#463573

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$v^2 + \sqrt{2}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

(iv)
$$y + \frac{2}{v}$$

(v)
$$x^{10} + y^3 + t^{50}$$

Solution

(i) In $4\chi^2 - 3\chi + 7$. all the indies of χ are whole numbers. So, it is a polynomial in one variable χ .

(ii) In $y^2 + \sqrt{2}$ the index of y is a whole number. So, it is a polynomial in one variable y.

(iii) In $3\sqrt{t} + t\sqrt{2} = 3t^{\frac{1}{2}} + \sqrt{2}t$, here the exponent of first term is $\frac{1}{2}$, which is not whole number therefore is it not a polynomial.

(iv) In $y + \frac{2}{v} = y + 2y^{-1}$, here the exponent of first term is -1, which is not whole number, therefore, \Box is it not a polynomial.

(v) $\ln x^{10} + v^3 + t^{50}$ is not a polynomial in one variable as three variable x, y and t occur in it.

#463574

Write the coefficients of χ^2 in each of the following:

(i)
$$2 + x^2 + x$$
 (ii) $2 - x^2 + x^3$ (iii) $\frac{\pi}{2x^2 + x}$ (iv) $\sqrt{2}x - 1$

Solution

Coefficient of χ^2 in $\partial \chi^2 + b\chi + c = 0$ is $\partial x^2 + b\chi + c = 0$

Hence, coefficients of x^2 in

(i)
$$2 + x^2 + x$$
 is 1

(ii)
$$2 - x^2 + x^3$$
 is -1

(iii)
$$\frac{\pi}{2} x^2 + x$$
 is $\frac{\pi}{2}$

(iv)
$$\sqrt{2}x - 1$$
 is 0

#463575

Give one example each of a binomial of degree 35 and of a monomial of degree 100.

Solution

Binomial of degree 35 may be taken as χ^{35} + 4χ

And monomial of degree 100 may be taken as $5x^{100}$

Note: This question might have different answers.

#463576

Write the degree of each of the following polynomials:

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4 - v^2$$

(iii)
$$5t - \sqrt{7}$$

(iv) 3

- (i) The power of term is $5\chi^3$ and exponent is 3. So degree is 3.
- (ii) The power of term is y^2 and exponent is 2. So degree is 2.
- (iii) The power of term is 5t and exponent is 1. So degree is 1.
- (iv) The only term here is 3 which can be written as $3\chi^0$ and so exponent is 0 or degree is 0.

#463577

Classify the following as linear, quadratic and cubic polynomials:

(i)
$$x^2 + x$$

(ii)
$$_{X} - _{X}^{3}$$

(lii)
$$y + y^2 + 4$$

(iv)
$$1 + x$$

(v) 3t

(vi) r^2

(vii) 7_X3

Solution

- (i) The highest degree of $\chi^2 + \chi$ is 2, so it is a quadratic polynomials.
- (ii) The highest degree of $_X$ $_X$ 3 is 3, so it is a cubic polynomials.
- (iii) The highest degree of $y + y^2 + 4$ is 2, so it is a quadratic polynomials.
- (iv) The highest degree of χ in $(1 + \chi)$ is 1, so it is a linear polynomials.
- (v)The highest degree of t in 3t is 1, so it is a linear polynomials.
- (vi)The highest degree of r^2 is 2, so it is a quadratic polynomials.
- (vii)The highest degree of χ in $7\chi^3$ is 3, so it is a cubic polynomials.

#463838

Classify the following polynomials as monomials, binomials, and trinomials. Which polynomial do not fit in any of these three categories?

$$x + y$$
, 1000, $x + x^2 + x^3 + x^4$, $7 + y + 5x$, $2y - 3y^2$, $2y - 3y^2 + 4y^3$, $5x - 4y + 3xy$, $4z - 15z^2$, $ab + bc + cd + da$, pqr , $p^2q + pq^2$, $2p + 2q$

Solution

Monomials :

1000, pqr

Binomials :

$$x+y$$
, $2y-3y^2$, $4z-15z^2$, p^2q+pq^2 , $2p+2q$

Trinomials :

$$7 + y + 5x$$
, $2y - y^2 + 4y^3$, $5x - 4y + 3xy$

Polynomials that do not fit in any of these categories are :

$$x + x^2 + x^3 + x^4$$
, $ab + bc + cd + da$

#464993

The graphs of y = p(x) are given in the figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Solution

