#452515

To construct a triangle similar to given $\triangle ABC$ with sides equal to $\frac{7}{5}$ of the sides of $\triangle ABC$, a ray BX is drawn such that $\angle CBX$ is acute angle and B_1, B_2, B_3, \ldots are marked at equilibration distances on BX. The points to be joined in the next step are:

- **A** B₁₂, C
- B B₅,
- **C** B₇, C
- **D** B₂, C

Solution

 $\triangle PQB$ is the required triangle.

Since side BQ is $\frac{7}{5}$ times side BC.

$$BC + CQ = \frac{7}{5} \times BC \Rightarrow CQ = \frac{2}{5} \times BC \Rightarrow \frac{CQ}{BC} = \frac{2}{5}$$

Therefore, C divides BQ in ratio 5:2.

So, point B_5 should be connected to C, and B_7P should be drawn parallel to B_6C .

#465197

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8.

Solution

- Step 1: Draw segment AB of length 7.6 cm using a ruler.
- Step 2: Draw a ray AC having an acute angle with line AB.
- Step 3: Mark 13 equidistant points on ray AC, A_1 , A_2 , A_3 , . . . , A_{13}
- Step 4: Join A_{13} to B
- Step 5: Draw A_5P parallel to $A_{13}B$.

Point P divides AB in the ratio 5:8. Measuring the lengths, we get AP = 2.9 cm and PB = 4.7 cm.

#465199

Construct a triangle of sides 4*cm*, 5*cm* and 6*cm* and then a triangle similar to it whose sides are - of the corresponding sides of the first triangle.

Steps of construction:

- 2. Place the pointed end of the compass on B and mark an arc of radius 5 cm. Now, place the pointed end on C and mark an arc of radius 4 cm intersecting with the previous
- arc. Mark this intersection point as A.

1. Draw a base BC of length 6 cm.

4. Draw a ray BX from point B on opposite side of A to line BC.

3. Join A = B and A = C. $\triangle ABC$ is the first triangle.

- 5. Mark three equidistant points on ray BX and name them B_1 , B_2 and B_3 .
- 6. Join $B_3 C$. From B_2 , draw a line parallel to B_3C and let it intersect BC in D. From D draw a line parallel to AC and let it intersect AB in E.

 $\triangle BED$ is the required similar triangle.

#465202

Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are - of the corresponding sides of the first triangle.

Solution

Constructing the first triangle:

Step 1: Draw base AB of length 7 cm

Step 2: Place a compass on \emph{A} and draw an arc of radius 5 \emph{cm}

Step 3: Place the compass on B and draw an arc of radius 6 cm such that it intersects the arc drawn in step 2.

Step 4: Mark the intersection of the two arcs as $\it C$ and join $\it A-\it C$ and $\it B-\it C$

 $\triangle ABC$ is the given triangle.

Let $\triangle PAQ$ be the required triangle.

Step 1: Draw a ray AX from point A on the opposite side of C, making an acute angle with AB.

Step 2: Mark 7 equidistant points $A_1, A_2, A_3, \ldots, A_7$ on ray AX.

Step 3: Join A_5 to B.

Step 4: Draw $A_{7}Q$ parallel to $A_{5}B$ and mark the point on the extension of line AB as Q.

Step 5: Draw PQ parallel to BC and mark the intersection point on the extension of AC as P.

 $\triangle PAQ$ is the required triangle.

#465204

Construct an isosceles triangle whose base is 8_{cm} and altitude 4_{cm} and then another triangle whose sides are $\frac{1}{1_2}$ times the corresponding sides of the isosceles triangle.

Solution

Steps of construction:

- 1. Draw a base BC of length 8 cm.
- 2. Draw the perpendicular bisector of BC and name it PQ. Let it intersect BC in M.
- 3. From M, mark an arc A at a distance of 4 cm on PQ.
- 4. Join B A and C B. $\triangle ABC$ is the first isosceles triangle.
- 5. Extend BC and BA. Place the pointed end of the compass at C and mark an arc of radius CM on the opposite side of M on the extended segment BC. Mark the point as D (Since CM is half of BC, BD will be BC + 0.5BC = 1.5BC)
- 6. From D, draw a line parallel to AC and let it intersect the extended segment AB at E.

 $\triangle \textit{EBD}$ is the required similar triangle.

#465206

Draw a $\triangle ABC$ with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60$ °. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the $\triangle ABC$.

Solution

Constructing $\triangle ABC$:

Step 1: Draw base BC of length 6 cm using a ruler.

