2 d) \times(a+6 d)=8$

From equation (i),
$(3-4 d+2 d)(3-4 d+6 d)=8$
$\Rightarrow(3-2 d)(3+2 d)=8$
$\Rightarrow 9-4 d^{2}=8$
$\Rightarrow 4 d^{2}=1$
$\Rightarrow d= \pm \frac{1}{2}$
\#466127
Topic: Arithmetic Progression

 what is the length of the wood required for the rungs?

Solution

It is given that the rungs are 25 cm apart and the top and bottom rungs are $2 \frac{1}{2} \mathrm{~m}$ apart.
\therefore total number of rungs
$\frac{2 \frac{1}{2} \times 100}{25}+1$
$=\frac{250}{25}+1=11$
Now, as the lengths of the rungs decrease uniformly, they will be in an A.P.
The length of the wood required for the rungs equals the sum of all the terms of this A.P.
First term, $a=45$
Last term, $I=25$
$n=11$
$S_{n}=\frac{n}{2}(a+n)$
$S_{10}=\frac{11}{2}(45+25)=\frac{11}{2} \times 70=385 \mathrm{~cm}$
Therefore, length of wood is 385 cm

\#466128

Topic: Arithmetic Progression
The houses of a row are numbered consecutively from 1 to 49 . Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find this value of x.

Solution
Here $a=1, d=1$ and $a_{49}=49$
As per question,
$S_{x-1}=S_{49}-S_{x} \ldots \ldots \ldots .$. (i) $\$ \$$
$S_{x}=\frac{x}{2}[2+(x-1) \times 1]$
$=\frac{x}{2}(x+1)=\frac{x^{2}+x}{2}$

Similarly,
$S_{x-1}=\frac{x-1}{2}[2+(x-1-1) \times 1]$
$=\frac{x-1}{2}(2+x-2)=\frac{(x-1) x}{x} \frac{x^{2}-x}{2}$

Similarly,
$S_{49}=\frac{49}{2}[2+48 \times 1]=\frac{49}{2} \times 50=1225$

After substituting the values of S_{x-1}, S_{49} and S_{x} in equation (1), we get
$S_{x-1}==S_{49}-S_{x}$
$\frac{x^{2}-x}{2}=1225-\frac{x^{2}+x}{2}$
$\frac{x^{2}-x}{2}+\frac{x^{2}+x}{2}=1225$
$\frac{x^{2}-x+x^{2}-x}{2}=1225$
$x^{2}=1225$
$x=35$

\#466129

Topic: Arithmetic Progression

A small terrace at a football ground comprises of 15 steps each of which is 50 m long and built of solid concrete.
Each step has a rise of $\frac{1}{4} \mathrm{~m}$ and a tread of $\frac{1}{2} \mathrm{~m}$. (see Fig.). Calculate the total volume of concrete required to build the terrace.

Solution
Dimensions in $1^{\text {st }}$ step $=50 \times 0.25 \times 05 \mathrm{~m}$
Volume of first step $=6.25$ cubic m

Dimensions of second step $=50 \times 0.5 \times 05 \mathrm{~m}$
Volume of $2^{n d}$ step $=12.5$ cubic m

Dimensions of $3^{r d}$ step $=50 \times 0.75 \times 05 \mathrm{~m}$
Volume of $3^{r d}$ step $=18.75$ cubic m

Now, we have $a=6.25, d=6.25$ and $n=15$
Sum of 15 terms can be calculated as follows:
$S_{15}=\frac{15}{2}[2 \times 6.25+14 \times 6.25]$
$=\frac{15}{2} \times 100=750$
Volume of concrete $=750$ cubic m