- (i) The graph does not intersect the χ -axis, so there are no zeros in $\rho(\chi)$.
- (ii) The graph intersects the χ -axis at one place, so here there is one zero in $p(\chi)$.
- (iii) The graph intersects the χ -axis at three places, so that there are three zeros in $\rho(\chi)$.
- (iv) The graph intersects the x-axis at two places, so here there are two zeros in p(x).
- (v) The graph intersects the χ -axis at four places, so there are four zeros in $p(\chi)$
- (vi) The graph intersects the χ -axis at three places, so that there are three zeros in $p(\chi)$.

#464994

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x^2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

Solution

(i)
$$x^2 - 2x - 8$$

Factorize the equation, we get (x + 2)(x - 4)

So, the value of $\chi^2 - 2\chi - 8$ is zero when $\chi + 2 = 0$, $\chi - 4 = 0$, i.e., when $\chi = -2$ or $\chi = 4$.

Therefore, the zeros of $\chi^2 - 2\chi - 8$ are -2 and 4.

Now,

Sum of zeroes =
$$-2 + 4 = 2^{-} - \frac{-2}{1} = -\frac{Coefficient \ of \ x}{Coefficient \ of \ x^2}$$

Product of zeros =
$$(-2) \times (4) = -8 = \frac{-8}{1} = \frac{Constant \ term}{Coefficient \ of \ \chi^2}$$

(ii)
$$4s^2 - 4s + 1$$

Factorize the equation, we get(2s - 1)(2s - 1)

So, the value of
$$4s^2 - 4s + 1$$
 is zero when $2s - 1 = 0$, $2s - 1 = 0$, i.e., when $s = \frac{1}{2}$ or $s = \frac{1}{2}$.

Therefore, the zeros of $4_S^2 - 4_S + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

Now,

Sum of zeroes =
$$\frac{1}{2} + \frac{1}{2} = 1 = -\frac{-4}{4} = -\frac{Coefficient \ of \ s}{Coefficient \ of \ s^2}$$

Product of zeros =
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{1}{4} = \frac{Constant \ term}{Coefficient \ of \ s^2}$$

(iii)
$$6x^2 - 3 - 7x$$

Factorize the equation, we get (3x + 1)(2x - 3)

So, the value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0, 2x - 3 = 0, i.e., when $x = -\frac{1}{3}$ or $x = \frac{3}{2}$

Therefore, the zeros of $6x^2 - 3 - 7x$ are $-\frac{1}{3}$ and $\frac{3}{2}$.

Now,

Sum of zeroes =
$$-\frac{1}{3} + \frac{3}{2} = \frac{7}{6} = -\frac{-7}{6} = -\frac{Coefficient \ of \ x}{Coefficient \ of \ x^2}$$

Product of zeros =
$$-\frac{1}{3} \times \frac{3}{2} = -\frac{1}{2} = \frac{-3}{6} = \frac{-1}{2} = \frac{Constant \ term}{Coefficient \ of \ \chi^2}$$

(iv)
$$4u^2 + 8u$$

Factorize the equation, we get 4u(u+2)

So, the value of $4u^2 + 8u$ is zero when 4u = 0, u + 2 = 0, i.e., when u = 0 or u = -2.

Therefore, the zeros of $4u^2 + 8u$ are 0 and -2.

Now,

Sum of zeroes =
$$0 - 2 = -2 = -\frac{8}{4} = -2 = -\frac{Coefficient \ of \ u}{Coefficient \ of \ u^2}$$

Product of zeros =
$$-0x - 2 = 0 = \frac{0}{4} = 0 = \frac{Constant \ term}{Coefficient \ of \ u^2}$$

(v)
$$t^2$$
 – 15

Factorize the equation, we get $t = \pm \sqrt{15}$

So, the value of t^2 – 15 is zero when $t + \sqrt{15} = 0$, $t - \sqrt{15} = 0$, i.e., when $t = \sqrt{15}$ or $t = -\sqrt{15}$.

Therefore, the zeros of t^2 – 15 are $\pm \sqrt{15}$.