Step 2: Draw a ray from point \emph{B} at an angle of $60\,^{\circ}$.

Step 3: Mark an arc of radius 5 cm on the ray is drawn from B and label the intersection point as A. Join A - C

 $\triangle ABC$ is the given triangle.

Constructing $\triangle EBD$ with sides $\stackrel{3}{-}$ times the sides of $\triangle ABC$

Step 1: Draw a ray BX on the opposite side of A.

Step 2: Mark 4 equidistant points B_1 , B_2 , B_3 , B_4 on ray BX

Step 3: Join B_4 to point C.

Step 4: Draw B_3D parallel to B_4C and mark the intersection point with line BC as D.

Step 5: Draw DE parallel to CA and mark the intersection point with AB as EA

 $\triangle \textit{EBD}$ is the required triangle.

#465209

Draw a $\triangle ABC$ with side BC = 7 cm, $\angle B = 45$ °, $\angle A = 105$ °. Then, construct a triangle whose sides are $\frac{4}{2}$ times the corresponding sides of $\triangle ABC$.

In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$

∴ 105° + 45° + ∠C = 180°

∴ ∠*C* = 30 °

Constructing $\triangle ABC$:

Step 1: Draw base BC of length 7 cm.

Step 2: Draw a ray at an angle of $_{45}\,^{\circ}$ with line $\it BC$ from point $\it B$

Step 3: Draw a ray at an angle of $_{30}$ ° from line $_{CB}$ from point $_{C}$ and mark the intersection point of the rays from $_{B}$ and $_{C}$ as $_{A}$.

Step 4: Join A - B and A - C.

 $\triangle ABC$ is the required triangle.

For constructing $\triangle EBD \sim \triangle ABC$

Step 1: Draw a ray BX at an acute angle to line BC on the opposite side of A.

Step 2: Mark 4 equidistant points B₁, B₂, B₃, B₄ on ray BX.

Step 3: Join B_3 and C.

Step 4: Draw B_{4D} parallel to B_{3C} and label the intersection on the extension of BC as D.

Step 5: Draw DE parallel to BA and label the intersection with the extension of BA as E

 $\triangle \textit{EBD}$ is the required triangle.

#465211

Draw a right triangle which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are $\frac{5}{2}$ – times the corresponding sides of $\frac{3}{2}$

the given triangle.

Construct $\triangle ABC$, the given right angled triangle, as follows:

Step 1: Draw base BC of length 4 cm.

Step 2: Draw a right angle at point B.

Step 3: Draw an arc of radius 3 $_{\it CM}$ on the right angle drawn from $_{\it B}$ and label that point as $_{\it A}$

Step 4: Join A - C.

5/31/2018

 $\triangle ABC$ is the given triangle.

To construct $\triangle EBD \sim \triangle ABC$:

Step 1: Draw a ray BX at an acute angle to line BC on the opposite side of A.

Step 2: Mark 5 equidistant points B_1 , B_2 , B_3 , B_4 , B_5 on ray BX.

Step 3: Join B_3 and C.

Step 4: Draw B_5D parallel to B_3C and label the intersection on the extension of BC as D.

Step 5: Draw DE parallel to BA and label the intersection with the extension of BA as E

 $\triangle \textit{EBD}$ is the required triangle.

#465212

Draw a circle of radius 6cm. From a point 10cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution

Construct a circle with radius = 6cm and centre be C

Locate a point $\ensuremath{\emph{A}}$ which is 10 cm from $\ensuremath{\emph{C}}$

Then find the perpendicular bisector of line joining points C and A. lets say the mid point will be M.

Now draw an 'another circle with centre at M and radius = $6cm\left(\frac{CA}{2}\right)$ and lets say this circle cuts the previous circle at points N and Q then draw the lines AB and AN which are

our external tangents.

Sinces $\triangle CSA$ is right angle triangle at $L. S = 90^{\circ}$

Therefore using pythagoras theorem

$$(CQ)^2 + (SN)^2 = (CA)^2$$

$$(10)^2 - (6)^2 = (QN)^2$$

QN = 8 cm, log3h of tangent

#465214

Construct a tangent to a circle of radius 4_{CM} from a point on the concentric circle of radius 6_{CM} and measure its length. Also verify the measurement by actual calculation.

Construction the two conuntric circle with to $r_1 = 4cm$ and $r_2 = 6cm$ with centre be C

locate a point p on outer circle such that CP = 6cm and lets assume M be the mid point of CP such that CM = MP = 3cm

Now draw a circle with centre M and radius = 3cm = cm and lets say its intersect the inner circle at point A and B.

