Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

EXERCISE NO: 2.1

Question 1:

The graphs of $y=p(x)$ are given in following figure, for some
Polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.
(i)

(ii)

(v)

(iii)

(vi)

Solution 1:

(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
(ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.
(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

EXERCISE NO: 2.2

Question 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $\mathrm{x}^{2}-2 \mathrm{x}-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Solution 1:

(i) $\mathrm{x}^{2}-2 \mathrm{x}-8=(\mathrm{x}-4)(\mathrm{x}+2)$

The value of $\mathrm{x}^{2}-2 \mathrm{x}-8$ is zero when $x-4=0$ or $x+2=0$, i.e., when x $=4$ or $x=-2$
Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .
Sum of zeroes $=4-2=2=\begin{gathered}(-2) \\ 1\end{gathered}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=4 x(-2)=-8=\begin{gathered}(-8) \\ 1\end{gathered}=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$
(ii) $4 s^{2}-4 s+1=(2 s-1)^{2}$

The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, i.e., $\mathrm{s}=\frac{1}{2}$
Therefore, the zeroes of $4 s^{2}-4 s+1$ are $\frac{1}{2}$ and $\frac{1}{2}$.
Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1 \underset{4}{(-4)}=\frac{-(\text { Coefficient of s)})}{\text { Coefficient of s }{ }^{2}}$
Product of zeroes $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{s}^{2}}$
(iii) $6 \mathrm{x}^{2}-3-7 \mathrm{x}=6 \mathrm{x}^{2}-7 \mathrm{x}-3=(3 \mathrm{x}+1)(2 \mathrm{x}-3)$

The value of $6 x^{2}-3-7 x$ is zero when $3 x+1=0$ or $2 x-3=0$, i.e.,

$$
\mathrm{x}=\frac{-1}{3} \text { or } \mathrm{x}=\frac{3}{2}
$$

Therefore, the zeroes of $6 x^{2}-3-7 x$ are $\frac{-1}{3}$ and $\frac{3}{2}$

Sum of zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2}=\frac{-3}{6}=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$

$$
\text { (iv) } \begin{aligned}
4 u^{2}+8 u & =4 u^{2}+8 u+0 \\
& =4 u(u+2)
\end{aligned}
$$

The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$, i.e., $u=0$ or $u=-2$
Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)=-2=\frac{(-8)}{4}=\frac{-(\text { Coefficient of } u)}{\text { Coefficient of } u^{2}}$
Product of zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}$
(v)
$\mathrm{t}^{2}-15$
$=\mathrm{t}^{2}=0 \mathrm{t}-15$
$=(\mathrm{t}-\sqrt{15})(\mathrm{t}+\sqrt{15})$
The value of $t^{2}-15$ is zero when $\mathrm{t}-\sqrt{15}=0$ or $\mathrm{t}+\sqrt{15}=0$, i.e., when $\mathrm{t}=\sqrt{15}$ or $\mathrm{t}=-\sqrt{15}$
Therefore, the zeroes of $t^{2}-15$ are and $\sqrt{15}$ and $-\sqrt{15}$.
Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{-(\text { Coefficient of } \mathrm{t})}{\text { Coefficient of } \mathrm{t}^{2}}$
Product of zeroes $=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$
(vi) $3 \mathrm{x}^{2}-\mathrm{x}-4$

The value of $3 x 2-x-4$ is zero when $3 x-4=0$ or $x+1=0$, i.e., when $\mathrm{x}=\frac{4}{3}$ or $x=-1$
Therefore, the zeroes of $3 x^{2}-x-4$ are $\frac{4}{3}$ and -1 .