Now,

Sum of zeroes =
$$\sqrt{15} - \sqrt{15} = 0 = -\frac{0}{1} = 0 = -\frac{Coefficient \ of \ t}{Coefficient \ of \ t^2}$$

Product of zeros =
$$\sqrt{15} \times \sqrt{-15} = -15 = \frac{-15}{1} = \frac{Constant \ term}{Coefficient \ of \ t^2}$$

(vi)
$$3x^2 - x - 4$$

Factorize the equation, we get(x + 1)(3x - 4)

So, the value of $3x^2 - x - 4$ is zero when x + 1 = 0, 3x - 4 = 0, i.e., when x = -1 or $x = \frac{4}{3}$

Therefore, the zeros of $3\chi^2 - \chi - 4$ are -1 and $\frac{4}{3}$

Now,

Sum of zeroes =
$$-1 + \frac{4}{3} = \frac{1}{3} = -\frac{-1}{3} = -\frac{Coefficient \ of \ x}{Coefficient \ of \ x^2}$$

Product of zeros =
$$-1 \times \frac{4}{3} = -\frac{4}{3} = \frac{-4}{3} = \frac{Constant \ term}{Coefficient \ of \ \chi^2}$$

#465007

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$

(iv) 1, 1 (v)
$$\frac{-1}{4}$$
, $\frac{1}{4}$ (vi) 4, 1

(i)
$$\frac{1}{4}$$
, -1

Using the quadratic equation formula,

 x^2 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - \frac{1}{4}x - 1 = 0$$

$$4x^2 - x - 1 = 0$$

(ii)
$$\sqrt{2}$$
, $\frac{1}{3}$

Using the quadratic equation formula,

 x^2 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - \sqrt{2}x + \frac{1}{3} = 0$$

Multiply by 3 to remove denominator,

$$3x^2 - 3\sqrt{2}x + 1 = 0$$

(iii) 0, $\sqrt{5}$

Using the quadratic equation formula,

$$x^2$$
 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - 0x + \sqrt{5} = 0$$

$$x^2 + \sqrt{5} = 0$$

(iv) 1, 1

Using the quadratic equation formula,

 x^2 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - 1x + 1 = 0$$

$$x^2 - x + 1 = 0$$

(v)
$$\frac{-1}{4}$$
, $\frac{1}{4}$

Using the quadratic equation formula,

 x^2 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - \frac{-1}{4}x + \frac{1}{4} = 0$$

Multiply by 4

$$4x^2 + x + 1 = 0$$

(vi) 4, 1

Using the quadratic equation formula,

 x^2 – (Sum of root)x + (Product of root) = 0

Substitute the value in the formula, we get

$$x^2 - 4x + 1 = 0$$

#465008

Divide the polynomial g(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $q(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Solution

5/31/2018

#465009

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2 - 3$$
, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

Solution

(i)
$$t^2 - 3$$
, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

Remainder is 0, hence $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

Remainder is 0, hence $\chi^2 + 3x + 1$ is a factor of $3\chi^4 + 5\chi^3 - 7\chi^2 + 2x + 2$

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

Remainder is 2, hence $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$

#465010

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Two zeroes are
$$\sqrt{\frac{1}{5}}$$
 and $-\sqrt{\frac{1}{5}}$

So we can write it as,
$$x = \sqrt{\frac{1}{5}}$$
 and $x = -\sqrt{\frac{1}{5}}$

we get
$$x - \sqrt{\frac{1}{5}} = 0$$
 and $x + \sqrt{\frac{1}{5}} = 0$

Multiply both the factors we get,

$$x^2 - \frac{5}{3} = 0$$

Multiply by 3 we get

$$3x^2 - 5 = 0$$
 is the factor of $3x^4 + 6x^3 - 2x^2 - 10x - 5$

Now divide,

Quotient is $x^2 + 2x + 1 = 0$

Compare the equation with quadratic formula,

$$x^2$$
 – (Sum of root)x + (Product of root) = 0

Sum of root = 2

Product of the root = 1

So, we get

$$x^2 + x + x + 1 = 0$$

$$x(x + 1) + 1(x + 1) = 0$$

$$x + 1 = 0, x + 1 = 0$$

$$x = -1, x = -1$$

So, our zeroes are -1, -1,
$$\sqrt{\frac{5}{3}}$$
 and - $\sqrt{\frac{5}{3}}$

#465052

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were (x - 2) and (-2x + 4), respectively. Find g(x).

