

Study Material Downloaded from Vedantu

About **Vedantu**

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE**, **NEET**, KVPY, NTSE, Olympiads, **CBSE**, **ICSE**, IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

HARSTER CLASSES REF Webinars by Expert Teachers The second seco

FREE LIVE ONLINE

Awesome Master Teachers

Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna B.Tech, IIT Bombay Co-Founder, Vedantu

My mentor is approachable and **guides me** in my future aspirations as well.

Student **- Ayushi**

My son loves the sessions and **I can** already see the change. Parent - Sreelatha

95% Students of Regular Tuitions on Vedantu scored above **90%** in exams!

Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Free 60 Minutes Live Interactive classes everyday
- Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!

Download Vedantu's App & Get

DOWNLOAD THE APP

EXERCISE NO: 2.1

Question 1:

The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Solution 1:

(i) The number of zeroes is 0 as the graph does not cut the *x*-axis at any point.

(ii) The number of zeroes is 1 as the graph intersects the *x*-axis at only 1 point.

(iii) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.

(iv) The number of zeroes is 2 as the graph intersects the *x*-axis at 2 points.

(v) The number of zeroes is 4 as the graph intersects the *x*-axis at 4 points.

(vi) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.

NCERT Solutions for Class 6 to 12 (Math & Science) Revision Notes for Class 6 to 12 (Math & Science) **RD Sharma Solutions for Class 6 to 12 Mathematics** RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics Important Questions for Class 6 to 12 (Math & Science) CBSE Sample Papers for Class 9, 10 & 12 (Math & Science) Important Formula for Class 6 to 12 Math **CBSE Syllabus for Class 6 to 12** Lakhmir Singh Solutions for Class 9 & 10 **Previous Year Question Paper CBSE Class 12 Previous Year Question Paper CBSE Class 10 Previous Year Question Paper** JEE Main & Advanced Question Paper **NEET Previous Year Question Paper**

> Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com

EXERCISE NO: 2.2

Question 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) $x^2 - 2x - 8$	(ii) $4s^2 - 4s + 1$	(iii) $6x^2 - 3 - 7x$
(iv) $4u^2 + 8u$	(v) $t^2 - 15$	(vi) $3x^2 - x - 4$

Solution 1:

(i) $x^2 - 2x - 8 = (x - 4)(x + 2)$

The value of $x^2 - 2x - 8$ is zero when x - 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = -2Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2. Sum of zeroes = $4 - 2 = 2 = \frac{(-2)}{1} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$ Product of zeroes $=4x(-2)=-8=\frac{(-8)}{1}=\frac{\text{Constant term}}{\text{Coefficient of }x^2}$ (ii) $4s^2 - 4s + 1 = (2s - 1)^2$ The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., $s = \frac{1}{2}$ Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$. Sum of zeroes = $\frac{1}{2} + \frac{1}{2} = 1 \begin{pmatrix} -4 \\ 4 \end{pmatrix} = \frac{-(\text{Coefficient of s})}{\text{Coefficient of s}^2}$ Product of zeroes $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of s}^2}$ (iii) $6x^2 - 3 - 7x = 6x^2 - 7x - 3 = (3x + 1)(2x - 3)$ The value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e., $x = \frac{-1}{2}$ or $x = \frac{3}{2}$

Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$

Sum of zeroes
$$=$$
 $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
Product of zeroes $=$ $\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$
(iv) $4u^2 + 8u = 4u^2 + 8u + 0$
 $= 4u(u+2)$
The value of $4u^2 + 8u$ is zero when $4u = 0$ or $u + 2 = 0$, i.e., $u = 0$ or $u = -2$
Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2 .
Sum of zeroes $= 0 + (-2) = -2 = \frac{(-8)}{4} = \frac{-(\text{Coefficient of } u)}{\text{Coefficient of } u^2}$
Product of zeroes $= 0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$

(v)

$$t^2 - 15$$

 $= t^2 = 0t - 15$
 $= (t - \sqrt{15})(t + \sqrt{15})$
The value of $t^2 - 15$ is zero when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, i.e., when $t = \sqrt{15}$ or $t = -\sqrt{15}$
Therefore, the zeroes of $t^2 - 15$ are and $\sqrt{15}$ and $-\sqrt{15}$.
Sum of zeroes $= \sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(\text{Coefficient of } t)}{\text{Coefficient of } t^2}$
Product of zeroes $= (\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$
(vi) $3x^2 - x - 4$
The value of $3x^2 - x - 4$ is zero when $3x - 4 = 0$ or $x + 1 = 0$, i.e., when $x = \frac{4}{-}$ or $x = -1$

when $x = \frac{1}{3}$ or $x = \frac{1}{3}$. Therefore, the zeroes of $3x^2 - x - 4$ are $\frac{4}{3}$ and -1.