Now join the points A,P and BP so we get our tangents AP and BP

Since $\triangle CAP$ is a right angled triangle with $\angle A = 90^{\circ}$

therefore using pythogorus therom

$$(CA)^2 + (AP)^2 = (CP)^2$$

$$(PA)^2 = 36 - 9$$

$$AP = 3\sqrt{3}cm$$

verify it by measuring with scale.

#465215

Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q

Solution

Step 1: Draw a circle with centre O and radius 3 cm using a compass.

Step 2: Draw a secant passing through the centre. Mark points P and Q on opposite sides of the centre at a distance of 7 cm from Q.

Step 3: Place the compass on P and draw two arcs on opposite sides of OP. Now place the compass on O and draw two arcs intersecting the arcs drawn from point P.

Step 4: Join the intersection points of the arcs to obtain the perpendicular bisector of OP. Mark the mid point of OP as M_1

Step 5: From M_1 draw a circle with radius = $M_1P = M_1O$

Step 6: Mark the intersection points of the circle drawn from M_1 with the circle drawn from O as A and B.

Step 7: Join P - A and P - B

Step 8: Repeat steps 3 to 7 for point $\it Q$ and obtain tangents $\it QC$ and $\it QD$

 $\it PA, \it PB, \it QC \it and \it QD \it are the required tangents.$

#465217

Draw a pair of tangents to a circle of radius 5cm which are inclined to each other at an angle of 60°

5/31/2018

Lets assume a circle with radius =r

and AP and AQ are two external tangents and $20 = 60^{\circ}$ be the angle between them.

therefore $\angle CAP = \theta$ and $\angle CPA = 90^{\circ}$

So in
$$\triangle CAP$$
, $\sin \theta = \sin \left(\frac{60^{\circ}}{2} \right) = \frac{CP}{CA}$

$$\sin(30^\circ) = \frac{5}{CA}$$

CA = 10cm

Now lets construct this pair of tangents.

Construct a circle with centre c and radius = 5cm

d locate a point A, which is 10 cm for C such that CA = 10 cm

Now locate the midpoint of CA be M so that CM = MA = 5cm

Now draw a circle with centre M and radius = $CM = 5_{CM}$ and assume that this circle intersects the previous circle at points P and Q and join the points P,A and Q,A

So that PA and QA are our desire tangents such that $\angle PAQ = 60^{\circ}$

#465218

Draw a line segment AB of length 8cm. Taking A as centre, draw a circle of radius 4cm and taking B as centre, draw another circle of radius 3cm. Construct tangents to each circle from the centre of the other circle.

Solution

construct a line AB=8cm and mid point AB. be M such that AM = MB = 4cm

construct n circle with centre A and radius = 4cm and draw another circle with centre B and radius = 3cm

Now draw a circle with centre M and radius = 4cm = AM

and lets assume that this circle intersects the first circle (r = 4cm)

at points Q and N it intersects the second circle (r = 3m) at points c and D.

Now join the point Q,B and N,B which are tangents to first circle and join points C, A and A,D. tangent to second circle.

#465220

Let ABC be right triangle in which AB = 6cm, BC = 8cm and $\angle B = 90^\circ$, BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from AC to this circle.

Construct the $\triangle ABC$ and $BD\perp AC$ then draw a circle with centre O such that BO = OC = 4cm

join the point O and A and locate M be the midpoint of AO, and draw a circle with centre M and radius A and A a

let this circle cuts the previous circle at P and Q

Now join \mathcal{AP} and \mathcal{AQ} which are the desire tangents.

#465222

Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Solution

- Step 1: Draw a circle by tracing the surface of a bangle.
- Step 2: Take a point P outside the circle. Draw secant P R Q
- Step 3: Place the compass on P and mark two arcs on opposite side of PQ. Now, place the compass on Q and draw two arcs intersecting the arcs drawn from P.
- Step 4: Join the intersection points of the arcs to obtain the perpendicular bisector of PQ. Mark the mid point of PQ as M.
- Step 5: Place the compass on M and taking PM as radius draw a semicircle passing through P and Q.
- Step 6: From point R, draw a perpendicular to PQ and let it intersect the semicircle drawn in step 5 at C.
- Step 7: Place the compass at P and with PC as radius, mark two arcs on the original circle and mark them as A and B.
- Step 8: Join P-A and P-B

PA and PB are the required tangents.