5/31/2018

Dividend = Divisor x quotient + Remainder

$$p(x) = g(x) \times q(x) + r(x)$$

Substitute the values, we get

$$x^3 - 3x^2 + x + 2 = g(x) \times (x - 2) - 2x + 4$$

Add 2x and subtract 4 both side,

$$x^3 - 3x^2 + x + 2 + 2x - 4 = g(x) \times (x - 2)$$

Simplify and divide by x - 2

$$\frac{x^3 - 3x^2 + 3x - 2}{x - 2} = g(x)$$

So,
$$g(x) = x^2 - x + 1$$

#465105

Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

- (i) deg p(x) = deg q(x)
- (ii) deg q(x) = deg r(x)
- (iii) deg r(x) = 0

Solution

(i) deg p(x) = deg q(x)

We know the formula,

Dividend = Divisor x quotient + Remainder

$$p(x) = g(x) \times q(x) + r(x)$$

So here the degree of quotient will be equal to degree of dividend when the divisor is constant.

Let us assume the division of $4\chi^2$ by 2.

Here,
$$p(x) = 4x^2$$

$$g(x) = 2$$

$$q(x) = 2x^2 \text{ and } r(x) = 0$$

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$4x^2 = 2(2x^2)$$

Hence, the division algorithm is satisfied.

(ii) deg q(x) = deg r(x)

Let us assume the division of $\chi^3 + \chi$ by χ^2 ,

Here, $p(x) = \chi^3 + \chi$, $g(x) = \chi^2$, q(x) = x and r(x) = x

Degree of q(x) and r(x) is the same i.e., 1.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$x^3 + x = x^2 \times x + x$$

$$\chi^3 + \chi = \chi^3 + \chi$$

Hence, the division algorithm is satisfied.

(iii) deg r(x) = 0

Degree of remainder will be 0 when remainder comes to a constant.

Let us assume the division of $\chi^4 + 1$ by χ^3

Here, $p(x) = x^4 + 1$

 $g(x) = x^3$

q(x) = x and r(x) = 1

Degree of r(x) is 0.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$x^4 + 1 = x^3 \times x + 1$$

$$x^4 + 1 = x^4 + 1$$

Hence, the division algorithm is satisfied.

#465124

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2, 1, 1

Solution

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, -2

$$p(x) = 2x^3 + x^2 - 5x + 2$$
 (1)

Zeroes for this polynomial are $\frac{1}{2}$, 1, -2

Substitute the $\chi = \frac{1}{2}$ in equation (1)

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$$

$$= \frac{1}{4} + \frac{1}{4} + \frac{5}{2} + 2$$

= 0

Substitute the $\chi = 1$ in equation (1)

$$p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$$

= 2 + 1 - 5 + 2 = 0

Substitute the $\chi = -2$ in equation (1)

$$p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$$

$$= -16 + 4 + 10 + 2 = 0$$

Therefore, $\frac{1}{2}$, 1, -2 are the zeroes of the given polynomial.

Comparing the given polynomial with $\partial_{x}^{3} + b_{x}^{2} + cx + d$ we obtain,

$$a = 2, b = 1, c = -5, d = 2$$

Let us assume
$$\alpha = \frac{1}{2}$$
, $\beta = 1$, $\gamma = -2$

Sum of the roots =
$$\alpha + \beta + \gamma = \frac{1}{2} + 1 = 2 = \frac{-1}{2} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$$

Product of the roots =
$$\alpha\beta\gamma = \frac{1}{2} \times x \times (-2) = \frac{-2}{2} = \frac{d}{a}$$

Therefore, the relationship between the zeroes and coefficient are verified.

