
Geometric Constructions



Philosophy of Constructions
Constructions using compass and straightedge have 
a long history in Euclidean geometry. Their use 
reflects the basic axioms of this system. However, 
the stipulation that these be the only tools used in a 
construction is artificial and only has meaning if 
one views the process of construction as an 
application of logic. In other words, this is not a 
practical subject, if one is interested in constructing 
a geometrical object there is no reason to limit 
oneself as to which tools to use. 



Philosophy of Constructions

 The value of studying these constructions lies in 
the rich supply of problems that can be posed in this 
way. It is important that one be able to analyze a 
construction to see why it works. It is not important 
to gain the manual dexterity needed to carry out a 
careful construction.



Compass vs. Dividers
The ancient Greek tool used to construct circles is 
not the modern day compass. Rather, they used a 
device known as a divider. Dividers consist of just 
two arms with a central pivot. Should you pick up a 
divider, the arms will collapse, so it is impossible to 
use them to transfer lengths from one area to 
another. Modern compasses remain open when 
picked up, so such transfers are possible. Given the 
difference in the two tools, it appears that the 
modern compass is a more powerful instrument, 
capable of doing more things. 



Compass vs. Dividers
 However, this is not true. 

The ancient dividers can do everything that modern 
compasses can. Of course, this means that how 
certain constructions were done by the ancient 
Greeks are quite different from the way we would 
do them today. This underscores the statement 
above; technique is not as important as 
understanding why it works.



Basic Constructions

The basic constructions are:

1. Transfer a segment.
2. Bisect a line segment.
3. Construct a perpendicular to a line at a point on the line.
4. Construct a perpendicular to a line from a point not on 
the line.
5. Construct an angle bisector.
6. Copy an angle.
7. Construct a parallel to a line through a given point.
8. Partition a segment into n congruent segments.
9. Divide a segment into a given ratio (internal and 
external).



Basic Construction 1

Transfer a line segment.
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Basic Construction 2



Basic Construction 3



Basic Construction 4



Basic Construction 5



Basic Construction 6



Basic Construction 7



Basic Construction 8



Basic Construction 9



Basic Construction 9



Constructible Numbers
Given a segment which represents the number 1 (a unit segment), 
the segments which can be constructed from this one by use of 
compass and straightedge represent numbers called Constructible 
Numbers. Note that the restrictions imply that the constructible 
numbers are  limited to lying in certain quadratic extensions of the 
rationals.

Given two constructible numbers one can with straightedge and 
compass construct their:
Sum
Difference
Product
Quotient
Square Root



Constructible Numbers
Sum

   a

   b a          +       b

Difference

   a

   b  b – a
|              |



Constructible Numbers
Product

  1
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b
b
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Quotient

  1
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b
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Constructible Numbers
Square Root

1

a

a 1

 a



Constructions
Example: Construct a triangle, given the length of one side of the 
triangle, and the lengths of the altitude and median to that side.



Constructions

As the third vertex is determined by the intersection of one of two parallel 
lines with a circle, there are three possibilities for the number of solutions. If b 
is less than c, there will be no intersection, so no solutions. If b equals c, the 
lines will be tangent to the circle and we would get two solutions. Finally, if b 
is greater than c (the situation drawn above) then there will be four points of 
intersection.



Constructions
Example: Construct a triangle, given one angle, the length of the side opposite 
this angle, and the length of the altitude to that side.



Constructions

As the position of vertex A is determined by the intersection of a single line 
with a circle, there are three possibilities for the number of solutions. If the 
parallel does not intersect the circle, there is no solution. If the parallel is 
tangent to the circle there is one solution, and finally, if the parallel intersects 
the circle twice, there are two solutions (as indicated in the situation drawn 
above).



Constructions
Example: Construct a triangle, given the circumcenter O, the center of the 
nine-point circle N, and the midpoint of one side A'.



