Important Formulas

1) Distance Formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- 2) Midpoint Formula: midpoint = $\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$
- 3) Slope Formula: $m = \frac{y_2 y_1}{x_2 x_1}$

Equation of a Line

1) Slope Intercept Form:

y = mx + b, where m = slope and b = y-intercept

2) Point Slope Form:

 $y - y_1 = m(x - x_1)$, where $(x_1, y_1) = a$ point on the line and m = slope

Parallel and Perpendicular Lines

- 1) Parallel Lines in a Coordinate Plane: In a coordinate plane, two non-vertical lines are parallel if and only if they have the <u>same slope</u>.
- Perpendicular Lines in a Coordinate Plane: In a coordinate plane, two non-vertical lines are perpendicular if and only if the product of their slopes is -1. In other words, the two slopes must be <u>opposite (opposite signs) reciprocals</u>.

Example 1) a) Find length of \overline{AB} . b) Find the midpoint of \overline{AB}

a) Length of AB

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad \text{(Use the Distance Formula)}$$

$$= \sqrt{(4 - 1)^2 + (2 - (-3))^2}$$

$$= \sqrt{(4 - 1)^2 + (2 + 3)^2}$$

$$= \sqrt{(3)^2 + (5)^2}$$

$$= \sqrt{9 + 25}$$

$$= \sqrt{33}$$

b) Find the midpoint of AB

midpoint =
$$\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$
 (Use the Midpoint Formula)
= $\left(\frac{4+1}{2}, \frac{2+(-3)}{2}\right)$
= $\left(\frac{5}{2}, -\frac{1}{2}\right)$

Example 2) Line r passes through (-2,2) and (5,8). Line s passes through (-8,7) and (-2,0). Is $r \perp s$? (Use the slope formula)

How do I approach this problem? We are looking to see if the slope of line r, m_r , and the slope of line s, m_s , are opposite reciprocals.

Use the slope formula to find the slope of each line.

$$m_r = \frac{y_2 - y_1}{x_2 - x_1} \qquad m_s = \frac{y_2 - y_1}{x_2 - x_1} \\ = \frac{8 - 2}{5 - (-2)} \qquad = \frac{0 - 7}{-2 - (-8)} \\ = \frac{6}{7} \qquad = \frac{-\frac{7}{6}}{-\frac{1}{6}}$$

What does this mean?

Notice that $m_r = \frac{6}{7}$ and $m_s = -\frac{7}{6}$ are opposite reciprocals. Therefore, the two lines are perpendicular.

Example 3) An equation for line v is $y = -\frac{3}{2}x + 5$. An equation for line w is 6x + 4y = 7. Is $v \parallel w$?

How do I approach this problem? We need to compare the slope, m, of each line. Put the second equation in the form y = mx + b so that we can identify the slope, m.

Line <i>w</i>	Line <i>v</i>
6x + 4y = 7	
4y = -6x + 7	$v = -\frac{3}{r+5}$
3 7	$y = -\frac{1}{2}x + 3$
$y = -\frac{1}{2}x + \frac{1}{4}$	$m = -\frac{3}{2}$
$m = -\frac{3}{2}$	$m_v = 2$
$m_w = -\frac{1}{2}$	

What does this mean?

<u>Both lines are parallel</u> because the slope of line w and the slope of line v are the same. Both slopes are $-\frac{3}{2}$.