<u>ASSIGNMENT</u> CLASS X <u>POLYNOMIALS</u>

Q1. Without drawing actual graph, find the zeroes of the following polynomials if any.

(a) $x^2 - 2x - 8$ (b) $-x^2 - 2x + 3$ (c) $x^2 + x + 1$ (d) $x^2 - 1$

(e) $x^2 + 4x + 4$ (f) $-4x^2 + 4x - 1$

Q2. Draw the graphs of each of the following polynomials and if possible, read the zeroes from the graph: (a) $x^2 - 2x + 9$ (b) $-2x^2 + 4x$ (c) $x^2 + 2x - 3$ (d) $x^2 - 8x + 16$ (e) x^3 (f) $x^3 - x^2$

Q3. Draw the graph of the polynomial $x^2 - 3x - 10$. Read off the zeroes of the polynomial from the graph. Also show that the axis of symmetry on it.

Q4. Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $p(x) = 3x^2 - 5x - 2$.

Q5. Show that the polynomial $p(x) = x^2 - 4x + 9$ have no zeroes.

Q6. Find the zeroes of each of the following quadratic polynomial. Also, in each case, verify the relationship between the zeroes and its coefficients.

(a) $x^2 + 8x + 12$ (b) $x^2 + 3x - 4$ (c) $x^2 - 7x + 10$ (d) $y^2 - 4$ Q7. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:

(a) 3 and 4 (b) - 2 and
$$\frac{3}{2}$$
 (c) $-\frac{3}{2}$ and 0 (d) $-\sqrt{2}$ and $\sqrt{3}$

Q8. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeroes and the coefficients in each case.

(a)
$$x^{3}-x$$
; 0, 1 and -1
(b) $2x^{3}-5x^{2}+x+2$; 1, 2, and $-\frac{1}{2}$
(c) $3x^{3}-5x^{2}-11x-3$; 3, -1 and $-\frac{1}{3}$
(d) $6y^{3}+23y^{2}-5y-4$; -4, $-\frac{1}{3}$ and $\frac{1}{2}$

Q9. Find a cubic polynomial with the sum, sum of product of its zeroes taken two at a time and the product of its zeroes respectively as given below:

(a)
$$-4$$
, 7 and 0 (b) 5, -2 , and -24 (c) -2 , $-\frac{8}{3}$ and 0

Q10. Apply the division algorithm to find the quotient and the remainder on division of p(x) by g(x) as given below:

(a)
$$p(x) = -5x^2 + 14x^3 + 9x - 1$$
, $g(x) = -1 + 2x$
(b) $p(x) = 6x^3 + 11x^2 - 39x - 65$, $g(x) = x^2 + x - 1$
(c) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$
(d) $p(x) = 3x^3 + x^2 + 2x + 5$, $g(x) = 1 + 2x + x^2$

Q11. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm:

(a)
$$x+8$$
, x^3+15x^2+56x
(b) $x-2$, x^4-x^3+3x-9
(c) x^2-2 , x^3-3x^2+5x-3
(d) $-5y^2-4y+2$, $15y^4+2y^3-39y^2-16y+10$

Q12. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax+b, find a and b.

Q13. If the polynomial $x^4 + 2x^3 + 8x^2 + 12x + 18$ is divided by another polynomial $x^2 + 5$, the remainder comes out to be px+q, find p and q.

Q14. Obtain all the zeroes of the polynomial $p(x) = x^4 - 3x^3 - x^2 + 9x - 6$, if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.

Q15. Obtain all the zeroes of the polynomial $p(x) = 3x^4 - 15x^3 + 17x^2 + 5x - 6$, if two of its zeroes are

$$\frac{1}{\sqrt{3}}$$
 and $\frac{-1}{\sqrt{3}}$.

Q16. Find the value of a and b so that 1, -2 are the zeroes of the polynomial $x^3 + 10x^2 + ax + b$. Q17. On dividing $x^3 - 3x^2 + 5x - 3$ by a polynomial g(x), the quotient and remainder are x - 3 and 7x-9 respectively. Find g(x).

Q18. On dividing $x^4 - 5x + 6$ by a polynomial g(x), the quotient and remainder are $-x^2 - 2$ and -5x+10 respectively. Find g(x).

*Q19. If α and β are the zeroes of the quadratic polynomial $f(x)=3x^2-6x+4$, find the value of $\alpha \beta (1 1)$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta.$$

*Q20. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 2x + 3$, find a polynomial whose roots are $\alpha + 2, \beta + 2$.

 $\frac{ANSWERS}{1. (a) - 2 \text{ and } 4}$ (b) - 3 and 1(e) -2 and -2(c) no zeroes (d) 1 and -1(f) $\frac{1}{2}$ and $\frac{1}{2}$ (b) 0 and 2 (c) - 3 and 1 (d) 4 (e) 0 (f) 0 and 1 2. (a) no zeroes 3. 5 and -2; axis of symmetry x =(b) 1 and -4 (c) 2 and 5 (d) ± 2 6. (a) -2 and -67. (a) $k(x^2 - 3x + 4)$ (b) $k(x^2 + 2x + \frac{3}{2})$ (c) $k(x^2 + \frac{3}{2}x)$ (d) $k(x^2 + \sqrt{2}x + \sqrt{3})$ where k is real 9. (a) $x^3 + 4x^2 - 7$ (b) $x^3 - 5x^2 - 2x + 24$ (c) $3x^3 - 6x + 8$ 10. (a) quotient = $7x^2 + x + 5$; remainder = 4(b) quotient = 6x + 5; remainder = -38x - 60(c) quotient = $-x^{2}-2$; remainder = -5x+10; remainder = 9x + 10(d) quotient =3x - 5(d) Yes 11. (a) Yes (b) Yes (c) No 12. a=1, b=213. p=2, q=314. $-\sqrt{3}, \sqrt{3}, 1, 2$ 15. $\frac{-1}{\sqrt{3}}$, $\frac{-1}{\sqrt{3}}$, 2, 3 16. a = 7, b = -1817. $x^2 - 2$ 20. $k(x^2-6x+11)$ 18. $-x^2 + 2$ 19.8