Sum of zeroes
$$=$$
 $\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
Product of zeroes $=$ $\frac{4}{3} + (-1) = \frac{-4}{3} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, 5 (iv) 1, 1 (v) $-\frac{1}{4}$, $\frac{1}{4}$ (vi) 4, 1

Solution 2:

(i) $\frac{1}{4}$,-1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$
$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$

If a = 4, then b = -1, c = -4Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If a = 3, then b = $-3\sqrt{2}$, c = 1
Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$.

(iii) 0, $\sqrt{5}$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$
$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

If a = 1, then b = 0, c = $\sqrt{5}$ Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1 Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$
$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If a = 1, then b = -1, c = 1

Therefore, the quadratic polynomial is $x^2 - x + 1$.

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$
$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$

If a = 4, then b = 1, c = 1Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4, 1 Let the polynomial be $ax^2 + bx + c$. $\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$ $\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$ If a = 1, then b = -4, c = 1Therefore, the quadratic polynomial is $x^2 - 4x + 1$.

EXERCISE NO: 2.3

Question 1:

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i) $p(x) = x^3 - 3x^2 + 5x - 3$, $g(x) = x^2 - 2$ (ii) $p(x) = x^4 - 3x^2 + 4x + 5$, $g(x) = x^2 + 1 - x$ (iii) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$

Solution 1:

(i)

$$p(x) = x^{3} - 3x^{2} + 5x - 3,$$

$$g(x) = x^{2} - 2$$

$$x^{2} - 2\overline{\smash{\big)}x^{3} - 3x^{2} + 5x - 3}$$

$$x^{3} - 2x$$

$$- +$$

$$-3x^{2} + 7x - 3$$

$$-3x^{2} + 6$$

$$+ -$$

$$7x - 9$$

Quotient = x - 3Remainder = 7x - 9

(ii) $p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0.x^3 - 3x^2 + 4x + 5$ $g(x) = x^2 + 1 - x = x^2 - x + 1$

$$x^{2} + x - 3$$

$$x^{2} - x + 1$$

$$x^{4} - 3x^{2} + 4x - 5$$

$$x^{4} - x^{3} + x^{2}$$

$$x^{3} - 4x^{2} + 4x + 5$$

$$x^{3} - 4x^{2} + 4x + 5$$

$$x^{3} - 4x^{2} + 4x + 5$$

$$-3x^{2} + 3x + 5$$

$$x^{3} - 3x^{2} + 3x + 5$$

Quotient = $x^2 + x - 3$ Remainder = 8

(iii)

$$p(x) = x^{4} - 5x + 6 = x^{4} + 0.x^{2} - 5x + 6$$

$$q(x) = 2 - x^{2} = -x^{2} + 2$$

$$-x^{2} + 2\overline{\smash{\big)}x^{4} + 0.x^{2} - 5x + 6}$$

$$x^{4} - 2x^{2}$$

$$- +$$

$$2x^{2} - 5x + 6$$

$$2x^{2} - 4$$

$$- +$$

$$-5x + 10$$

Quotient = $-x^2 - 2$ Remainder = -5x + 10

7

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: (i) $t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$ (ii) $x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$ (iii) $x^2 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$

Solution 2:

(i)
$$t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$$

 $t^2 - 3 = t^2 + 0, t - 3$

$$2t^{2} + 3t + 4$$

$$t^{2} + 0.t2 - 3)2t^{4} + 3t^{3} - 2t^{2} - 9t - 12$$

$$2t^{4} + 0.t^{3} - 6t^{2}$$

$$- - +$$

$$2t^{3} + 4t^{2} - 9t - 12$$

$$3t^{3} + 0.t^{2} - 9t$$

$$- - +$$

$$4t^{2} + 0.t - 12$$

$$4t^{2} + 0.t - 12$$

$$0$$

Since the remainder is 0, Hence, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii) $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

$$3x^{2} + 4x + 2$$

$$x^{2} + 3x + 1$$

$$3x^{4} + 5x^{3} - 7x^{2} + 2x + 2$$

$$-3x^{4} \pm 9x^{3} \pm 3x^{2}$$

$$-4x^{3} - 10x^{2} + 2x + 2$$

$$\pm 4x^{3} \pm 12x^{2} \pm 4x$$

$$2x^{2} + 6x + 2$$

$$-2x^{2} \pm 6x \pm 2$$

$$x + x + x$$

Since the remainder is 0,

Hence, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$

(iii)
$$x^{2} - 3x + 1, x^{5} - 4x^{3} + x^{2} + 3x + 1$$

 $x^{2} - 1$
 $x^{2} - 3x + 1$
 $x^{5} - 4x^{3} + x^{2} + 3x + 1$
 $x^{5} - 3x^{3} + x^{2}$
 $-x^{3} + 3x + 1$
 $-x^{3} + 3x - 1$
 $+x^{3} - x^{3} + 3x - 1$
 2