Constructions

This construction always gives a unique triangle provided one exists. If N = A' 
there will be no nine-point circle, but N could equal O, or A' could equal O 
and the construction will still work. The points could also be collinear.



Impossibility Proofs
An algebraic analysis of the fields of constructible 
numbers shows the following:

Theorem: If a constructible number is a root of a cubic 
equation with rational coefficients, then the equation must 
have at least one rational root.

While we will not prove this result, we shall use it to 
investigate some old geometric problems that dealt with 
constructions.



Impossibility Proofs

The three famous problems of antiquity are:

The Delian problem - duplicating the cube. The problem 
is to construct a cube that has twice the volume of a given 
cube. A particular instance of this problem would be to 
construct a cube whose volume is twice that of the unit 
cube. This entails constructing a side of the larger cube, 
and in this case that means constructing a length equal to 
the cube root of 2. This length is a root of the equation 
x3 - 2 = 0, but this cubic equation with rational coefficients 
has no rational root.



Impossibility Proofs

Trisection of an Angle - The problem is to find the angle 
trisectors for an arbitrary angle. The general problem can 
not be done because it can't be done for some specific 
angles, for instance an angle of 60º. (Construction of  a 20 
degree angle leads to the cubic equation 8x3 -6x - 1 = 0, 
and this does not have roots of the required type). 
(Wankel)



Impossibility Proofs

Squaring the Circle - The problem is to construct a square 
that has the same area as the unit circle, i.e. π. If this can 
be done, then the square root of  π would be constructible. 
And if that is true, then   π would also be constructible. But 
  π is a transcendental number (Lindemann, 1882), and 
such numbers are not constructible.



Angle Trisection
Angle Trisection  can be done in many ways, some of 
which were known to the ancient Greeks. A simple 
method which uses a marked straightedge is due to 
Archimedes (287-212 B.C.) and another uses the 
Conchoid of Nichomedes (240 B.C.).



Archimedes' Angle Trisection



Archimedes' Angle Trisection

O

TB

A

Let ∠AOT = x. ∠AOT ≅ ∠OTB (alternate interior angles of || lines.)
∠OTB ≅ ∠TBS since ∆SBT is isosceles. ∠BSO = 2x since it is an 
exterior angle which is equal to the sum of the two opposite interior 
angles. ∠BOS ≅ ∠BSO since ∆BSO is isosceles. Therefore, ∠AOT is 
1/3 of ∠AOB.

 S



Conchoid of Nicomedes
Given a point O, a line l not through O and a length k we 
form the conchoid by adding the length k to all line 
segments drawn from O to l.

O

   l

k



Conchoid of Nicomedes 

k/2
k/2

O
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Circle Squarers
“We have not placed in the above chronology of π any items from the 
vast literature supplied by sufferers of morbus cyclometricus, the circle-
squaring disease. These contributions, often amusing and at times almost 
unbelievable, would require a publication all to themselves.” 

      - Howard Eves, An Introduction to the History of Mathematics    

Circle squarers, angle trisectors, and cube duplicators are members 
of a curious social phenomenon that has plagued mathematicians 
since the earliest days of the science. They are generally older 
gentlemen who are mathematical amateurs (although some have had 
mathematical training) that upon hearing that something is 
impossible are driven by some inner compulsion to prove the 
authorities wrong.     



Circle Squarers
In 1872, Augustus De Morgan's (1806-1871) widow edited and had 
published some notes that De Morgan had been preparing for a 
book, called A Budget of Paradoxes. A logician and teacher, De 
Morgan had been the first chair in mathematics of London 
University (from 1828).  Besides his mathematical work, he wrote 
many reviews and expository articles and much on teaching 
mathematics. In the Budget, he examines his personal library and 
satirically barbs all the examples of weird and crackpot theories that 
he finds there. As he points out, these are just books that randomly 
came into his possession – he did not seek out any of this type of 
material. In the approximately 150 works he examined, there can be 
found 24 circle squarers and an additional 19 bogus values of π.