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2, 1, 1

$$p(x) = x^3 - 4x^2 + 5x - 2$$
 (1)

Zeroes for this polynomial are 2, 1, 1

Substitute x = 2 in equation (1)

$$p(2) = 2^3 - 4 \times 2^2 + 5 \times 2 - 2$$

Substitute $\chi = 1$ in equation (1)

$$p(1) = x^3 - 4x^2 + 5x - 2$$

$$= 1^3 - 4(1)^2 + 5(1) - 2$$

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with $a_X^3 + b_X^2 + c_X + d$ we obtain,

$$a = 1, b = -4, c = 5, d = -2$$

Let us assume $\alpha = 2$, $\beta = 1$, $\gamma = 1$

Sum of the roots =
$$\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -\frac{-4 - b}{1 \cdot a}$$

Multiplication of two zeroes taking two at a time= $\alpha\beta + \beta\gamma + \alpha\gamma = (2)(1) + (1)(1) + (2)(1) = 5 = \frac{5}{1} = \frac{c}{a}$

Product of the roots =
$$\alpha\beta\gamma$$
 = 2 × 1 × 1 = 2 = $-\frac{-2}{1}$ = $\frac{d}{d}$

Therefore, the relationship between the zeroes and coefficient are verified.

#465125

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, 7, 14 respectively.

Solution

Let the polynomial be $a_X^3 + b_X^2 + c_X + d$ and the zeroes be α , β , γ .

Sum of the polynomial = $\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$

Sum of the product of its zeroes taken two at a time = $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$

Product of the root = $\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$

If
$$a = 1$$
, $b = -2$, $c = -7$, $d = 14$.

Hence the polynomial is $x^3 - 2x^2 - 7x + 14$

#465126

If the zeroes of the polynomial $\chi^3 - 3\chi^2 + \chi + 1$ are a - b, a, a + b, find a and b.

Solution

$$p(x)=x^3-3x^2+x+1$$

zeroes are a - b, a, a + b

Comparing the given polynomial with $p_X^3 + q_X^2 + r_X + t$, we obtain

$$p = 1$$
, $q = -3$, $r = 1$, $t = 1$

Sum of zeroes = $a - a + a + a + a = \frac{-q}{p} = 3a$

$$\Rightarrow \frac{-q}{p} = 3a$$

$$\Rightarrow \frac{-(-3)}{1} = 3a$$

$$\Rightarrow 3 = 3a$$

$$\Rightarrow$$
 3 = 38

$$\Rightarrow a = 1$$

Then the zeroes becomes, 1 - b, 1, 1 + b

Multiplication of zeroes = $(1 - b) \times 1 \times (1 + b) = \frac{-t}{b} = 1 - b^2$

$$\Rightarrow \frac{-1}{1} = 1 - b^2$$

$$\Rightarrow b^2 = 2$$

$$b = \pm \sqrt{2}$$

Therefore, a = 1 and $b = \pm \sqrt{2}$

#465127

If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

The two zeroes of the polynomial is $2 + \sqrt{3}$, $2 - \sqrt{3}$

Therefore, $(x-2+\sqrt{3})(x-2-\sqrt{3}) = x^2+4-4x-3$

= χ^2 – 4 χ + 1 is a factor of the given polynomial.

Using division algorithm, we get

$$x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

So, $(\chi^2 - 2\chi - 35)$ is also a factor of the given polynomial.

$$x^{2}-2x-35 = x^{2}-7x+5x-35$$
$$= x(x-7)+5(x-7)$$
$$= (x-7)(x+5)$$

Hence, 7 and -5are the other zeros of this polynomial.

#465128

If the polynomial $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$, is divided by another polynomial $x^2 - 2x + k$ the remainder comes out to be (x + a), find k and a.

Dividend = Divisor x Quotient + Remainder

∴ Dividend - Remainder = Divisor x Quotient

$$x^4 - 6x^3 + 16x^2 - 26x + 10 - x - a$$
 is divisible by $x^2 - 2x + k$

Let us divide
$$x^4 - 6x^3 + 16x^2 - 26x + 10 - a$$
 by $x^2 - 2x + k$

Remainder = 0,

Therefore,
$$(-10 + 2k)x + (10 - a - 8k + k^2) = 0$$

$$-10 + 2k = 0, 10 - a - 8k + k^2 = 0$$

For
$$-10 + 2k = 0$$

$$\Rightarrow 2k = 10$$

$$\Rightarrow k = 5$$

For
$$10 - a - 8k + k^2 = 0$$

So,
$$k = 5$$
, $a = -5$