Sum of zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(-1)}{3}=\frac{-(\text { Coefficient of } \mathrm{x})}{\text { Coefficient of } \mathrm{x}^{2}}$
Product of zeroes $=\frac{4}{3}+(-1)=\frac{-4}{3}=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) 0,5
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Solution 2:

(i) $\frac{1}{4},-1$

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, and its zeroes be α and β.
$\alpha+\beta=\frac{1}{4}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \beta=-1=\frac{-4}{4}=\frac{\mathrm{c}}{\mathrm{a}}$
If $\mathrm{a}=4$, then $\mathrm{b}=-1, \mathrm{c}=-4$
Therefore, the quadratic polynomial is $4 x^{2}-x-4$.
(ii) $\sqrt{2}, \frac{1}{3}$

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, and its zeroes be α and β.
$\alpha+\beta=\sqrt{2}=\frac{3 \sqrt{2}}{3}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \beta=\frac{1}{3}=\frac{\mathrm{c}}{\mathrm{a}}$
If $a=3$, then $b=-3 \sqrt{2}, c=1$
Therefore, the quadratic polynomial is $3 x^{2}-3 \sqrt{2} x+1$.
(iii) $0, \sqrt{5}$

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, and its zeroes be α and β.
$\alpha+\beta=0=\frac{0}{1}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \times \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{\mathrm{c}}{\mathrm{a}}$
If $\mathrm{a}=1$, then $\mathrm{b}=0, \mathrm{c}=\sqrt{5}$
Therefore, the quadratic polynomial is $x^{2}+\sqrt{5}$.
(iv) 1,1

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, and its zeroes be α and β.
$\alpha+\beta=1=\frac{1}{1}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \times \beta=1=\frac{1}{1}=\frac{\mathrm{c}}{\mathrm{a}}$
If $\mathrm{a}=1$, then $\mathrm{b}=-1, \mathrm{c}=1$
Therefore, the quadratic polynomial is $\mathrm{x}^{2}-\mathrm{x}+1$.
(v) $-\frac{1}{4}, \frac{1}{4}$

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, and its zeroes be α and β.
$\alpha+\beta=\frac{-1}{4}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \times \beta=\frac{1}{4}=\frac{\mathrm{c}}{\mathrm{a}}$
If $\mathrm{a}=4$, then $\mathrm{b}=1, \mathrm{c}=1$
Therefore, the quadratic polynomial is $4 \mathrm{x}^{2}+\mathrm{x}+1$.
(vi) 4,1

Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$.
$\alpha+\beta=4=\frac{4}{1}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \times \beta=1=\frac{1}{1}=\frac{\mathrm{c}}{\mathrm{a}}$
If $\mathrm{a}=1$, then $\mathrm{b}=-4, \mathrm{c}=1$
Therefore, the quadratic polynomial is $\mathrm{x}^{2}-4 \mathrm{x}+1$.

EXERCISE NO: 2.3

Question 1:

Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Solution 1:
(i)

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+5 \mathrm{x}-3 \\
& \mathrm{~g}(\mathrm{x})=\mathrm{x}^{2}-2
\end{aligned}
$$

$$
x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 }
$$

$$
\mathrm{x}^{3} \quad-2 \mathrm{x}
$$

$$
-\quad+
$$

L

$$
-3 x^{2}+7 x-3
$$

$$
-3 x^{2}+6
$$

$\frac{+\quad-}{7 x-9}$

Quotient $=x-3$
Remainder $=7 x-9$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5=x^{4}+0 . x^{3}-3 x^{2}+4 x+5$ $g(x)=x^{2}+1-x=x^{2}-x+1$

$$
\begin{aligned}
& x^{2}+x-3 \\
& \begin{array}{l|ll}
x^{2}-x+1 & \begin{array}{ll}
x^{4} & -3 x^{2}+4 x-5 \\
\underbrace{4} \pm x^{3} & +x^{2}
\end{array} \\
\end{array} \\
& x^{3}-4 x^{2}+4 x+5 \\
& -x^{3} \mp x^{2} \pm x \\
& -3 x^{2}+3 x+5 \\
& \mp 3 x^{2} \pm 3 x \mp 3
\end{aligned}
$$

Quotient $=\mathrm{x}^{2}+\mathrm{x}-3$
Remainder $=8$
(iii)

$$
\begin{aligned}
& p(x)=x^{4}-5 x+6=x^{4}+0 \cdot x^{2}-5 x+6 \\
& q(x)=2-x^{2}=-x^{2}+2 \\
& - x ^ { 2 } + 2 \longdiv { x ^ { 4 } + 0 . x ^ { 2 } - 5 x + 6 } \\
& x^{4}-2 x^{2} \\
& -\quad+ \\
& \text { —— } \\
& 2 x^{2}-5 x+6 \\
& 2 x^{2}-4 \\
& -\quad+ \\
& \underline{L} \\
& -5 x+10
\end{aligned}
$$