Angle Trisectors

DeMorgan's book was very successful. Today, with a couple of 
notable exceptions, there are hardly any circle squarers left.

However, their cousins, the Angle Trisectors are still with us.

Underwood Dudley, in 1987, wrote A Budget of Trisections in an 
attempt to do for Angle Trisectors what DeMorgan had done for 
Circle Squarers.

The comments and quotes that follow are all from Dudley's book.
(The 2nd edition came out in 1996 and was renamed The 
Trisectors).



Angle Trisectors

There are several characteristics of angle trisectors (shared by others 
of their ilk) that may help you identify them.

  1. They are men. Almost universally. Women seem to have more     
    sense.
  2. They are old. Often retired, having led a successful life in their     
    chosen endeavors. Too much free time.
  3. They fail to understand what “impossible” means in                     
    mathematics. The meaning is unfortunately not the same as the       
    meaning in English. It is one of the great failures of mathematics    
    education that this essential difference is not made plain to              
    students.



Angle Trisectors
Typical is the trisector who wrote
   “I received through the mail an advertising brochure, from a 
science magazine, that had in it a simple statement – and it went 
something like this – the FORMULA for TRISECTING AN 
ANGLE had never been worked out. This really intrigued me. I 
couldn't believe, after hundreds of years of math, that this could 
be true.”

So he went to the library and found that all the books agreed that 
it was impossible.

  “How could men of science be so stupid? Any scientist or 
mathematician who declares that a thing is impossible is showing 
his limitations before he even starts on the problem at hand.”



Angle Trisectors
Another trisector wrote in 1933:
   “Moreover, we find our modern authorities of mathematics not 
attempting to solve these unsolved problems, but writing 
treatises showing the impossibility of proving them. Instead of 
offering inducements to the solution of these problems, they 
discourage others and dub them as 'cranks'. “

  4. They do not know much mathematics. Often, high school is 
the last place they have seen any formal mathematics.

   “It was necessary to get outside of the problem to solve it, and 
it was not solved by a study of geometry and trigonometry, as 
the author has never made a study of these branches of learning.”



Angle Trisectors
5. They think the problem is important. Since Archimedes work,      
   there has not been any need for such a construction, yet they          
   persist in thinking that mathematics has been stymied by this         
   lack.
     “It having been hitherto deemed impossible to geometrically 
trisect or divide any angle into any number of equal parts, or 
fractions of parts, the author of the present work has devoted 
careful study to the solving of the problem so useful and necessary 
to every branch of science and art, that requires the use of 
geometry.”

      “The study of technical magazines and data shows that a 
solution is being sought whereby a standard construction permits 
the thrice division of any given angle ...”



Angle Trisectors
6. They believe that they will be richly rewarded for their work. No  
  one has ever put up a prize for a solution. 

    “When the time came for me to submit this project to a 
publisher, I was very much concerned about the copyright. I was 
fearful that if I submitted to a publisher, they might steal the entire 
trisection and I would have to go to court and try to establish my 
right to the trisection.”
            



Angle Trisectors
7. They are not logical. For instance,

  “Those who are skeptical should offer something more than 
rhetoric or argument in order to disprove geometrical facts. 
Assuming the angle and its trisectors given, the enveloping 
quadrantal arc constructed, and its points of trisection found, if it be 
denied that the trisectors pass through these points of equal division 
on the quadrantal arc, let them show by the ruler and compasses 
where these lines and points are with respect to each other on the 
quadrant. If the lines constituting the respective pairs of trisectors 
of both sectors do not intersect on the quadrantal arc they should 
show by the ruler and compasses where they do intersect. ”
     To prove him wrong you have to trisect an angle with ruler and 
compass. !!!!



Angle Trisectors

8. They are loners. They work by themselves, sometimes using        
   books, but never discuss their work until it is completed. Even       
   though they do not communicate with each other, they do tend to  
   swarm. 

