ASSIGNMENT CLASS X POLYNOMIALS

Q1. Without drawing actual graph, find the zeroes of the following polynomials if any.
(a) $x^{2}-2 x-8$
(b) $-x^{2}-2 x+3$
(c) $x^{2}+x+1$
(d) $x^{2}-1$
(e) $x^{2}+4 x+4$
(f) $-4 x^{2}+4 x-1$

Q2. Draw the graphs of each of the following polynomials and if possible, read the zeroes from the graph:
(a) $x^{2}-2 x+9$
(b) $-2 x^{2}+4 x$
(c) $x^{2}+2 x-3$
(d) $x^{2}-8 x+16$
(e) x^{3}
(f) $x^{3}-x^{2}$

Q3. Draw the graph of the polynomial $x^{2}-3 x-10$. Read off the zeroes of the polynomial from the graph. Also show that the axis of symmetry on it.
Q4. Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $p(x)=3 x^{2}-5 x-2$.
Q5. Show that the polynomial $p(x)=x^{2}-4 x+9$ have no zeroes.
Q6. Find the zeroes of each of the following quadratic polynomial. Also, in each case, verify the relationship between the zeroes and its coefficients.
(a) $x^{2}+8 x+12$
(b) $x^{2}+3 x-4$
(c) $x^{2}-7 x+10$
(d) $y^{2}-4$

Q7. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
(a) 3 and 4
(b) -2 and $\frac{3}{2}$
(c) $-\frac{3}{2}$ and 0
(d) $-\sqrt{2}$ and $\sqrt{3}$

Q8. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeroes and the coefficients in each case.
(a) $x^{3}-x$
; 0,1 and -1
(b) $2 x^{3}-5 x^{2}+x+2$
$; 1,2$, and $-\frac{1}{2}$
(c) $3 x^{3}-5 x^{2}-11 x-3$
;3, -1 and $-\frac{1}{3}$
(d) $6 y^{3}+23 y^{2}-5 y-4$ $;-4,-\frac{1}{3}$ and $\frac{1}{2}$
Q9. Find a cubic polynomial with the sum, sum of product of its zeroes taken two at a time and the product of its zeroes respectively as given below:
(a) $-4,7$ and 0
(b) $5,-2$, and -24
(c) $-2,-\frac{8}{3}$ and 0 .

Q10. Apply the division algorithm to find the quotient and the remainder on division of $p(x)$ by $g(x)$ as given below:
(a) $p(x)=-5 x^{2}+14 x^{3}+9 x-1, g(x)=-1+2 x$
(b) $p(x)=6 x^{3}+11 x^{2}-39 x-65, g(x)=x^{2}+x-1$
(c) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$
(d) $p(x)=3 x^{3}+x^{2}+2 x+5, g(x)=1+2 x+x^{2}$

Q11. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm:
(a) $x+8, x^{3}+15 x^{2}+56 x$
(b) $x-2, x^{4}-x^{3}+3 x-9$
(c) $x^{2}-2, x^{3}-3 x^{2}+5 x-3$
(d) $-5 y^{2}-4 y+2,15 y^{4}+2 y^{3}-39 y^{2}-16 y+10$

Q12. If the polynomial $6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ is divided by another polynomial $3 x^{2}+4 x+1$, the remainder comes out to be $a x+b$, find a and b.
Q13. If the polynomial $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by another polynomial $x^{2}+5$, the remainder comes out to be $p x+q$, find p and q.
Q14. Obtain all the zeroes of the polynomial $p(x)=x^{4}-3 x^{3}-x^{2}+9 x-6$, if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
Q15. Obtain all the zeroes of the polynomial $p(x)=3 x^{4}-15 x^{3}+17 x^{2}+5 x-6$, if two of its zeroes are $\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$.
Q16. Find the value of a and b so that $1,-2$ are the zeroes of the polynomial $x^{3}+10 x^{2}+a x+b$.
Q17. On dividing $x^{3}-3 x^{2}+5 x-3$ by a polynomial $\mathrm{g}(\mathrm{x})$, the quotient and remainder are $x-3$ and $7 x-9$ respectively. Find $g(x)$.
Q18. On dividing $x^{4}-5 x+6$ by a polynomial $\mathrm{g}(\mathrm{x})$, the quotient and remainder are $-x^{2}-2$ and $-5 x+10$ respectively. Find $g(x)$.
*Q19. If α and β are the zeroes of the quadratic polynomial $f(x)=3 x^{2}-6 x+4$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$.
*Q20. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-2 x+3$, find a polynomial whose roots are $\alpha+2, \beta+2$.

ANSWERS

1. (a) -2 and 4
(b) - 3 and 1
(c) no zeroes
(d) 1 and - 1
(e) - 2 and -2
(f) $\frac{1}{2}$ and $\frac{1}{2}$
2. (a) no zeroes
(b) 0 and 2
(c) -3 and 1
(d) 4
(e) 0
(f) 0 and 1
3. 5 and -2 .; axis of symmetry $x=\frac{3}{2}$
4. (a) -2 and -6
(b) 1 and -4
(c) 2 and 5
(d) ± 2
5. (a) $k\left(x^{2}-3 x+4\right)$
(b) $k\left(x^{2}+2 x+\frac{3}{2}\right)$
(c) $k\left(x^{2}+\frac{3}{2} x\right)$
(d) $k\left(x^{2}+\sqrt{2} x+\sqrt{3}\right)$ where k is real
6. (a) $x^{3}+4 x^{2}-7$
(b) $x^{3}-5 x^{2}-2 x+24$
(c) $3 x^{3}-6 x+8$
7. (a) quotient $=7 x^{2}+x+5 \quad$; remainder $=4$
(b) quotient $=6 x+5 \quad$; remainder $=-38 x-60$
(c) quotient $=\quad-x^{2}-2 \quad$; remainder $=-5 x+10$
(d) quotient $=3 x-5 \quad ;$ remainder $=9 x+10$
8. (a) Yes
(b) Yes
(c) No
(d) Yes
9. $a=1, b=2$
10. $p=2, q=3$
11. $-\sqrt{3}, \sqrt{3}, 1,2$
12. $\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, 2,3$
13. $a=7, b=-18$
14. $x^{2}-2$
15. $-x^{2}+2$
16. 8
17. $k\left(x^{2}-6 x+11\right)$