Quotient $=-\mathrm{x}^{2}-2$
Remainder $=-5 x+10$

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $\mathrm{t}^{2}-3,2 \mathrm{t}^{4}+3 \mathrm{t}^{3}-2 \mathrm{t}^{2}-9 \mathrm{t}-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $\mathrm{x}^{2}-3 \mathrm{x}+1, \mathrm{x}^{5}-4 \mathrm{x}^{3}+\mathrm{x}^{2}+3 \mathrm{x}+1$

Solution 2:

(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
$\mathrm{t}^{2}-3=\mathrm{t}^{2}+0 . \mathrm{t}-3$

$$
\begin{gathered}
\mathrm { t } ^ { 2 } + 0 . \mathrm { t } 2 - 3 \longdiv { 2 \mathrm { t } ^ { 4 } + 3 \mathrm { t } ^ { 3 } - 2 \mathrm { t } ^ { 2 } - 9 \mathrm { t } + 1 2 } \\
2 \mathrm{t}^{4}+0 . \mathrm{t}^{3}-6 \mathrm{t}^{2} \\
-\quad-\quad+ \\
\frac{\begin{array}{l}
2 \mathrm{t}^{3}+4 \mathrm{t}^{2}-9 \mathrm{t} \\
3 \mathrm{t}^{3}+0 . \mathrm{t}^{2}-9 \mathrm{t} \\
-\quad-\quad+ \\
\hline
\end{array}}{\begin{array}{c}
4 \mathrm{t}^{2}+0 . \mathrm{t}-12 \\
4 \mathrm{t}^{2}+0 . \mathrm{t}-12
\end{array}} \\
\frac{0}{}
\end{gathered}
$$

\qquad
Since the remainder is 0 ,
Hence, $\mathrm{t}^{2}-3$ is a factor of $2 \mathrm{t}^{4}+3 \mathrm{t}^{3}-2 \mathrm{t}^{2}-9 \mathrm{t}-12$
(ii) $\mathrm{x}^{2}+3 \mathrm{x}+1,3 \mathrm{x}^{4}+5 \mathrm{x}^{3}-7 \mathrm{x}^{2}+2 \mathrm{x}+2$

$$
x^{2}+3 x+1 \begin{gathered}
3 x^{2}+4 x+2 \\
\begin{array}{c}
\begin{array}{l}
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
-3 x^{4} \pm 9 x^{3} \mp 3 x^{2}
\end{array} \\
\frac{-4 x^{3}-10 x^{2}+2 x+2}{-4 x^{3} \mp 12 x^{2} \mp 4 x}+ \\
\hline+2 x^{2}+6 x+2 \\
\frac{-2 x^{2} \pm 6 x+2}{} \times \mathrm{x} \quad \mathrm{x}
\end{array}
\end{gathered}
$$

Since the remainder is 0 ,
Hence, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $\mathrm{x}^{2}-3 \mathrm{x}+1, \mathrm{x}^{5}-4 \mathrm{x}^{3}+\mathrm{x}^{2}+3 \mathrm{x}+1$

$$
x^{2}-1
$$

$$
\begin{array}{ll}
x^{2}-3 x+1 & x^{5}-4 x^{3}+x^{2}+3 x+1 \\
x^{5}+3 x^{3} \pm x^{2}
\end{array}
$$

$$
-x^{3} \quad+3 x+1
$$

$$
\begin{array}{ll}
\text { + }^{3} \quad+3 x-1 \\
\hline
\end{array}
$$

2
Since the remainder $\neq 0$,
$x^{2}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Question 3:

Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

Solution 3:
$p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$
Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
$\therefore\left(\mathrm{x}-\sqrt{\frac{5}{3}}\right)\left(\mathrm{x}+\sqrt{\frac{5}{3}}\right)=\left(\mathrm{x}^{2}-\sqrt{\frac{5}{3}}\right)$ is a factor of $3 \mathrm{x}^{4}+6 \mathrm{x}^{3}-2 \mathrm{x}^{2}-10 \mathrm{x}-5$
Therefore, we divide the given polynomial by $x^{2}-\frac{5}{3}$

