Important Formulas

1) Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
2) Midpoint Formula: midpoint $=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
3) Slope Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Equation of a Line

1) Slope Intercept Form:

$$
y=m x+b, \text { where } m=\text { slope and } b=y \text {-intercept }
$$

2) Point Slope Form:

$$
y-y_{1}=m\left(x-x_{1}\right), \text { where }\left(x_{1}, y_{1}\right)=\text { a point on the line and } m=\text { slope }
$$

Parallel and Perpendicular Lines

1) Parallel Lines in a Coordinate Plane: In a coordinate plane, two non-vertical lines are parallel if and only if they have the same slope.
2) Perpendicular Lines in a Coordinate Plane: In a coordinate plane, two non-vertical lines are perpendicular if and only if the product of their slopes is -1 . In other words, the two slopes must be opposite (opposite signs) reciprocals.

Example 1) a) Find length of $\overline{A B}$. b) Find the midpoint of $\overline{A B}$

a) Length of $A B$

$$
\begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad(\text { Use the Distance Formula }) \\
& =\sqrt{(4-1)^{2}+(2-(-3))^{2}} \\
& =\sqrt{(4-1)^{2}+(2+3)^{2}} \\
& =\sqrt{(3)^{2}+(5)^{2}} \\
& =\sqrt{9+25} \\
& =\sqrt{33}
\end{aligned}
$$

b) Find the midpoint of AB

midpoint $=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$ (Use the Midpoint Formula)

$$
\begin{aligned}
& =\left(\frac{4+1}{2}, \frac{2+(-3)}{2}\right) \\
& =\left(\frac{5}{2},-\frac{1}{2}\right)
\end{aligned}
$$

Example 2) Line r passes through $(-2,2)$ and (5,8). Line s passes through $(-8,7)$ and $(-2,0)$. Is $r \perp s$? (Use the slope formula)

How do I approach this problem? We are looking to see if the slope of line r, m_{r}, and the slope of line s, m_{s}, are opposite reciprocals.

Use the slope formula to find the slope of each line.

$$
\begin{aligned}
m_{r} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{s} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8-2}{5-(-2)} & & =\frac{0-7}{-2-(-8)} \\
& =\frac{6}{7} & & =-\frac{7}{6}
\end{aligned}
$$

What does this mean?

Notice that $m_{r}=\frac{6}{7}$ and $m_{s}=-\frac{7}{6}$ are opposite reciprocals. Therefore, the two lines are perpendicular.

Example 3) An equation for line v is $y=-\frac{3}{2} x+5$. An equation for line w is $6 x+4 y=7$. Is $v \| w$?

How do I approach this problem? We need to compare the slope, m, of each line. Put the second equation in the form $y=m x+b$ so that we can identify the slope, m.

Line w
$6 x+4 y=7$
$4 y=-6 x+7$
$y=-\frac{3}{2} x+\frac{7}{4}$
$m_{w}=-\frac{3}{2}$
Line v

$$
\begin{aligned}
& y=-\frac{3}{2} x+5 \\
& m_{v}=-\frac{3}{2}
\end{aligned}
$$

What does this mean?

Both lines are parallel because the slope of line w and the slope of line v are the same. Both slopes are $-\frac{3}{2}$.