Since the remainder $\neq 0$, $x^{2} - 3x + 1$, $x^{5} - 4x^{3} + x^{2} + 3x + 1$

Question 3:

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are

$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$

Solution 3:

$$p(x) = 3x^{4} + 6x^{3} - 2x^{2} - 10x - 5$$
Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
 $\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^{2} - \sqrt{\frac{5}{3}}\right)$ is a factor of $3x^{4} + 6x^{3} - 2x^{2} - 10x - 5$
Therefore, we divide the given polynomial by $x^{2} - \frac{5}{3}$
 $x^{2} + 0.x - \frac{5}{3} \sqrt{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$
 $3x^{4} + 0.x^{3} - 5x^{2}$
 $- - + \frac{6x^{3} + 3x^{2} - 10x - 5}{6x^{3} + 0x^{2} - 10x}$
 $- - + \frac{6x^{3} + 3x^{2} - 10x - 5}{3x^{2} + 0x - 5}$
 $3x^{2} + 0x - 5$
 $- - + \frac{6x^{3} + 2x^{2} - 10x - 5}{3x^{2} + 0x - 5}$
 $3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = \left(x^{2} - \frac{5}{3}\right)(3x^{2} + 6x + 3)$
 $= 3\left(x^{2} - \frac{5}{3}\right)(x^{2} + 2x + 1)$
We factorize $x^{2} + 2x + 1$
 $= (x + 1)^{2}$
Therefore, its zero is given by $x + 1 = 0$
 $x = -1$

As it has the term $(x + 1)^2$, therefore, there will be 2 zeroes at x = -1.

Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -1 and -1.

Question 4:

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Solution 4:

 $p(x) = x^{3} - 3x^{2} + x + 2$ (Dividend) g(x) = ? (Divisor)Quotient = (x - 2)Remainder = (-2x + 4)Dividend = Divisor × Quotient + Remainder $x^{3} - 3x^{2} + x + 2 = g(x)x(x - 2) + (-2x + 4)$ $x^{3} - 3x^{2} + x + 2 + 2x - 4 = g(x)(x - 2)$ $x^{3} - 3x^{2} + 3x - 2 = g(x)(x - 2)$ g(x) is the quotient when we divide $(x^{3} - 3x^{2} + 3x - 2)$ by (x - 2)

$$\frac{x^{2} - x + 1}{x - 2} x^{3} - 3x^{2} + 3x - 2$$

$$x^{3} - 2x^{2}$$

$$- +$$

$$-x^{2} + 3x - 2$$

$$-x^{2} + 2x$$

$$+ -$$

$$x - 2$$

$$x - 2$$

$$- +$$

$$0$$

$$\therefore g(x) = (x^{2} - x + 1)$$

Question 5:

Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

(i) deg $p(x) = \deg q(x)$

(ii) deg $q(x) = \deg r(x)$

Solution 5:

According to the division algorithm, if p(x) and g(x) are two polynomials with

 $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$,

where r(x) = 0 or degree of r(x) < degree of g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) deg $p(x) = \deg q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

Let us assume the division of $6x^2 + 2x + 2by 2$. Here, $p(x) = 6x^2 + 2x + 2$ g(x) = 2 $q(x) = 3x^2 + x + 1$ and r(x) = 0Degree of p(x) and q(x) is the same i.e., 2. Checking for division algorithm, $p(x) = g(x) \times q(x) + r(x)$ $6x^2 + 2x + 2 = 2(3x^2 + x + 1)$ $= 6x^2 + 2x + 2$

Thus, the division algorithm is satisfied.

```
(ii) deg q(x) = \text{deg } r(x)
Let us assume the division of x^3 + x by x^2,
Here, p(x) = x^3 + x
g(x) = x^2
q(x) = x and r(x) = x
Clearly, the degree of q(x) and r(x) is the same i.e., 1.
Checking for division algorithm,
p(x) = g(x) \times q(x) + r(x)
x^3 + x = (x^2) \times x + x
x^3 + x = x^3 + x
```

Thus, the division algorithm is satisfied.

```
(iii)deg r(x) = 0
Degree of remainder will be 0 when remainder comes to a constant.
Let us assume the division of x^3 + 1 by x^2.
Here, p(x) = x^3 + 1
g(x) = x^2
q(x) = x and r(x) = 1
Clearly, the degree of r(x) is 0.
Checking for division algorithm,
p(x) = g(x) \times q(x) + r(x)
x^3 + 1 = (x^2) \times x + 1
x^3 + 1 = x^3 + 1
Thus, the division algorithm is satisfied.
```