$$
\begin{gathered}
x^{2}+0 . x-\frac{5}{3} \begin{array}{c}
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\
3 x^{4}+0 . x^{3}-5 x^{2} \\
-\quad+\quad+ \\
-\begin{array}{l}
6 x^{3}+3 x^{2}-10 x-5 \\
6 x^{3}+0 x^{2}-10 x \\
-\quad-+
\end{array} \\
-\begin{array}{l}
3 x^{2}+0 x-5 \\
3 x^{2}+0 x-5 \\
-\quad-\quad+
\end{array} \\
-
\end{array} \\
\hline 0
\end{gathered}
$$

\qquad

$$
\begin{aligned}
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 & =\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right) \\
& =3\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right)
\end{aligned}
$$

We factorize $x^{2}+2 x+1$
$=(\mathrm{x}+1)^{2}$
Therefore, its zero is given by $x+1=0$
$x=-1$

As it has the term $(x+1)^{2}$, therefore, there will be 2 zeroes at $x=-1$.
Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 .

Question 4:

On dividing $\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

Solution 4:

$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2 \quad$ (Dividend)
$\mathrm{g}(\mathrm{x})=$? (Divisor)
Quotient $=(x-2)$
Remainder $=(-2 x+4)$
Dividend $=$ Divisor \times Quotient + Remainder
$\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2=\mathrm{g}(\mathrm{x}) \mathrm{x}(\mathrm{x}-2)+(-2 \mathrm{x}+4)$
$x^{3}-3 x^{2}+x+2+2 x-4=g(x)(x-2)$
$\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2=\mathrm{g}(\mathrm{x})(\mathrm{x}-2)$
$g(x)$ is the quotient when we divide $\left(\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2\right)$ by $(\mathrm{x}-2)$

$$
\begin{aligned}
& x - 2 \longdiv { x ^ { 2 } - 3 x ^ { 2 } + 3 x - 2 } \\
& x^{3}-2 x^{2} \\
& \text { - }+ \\
& -x^{2}+3 x-2 \\
& -x^{2}+2 x \\
& +\quad- \\
& \text { x-2 } \\
& \text { x-2 } \\
& \text { - + } \\
& 0 \\
& \therefore \mathrm{~g}(\mathrm{x})=\left(\mathrm{x}^{2}-\mathrm{x}+1\right)
\end{aligned}
$$

Question 5:

Give examples of polynomial $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

Solution 5:
According to the division algorithm, if $p(x)$ and $g(x)$ are two polynomials with
$g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $p(x)=g(x) \times q(x)+r(x)$,
where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$
Degree of a polynomial is the highest power of the variable in the polynomial.
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

Let us assume the division of $6 \mathrm{x}^{2}+2 \mathrm{x}+2$ by 2 .
Here, $p(x)=6 \mathrm{x}^{2}+2 \mathrm{x}+2$
$g(x)=2$
$q(x)=3 \mathrm{x}^{2}+\mathrm{x}+1$ and $r(x)=0$
Degree of $p(x)$ and $q(x)$ is the same i.e., 2 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$6 x^{2}+2 x+2=2\left(3 x^{2}+x+1\right)$

$$
=6 x^{2}+2 x+2
$$

Thus, the division algorithm is satisfied.
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

Let us assume the division of $x^{3}+x$ by x^{2},
Here, $p(x)=x^{3}+x$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=x$
Clearly, the degree of $q(x)$ and $r(x)$ is the same i.e., 1 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+x=\left(x^{2}\right) \times x+x$
$x^{3}+x=x^{3}+x$
Thus, the division algorithm is satisfied.
(iii) $\operatorname{deg} r(x)=0$

Degree of remainder will be 0 when remainder comes to a constant.
Let us assume the division of $x^{3}+1$ by x^{2}.
Here, $p(x)=x^{3}+1$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=1$
Clearly, the degree of $r(x)$ is 0 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+1=\left(x^{2}\right) \times x+1$
$x^{3}+1=x^{3}+1$
Thus, the division algorithm is satisfied.