   For instance, in 1754, Jean Étienne Montucla, an early French       
   historian of mathematics, wrote a legitimate history of the              
   quadrature problem. A year later, the French Academy of               
   Sciences was forced to publicly announce that it would no longer  
   examine any solutions of the quadrature problem.



Angle Trisectors
9. They are prolific writers. Here is what De Morgan says about       
   Milan whose method gave π = 3.2 in 1855:
[The circle-squarer] is active and able, with nothing wrong with him 
except his paradoxes. In the second tract named he has given the 
testimonials of crowned heads and ministers, etc. as follows. Louis 
Napoleon gives thanks. The minister at Turin refers it to the Academy of 
Sciences and hopes so much labor will be judged worthy of esteem. The 
Vice-Chancellor of Oxford – a blunt Englishman – begs to say that the 
University has never proposed the problem, as some affirm. The Prince 
Regent of Baden has received the work with lively interest. The 
Academy of Vienna is not in a position to enter into the question. The 
Academy of Turin offers the most distinct thanks. The Academy della 
Crusca attends only to literature, but gives thanks. The Queen of Spain 
has received the work with the highest appreciation. The University of 
Salamanca gives infinite thanks, and feels true satisfaction in having the 
book.



Angle Trisectors

Lord Palmerston gives thanks. The Viceroy of Egypt, not yet being 
up in Italian, will spend his first moments of leisure in studying the 
book, when it shall have been translated into French: in the mean 
time he congratulates the author upon his victory over a problem so 
long held insoluble. All this is seriously published as a rate in aid of 
demonstration. If those royal compliments cannot make the 
circumference about 2 per cent larger than geometry will have it – 
which is all that is wanted – no wonder that thrones are shaky.
                           - Budget, Vol. 2, pp. 61-2.



Angle Trisectors

Now, will you know a Angle Trisector when you see 
one coming? And will you know what to do?

Hint: What you do involves your legs.

No, you do not kick him!



Regular Polygons (Gauss)
These are only possible when the number of sides, n, is of 
the form 
                                 n = 2ap

1
p

2
...p

k

where the p
i
 are distinct Fermat primes, i.e. prime numbers 

of the form
p i1:= 22i

1
The first few Fermat primes are: p

1
= 3,  p

2
= 5, p

3
 = 17. 

Thus, it is possible to construct regular polygons of n sides 
when n is: 3, 4 = 22 , 5, 6 = 2(3), 8 = 23, 10 = 2(5), 12 = 
22(3), 15 = 3(5), 16 = 24 and 17.



Regular Polygons (Gauss)
The factor of a power of 2 comes from the fact that given 
any regular n-gon, you can always construct a regular 2n-
gon. This is done by inscribing the n-gon in a circle and 
then constructing the perpendicular bisectors of each of the 
sides. Extend these to the circle and these points together 
with the original vertices of the n-gon, form the vertices of 
a regular 2n-gon. Repeating this will give the higher 
powers of 2.
 It is not possible to construct, with straightedge and 
compass alone, regular polygons of sides n = 7, 9, 11, 13, 
14, 18, 19, ....



Other types of Constructions
It can be shown that any construction that can be made 
with straightedge and compass can be made with compass 
alone (Mascheroni, 1797 [Mohr, 1672]). Of course one 
must understand that a straight line is given as soon as 
two points on it are determined, since one can't actually 
draw a straight line with only a compass.

It can also be shown that any construction that can be 
made with straightedge and compass can be made with 
straightedge alone, as long as there is a single circle with 
its center given (Steiner, 1833 [Poncelet, 1822]).



Paper Folding



Paper Folding



Paper Folding
Other constructions are possible, including trisecting angles. 

Here is a folding of the regular nonagon (9 sided regular polygon) which is 
impossible to do with straightedge and compass (from T.S. Row, Geometric 
Exercises in Paper Folding).

Unfortunately, this is 
only approximate, this 
construction can not be 
done exactly with paper 
folding.
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