EXERCISE NO: 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, 2$$

 $2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$
(ii) $x^3 - 4x^2 + 5x - 2; 2, 1, 1$
Solution 1:
(i) $p(x) = 2x^3 + x^2 - 5x + 2$
Zeroes for this polynomial are $\frac{1}{2}, 1, -2$
 $p(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(\frac{1}{2}) + 2$
 $= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$
 $= 0$
 $p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$
 $= 0$
 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$
 $= -16 + 4 + 10 + 2 = 0$
Therefore, $\frac{1}{2}, 1$, and -2 are the zeroes of the given polynomial.
Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain $a = 2, b = 1, c = -5, d = 2$
We can take $\alpha = \frac{1}{2}, \beta = 1, y = -2$
 $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$$

 $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii) $p(x) = x^3 - 4x^2 + 5x - 2$ Zeroes for this polynomial are 2, 1, 1 $p(2) = 2^3 - 4(2^2) + 5(2) - 2$ = 8 - 16 + 10 - 2 = 0 $p(1) = 1^3 - 4(1^2) + 5(1) - 2$ = 1 - 4 + 5 - 2 = 0Therefore, 2, 1, 1 are the zeroes of the given polynomial. Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 1, b = -4, c = 5, d = -2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes $= 2 + 1 + 1 = 4 = \frac{-(-4)}{1} = \frac{-b}{a}$

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1)=2 + 1 + 2 = 5 = $\frac{(5)}{1} = \frac{c}{a}$

Multiplication of zeroes = $2 \times 1 \times 1 = 2 = \frac{-(-2)}{1} = \frac{-d}{2}$

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Solution 2:

Let the polynomial be $ax^3 + bx^2 + cx + d$ and the zeroes be α , β , and γ . It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$

If $a = 1$, then $b = -2$, $c = -7$, $d = 14$
Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$.

Question 3:

If the zeroes of polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find a and b.

Solution 3:

 $p(x) = x^{3} - 3x^{2} + x + 1$ Zeroes are a - b, a + a + bComparing the given polynomial with $px^{3} + qx^{2} + rx + t$, we obtain p = 1, q = -3, r = 1, t = 1Sum of zeroes = a - b + a + a + b $\frac{-q}{p} = 3a$ $\frac{-(-3)}{1} = 3a$ 3 = 3a a = 1The zeroes are 1 - b, 1 + b. Multiplication of zeroes = 1(1 - b)(1 + b)

 $\frac{-t}{p} = 1 - b^{2}$ $\frac{-1}{1} = 1 - b^{2}$ $1 - b^{2} = -1$ $1 + 1 = b^{2}$ $b = \pm \sqrt{2}$ Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$.

Question 4:

It two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution 4:

Given that $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of the given polynomial. Therefore, $(x - 2 - \sqrt{3})(x - 2 + \sqrt{3}) = x^2 + 4 - 4x - 3$ $= x^2 - 4x + 1$ is a factor of the given polynomial For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $x^4 - 6x^3 - 26x^2 + 138x - 35$ by $x^2 - 4x + 1$. $x^2 - 2x - 35$ $x^2 - 4x + 1)\overline{x^4 - 6x^3 - 26x^2 + 138x - 35}$ $x^4 - 4x^3 + x^2$ - + - $-2x^3 - 27x^2 + 138x - 35$ $-2x^3 + 8x^2 - 2x$ + - - + $-35x^2 + 140x - 35$ + - - +0

Clearly, $= x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$ It can be observed that $(x^2 - 2x - 35)$ is also a factor of the given polynomial. And $= (x^2 - 2x - 35) = (x - 7)(x + 5)$ Therefore, the value of the polynomial is also zero when or x - 7 = 0Or x + 5 = 0Or x = 7 or -5Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x - 10$ is divided by another Polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Solution 5:

By division algorithm, Dividend = Divisor × Quotient + Remainder Dividend - Remainder = Divisor × Quotient $x^4 - 6x^3 + 16x^2 - 25x - 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ will be perfectly divisible by $x^2 - 2x + k$. Let us divide by $x^4 - 6x^3 + 16x^2 - 26x - 10 - a$ by $x^2 - 2x + k$

$$x^{2} - 4x + (8 - k)$$

It can be observed that $(-10+2k)x + (10-a-8k+k^2)$ will be 0. Therefore, (-10+2k) = 0 and $(10-a-8k+k^2) = 0$ For (-10+2k) = 0, 2 k = 10

And thus, k = 5For $(10 - a - 8k + k^2) = 0$ $10 - a - 8 \times 5 + 25 = 0$ 10 - a - 40 + 25 = 0-5 - a = 0Therefore, a = -5Hence, k = 5 and a = -5

Thank YOU for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Series Free 60 Minutes Live Interactive classes everyday
- ⊘ Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!