EXERCISE NO: 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2 ; \frac{1}{2}, 1,22 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2 ; 1 / 2,1,-2$
(ii) $\mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{x}-2 ; 2,1,1$

Solution 1:

(i) $p(x)=2 x^{3}+x^{2}-5 x+2$

Zeroes for this polynomial are $\frac{1}{2}, 1,-2$
$\mathrm{p}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2$
$=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2$
$=0$
$\mathrm{p}(1)=2 \times 1^{3}+1^{2}-5 \times 1+2$
$=0$
$\mathrm{p}(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2$
$=-16+4+10+2=0$
Therefore, $\frac{1}{2}, 1$, and -2 are the zeroes of the given polynomial.
Comparing the given polynomial with $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, we obtain $a=2$, $b=1, c=-5, d=2$
We can take $\alpha=\frac{1}{2}, \beta=1, \mathrm{y}=-2$
$\alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=-\frac{1}{2}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{1}{2} \times 1+1(-2)+\frac{1}{2}(-2)=\frac{-5}{2}=\frac{\mathrm{c}}{\mathrm{a}}$
$\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)=\frac{-1}{1}=\frac{-(2)}{2}=\frac{-\mathrm{d}}{\mathrm{a}}$
Therefore, the relationship between the zeroes and the coefficients is verified.
(ii) $p(x)=x^{3}-4 x^{2}+5 x-2$

Zeroes for this polynomial are 2, 1, 1
$p(2)=2^{3}-4\left(2^{2}\right)+5(2)-2$
$=8-16+10-2=0$
$p(1)=1^{3}-4\left(1^{2}\right)+5(1)-2$
$=1-4+5-2=0$
Therefore, $2,1,1$ are the zeroes of the given polynomial.
Comparing the given polynomial with $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, we obtain $a=1$, $b=-4, c=5, d=-2$.

Verification of the relationship between zeroes and coefficient of the given polynomial
Sum of zeroes $=2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$
Multiplication of zeroes taking two at a time $=(2)(1)+(1)(1)+(2)(1)$
$=2+1+2=5=\frac{(5)}{1}=\frac{c}{a}$

Multiplication of zeroes $=2 \times 1 \times 1=2=\frac{-(-2)}{1}=\frac{-\mathrm{d}}{\mathrm{a}}$
Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solution 2:

Let the polynomial be $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ and the zeroes be α, β, and γ.
It is given that
$\alpha+\beta+\gamma=\frac{2}{1}=\frac{-\mathrm{b}}{\mathrm{a}}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{-7}{1}=\frac{\mathrm{c}}{\mathrm{a}}$
$\alpha \beta \gamma=\frac{-14}{1}=\frac{-\mathrm{d}}{\mathrm{a}}$
If $a=1$, then $b=-2, c=-7, d=14$
Hence, the polynomial is $\mathrm{x}^{3}-2 \mathrm{x}^{2}-7 \mathrm{x}+14$.

Question 3:

If the zeroes of polynomial $\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+1$ are $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$, find a and b.

Solution 3:

$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+1$
Zeroes are $a-b, a+a+b$
Comparing the given polynomial with $\mathrm{px}^{3}+\mathrm{qx}^{2}+\mathrm{rx}+\mathrm{t}$, we obtain
$p=1, q=-3, r=1, t=1$
Sum of zeroes $=\mathrm{a}-\mathrm{b}+\mathrm{a}+\mathrm{a}+\mathrm{b}$

$$
\begin{aligned}
& \frac{-\mathrm{q}}{\mathrm{p}}=3 \mathrm{a} \\
& \frac{-(-3)}{1}=3 \mathrm{a} \\
& 3=3 \mathrm{a} \\
& \mathrm{a}=1
\end{aligned}
$$

The zeroes are $1-\mathrm{b}, 1+\mathrm{b}$.
Multiplication of zeroes $=1(1-b)(1+b)$
$\frac{-\mathrm{t}}{\mathrm{p}}=1-\mathrm{b}^{2}$
$\frac{-1}{1}=1-b^{2}$
$1-b^{2}=-1$
$1+1=b^{2}$
$\mathrm{b}= \pm \sqrt{2}$
Hence, $a=1$ and $b=\sqrt{2}$ or $-\sqrt{2}$.

