Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Pair of Linear Equations in Two Variables

Linear Equation

- An equation which can be put in the form $a x+b y+c=0$, where a, b and c are real numbers and both a and b are nonzero is called a linear equation in two variables.

Solution of an Equation

- Each solution (x, y) of a linear equation in two variables.
$a x+b y+c=0$, corresponds to a point on the line representing the equation, and vice-versa.

Pair of Linear Equations in Two Variables

- The general form for a pair of linear equations in two variables x and y is $a_{1} x+b_{1} y+c_{1}=0$ And $a_{2} x+b_{2} y+c_{2}=0$
- Geometrically they look like the following:

Graphical Method of Solutions

- $x-2 y=0$

$$
3 x+4 y=20
$$

x	0	2					
$y=\frac{x}{2}$	0	1					
x	0	$\frac{20}{3}$	\quad	$y=\frac{20-3 x}{4}$	5	0	2
:---:	:---:	:---:	:---:				

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

The solution is $(4,2)$, the point of intersection.

- To summarize the behavior of lines representing a pair of linear equations in two variables:
- The lines may intersect in a single point. In this case, the pair of equations has a unique solution (consistent pair of equations).
- The lines may be parallel. In this case, the equations have no solution (inconsistent pair of equations).
- The lines may be coincident. In this case, the equations have infinitely many solutions [dependent (consistent) pair of equations]

Substitution Method

The following are the steps:

- Find the value of one variable, say y in terms of the other variable, i.e., x from either equation, whichever is convenient.
- Substitute this value of y in the other equation, and reduce it to an equation in one variable, i.e., in terms of x, which can be solved. Sometimes, you can get statements with no variable. If this statement is true, you can conclude that the pair of linear equations has infinitely many solutions. If the statement is false, then the pair of linear equations is inconsistent.
- Substitute the value of x (or y) obtained in Step 2 in the equation used in Step 1 to obtain the value of the other variable.

Elimination Method

- Steps in the elimination method:
- First multiply both the equations by some suitable non-zero constants to make the coefficients of one variable (either x or y) numerically equal.
- Then add or subtract one equation from the other so that one variable gets eliminated. If you get an equation in one variable, go to Step 3.
If in Step 2, we obtain a true statement involving no variable, then the original pair of equations has infinitely many solutions.
If in Step 2, we obtain a false statement involving no variable, then the original pair of equations has no solution, i.e., it is inconsistent.
- Solve the equation in one variable (x or y) so obtained to get its value.
- Substitute this value of x (or y) in either of the original equations to get the value of the other variable.

Cross Multiplication Method

Steps:
Write the given equations in the form
$a_{1} x+b_{1} y+c_{1}=0$
And $a_{2} x+b_{2} y+c_{2}=0$

Taking the help of the diagram

Write Equations as

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

Find x and y , provided $a_{1} b_{2}-a_{2} b_{1} \neq 0$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