Question 4:

It two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution 4:

Given that $2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of the given polynomial.
Therefore, $(\mathrm{x}-2-\sqrt{3})(\mathrm{x}-2+\sqrt{3})=x^{2}+4-4 x-3$
$=x^{2}-4 x+1$ is a factor of the given polynomial
For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $\mathrm{x}^{4}-6 \mathrm{x}^{3}-26 \mathrm{x}^{2}+138 \mathrm{x}-35$ by $x^{2}-4 x+1$.

$$
\begin{gathered}
x ^ { 2 } - 4 x + 1 \longdiv { x ^ { 4 } - 6 x ^ { 3 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } \\
x^{4}-4 x^{3}+x^{2} \\
\frac{-\quad-}{-2 x^{3}-27 x^{2}+138 x-35} \\
-2 x^{3}+8 x^{2}-2 x \\
+\quad-\quad+ \\
-35 x^{2}+140 x-35 \\
-35 x^{2}+140 x-35 \\
+\quad-\quad+ \\
+
\end{gathered}
$$

Clearly, $=x^{4}-6 x^{3}-26 x^{2}+138 x-35=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)$
It can be observed that $\left(x^{2}-2 x-35\right)$ is also a factor of the given polynomial.
And $=\left(x^{2}-2 x-35\right)=(x-7)(x+5)$
Therefore, the value of the polynomial is also zero when or $x-7=0$
Or $\mathrm{x}+5=0$
Or $x=7$ or -5
Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x-10$ is divided by another
Polynomial $\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{k}$, the remainder comes out to be $x+a$, find k and a.

Solution 5:

By division algorithm,
Dividend $=$ Divisor \times Quotient + Remainder
Dividend - Remainder $=$ Divisor \times Quotient
$x^{4}-6 x^{3}+16 x^{2}-25 x-10-x-a=x^{4}-6 x^{3}+16 x^{2}-26 x+10-a$ will be perfectly divisible by $x^{2}-2 x+k$.
Let us divide by $\mathrm{x}^{4}-6 \mathrm{x}^{3}+16 \mathrm{x}^{2}-26 \mathrm{x}-10-$ a by $\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{k}$

$$
\begin{aligned}
& x^{2}-4 x+(8-k) \\
& x ^ { 2 } - 2 x + k \longdiv { x ^ { 4 } - 6 x ^ { 3 } + 1 6 x ^ { 2 } - 2 6 x + 1 0 - a } \\
& x^{4}-2 x^{3}+k x^{2} \\
& -\quad+\quad- \\
& -4 x^{3}+(16-k) x^{2}-26 x \\
& -4 x^{3}+\quad 8 x^{2}-4 k x \\
& +\quad-\quad+ \\
& (8-k) x^{2}-(26-4 k) x+10-a \\
& (8-k) x^{2}-(16-2 k) x+\left(8 k-k^{2}\right) \\
& -\quad+\quad- \\
& (-10+2 k) x+\left(10-a-8 k+k^{2}\right) \\
& \left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)=(x-7)(x+5)
\end{aligned}
$$

It can be observed that $(-10+2 \mathrm{k}) \mathrm{x}+\left(10-\mathrm{a}-8 \mathrm{k}+\mathrm{k}^{2}\right)$ will be 0 .
Therefore, $(-10+2 \mathrm{k})=0$ and $\left(10-\mathrm{a}-8 \mathrm{k}+\mathrm{k}^{2}\right)=0$
For $(-10+2 k)=0$,
$2 k=10$

And thus, $k=5$
For $\left(10-a-8 k+k^{2}\right)=0$
$10-a-8 \times 5+25=0$
$10-a-40+25=0$
$-5-a=0$
Therefore, $a=-5$
Hence, $k=5$ and $a=-5$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

