Unit 10 - Geometry
 Circles

NAME
Period

Geometry

Chapter 10 - Circles

***In order to get full credit for your assignments they must me done on

 time and you must SHOW ALL WORK. ***1.__(10-1) Circles and Circumference - Day 1- Pages 526-527 16-20, $32-54$ even
2. \qquad (10-2) Angles and Arcs - Day 1- Pages 533-535 14-31, 32-42 even, 58
3. \qquad (10-2) Angles and Arcs - Day 2-10-2 Practice WS
4. \qquad (10-3) Arcs and Chords- Day 1- Pages 540-11-20 and 23-35 odd
5. \qquad (10-3) Arcs and Chords- Day 2-10-3 Practice WS
6. \qquad (10-4) Inscribed Angles - Day 1- Pages 549-550 8-10, 13-16, 22, 25
7. \qquad (10-4) Inscribed Angles - Day 2-10-4 Practice WS
8. \qquad (10-5) Tangents- Day 1 - Pages 556-557 8-18, 23
9. \qquad (10-5) Tangents- Day 2 - 10-5 Practice WS
10. \qquad (10-6) Secants, Tangents, and Angle Measures - Day 1- Pages 564-565 12-32 even
11. \qquad (10-6) Secants, Tangents, and Angle Measures - Day 2-10-6 Practice WS
12. \qquad Chapter 10 Review

Section 10-1: Circles and Circumference Notes

Circle - a set of \qquad equidistant from a given point called the \qquad of the circle

- Chord: any ___ with endpoints that are on the \qquad Ex:
- Diameter:

Ex:

- Radius:

Ex:

Circumference:

Example \#1:

a.) Name the circle.
b.) Name a radius of the circle.
c.) Name a chord of the circle.

d.) Name a diameter of the circle.
e.) If $A C=18$, find $E C$.
f.) If $D E=3$, find $A E$.

Example \#2:

a.) Find C if $r=13$ inches.
b.) Find C if $d=6$ millimeters.
b.) Find d and r to the nearest hundredth if $C=65.4$ feet.

CRITICAL THINKING
In the figure, the radius of twice the radius of circle B and four times the radius of circle C. If the sum of the circumferences of the three circles is 42π, find the measure of AC.

Section 10 - 2: Angles and Arcs
 Notes

Angles and Arcs

\checkmark A \qquad has the center of the circle as its \qquad , and its sides contain two \qquad of the circle.

Arcs of a Circle

\checkmark Minor Arc

- Arc degree measure equals the measure of the ___ angle and is
\qquad than \qquad _.
- Ex:

\checkmark Major Arc

- Arc degree measure equals 360 \qquad the measure of the \qquad arc and is \qquad than 180.
- Ex:

\checkmark Semicircle

- Arc degree measure equals \qquad or \qquad .
- Ex:

Example \#1: Refer to circle T.

a.) Find $m \angle R T S$.
b.) Find $m \angle Q T R$.

Example \#2: In circle $P, m \angle N P M=46, \overline{P L}$ bisects $\angle K P M$, and $\overline{O P} \perp \overline{K N}$. Find each measure.
a.) $m O K$

b.) $m L M$
c.) $m J K O$

Arc Length

\checkmark Part of the \qquad .

Example \#3: In circle $B, A C=9$ and $m \angle A B D=40$. Find the length of $A D$.

CRITICAL THINKING The circles at the right are

concentric circles that both have point E as their center. If $m<1=42$. Determine whether arc $A B$ is congruent to arc CD. Explain.

Notes

Arcs and Chords

\checkmark The \qquad of a chord are also endpoints of an \qquad .

Theorem 10.2: In a circle, two \qquad arcs are congruent if and only if their corresponding \qquad are congruent.

Ex:

Inscribed and Circumscribed

\checkmark The chords of \qquad arcs can form
a \qquad .
\checkmark Quadrilateral $A B C D$ is an \qquad polygon because all of its \qquad lie on the circle.

\checkmark Circle E is \qquad about the polygon because it contains all of the vertices of the \qquad .

Theorem 10.3: In a circle, if the diameter (or radius) is \qquad to a chord, then it \qquad the chord and its arc.

Ex:

Example \#1: Circle W has a radius of 10 centimeters. Radius $\overline{W L}$ is perpendicular to chord $\overline{H K}$, which is 16 centimeters long.

a.) If $m H L=53$, find $m M K$.
b.) Find $J L$.

Theorem 10.4: In a circle, two \qquad are congruent if and only if they are
\qquad from the center.

Example \#2: Chords $\overline{E F}$ and $\overline{G H}$ are equidistant from the center. If the radius of circle P is 15 and $E F=24$, find $P R$ and

$\frac{\text { CRITICAL THINKING }}{\text { A diameter of circle } \mathrm{P}}$, has endpoints A and B . Radius PQ is perpendicular to $A B$. Chord $D E$ bisects $P Q$ and is parallel to $A B$. Does $D E=1 / 2$ (AB)? Explain. (Hint: Draw a picture!)

Section 10 - 4: Inscribed Angles

Notes

Inscribed Angles

\checkmark An inscribed angle is an angle that has its \qquad on the circle and its
\qquad contained in \qquad of the circle.

Ex:

Theorem 10.5: If an angle is \qquad in a circle, then the measure of the angle equals \qquad the measure of its intercepted arc (or the measure of the arc is \qquad the measure of the inscribed angle).

Ex:

Example \#1: In circle $O, m A B=140, m B C=100$, and $m A D=m D C$. Find the measures of the numbered angles.

Theorem 10.6: If two inscribed angles of a \qquad (or congruent circles) intercept __ arcs or the same arc, then the angles are
\qquad .

Ex:

Angles of Inscribed Polygons

Theorem 10.7: If an inscribed angle intercepts a semicircle, the angle is a
\qquad angle.

Ex:

Example \#2: Triangles $T V U$ and $T S U$ are inscribed in circle P, with $V U \cong S U$. Find the measure of each numbered angle if $m \angle 2=x+9$ and $m \angle 4=2 x+6$.

Example \#3: Quadrilateral $A B C D$ is inscribed in circle P. If $m \angle B=80$ and $m \angle C=40$, find $m \angle A$ and $m \angle D$.

Theorem 10.8: If a quadrilateral is \qquad in a circle, then its angles are \qquad .

Ex:

$\frac{\text { CRITICAL THINKING }}{\text { A trapezoid ABCD is }}$ that ABCD must be an isosceles trapezoid.

Section 10-5: Tangents
 Notes

Tangents

\checkmark Tangent - a line in the plane of a \qquad that intersects the circle in exactly one \qquad .
\checkmark The point of intersection is called the \qquad .

Ex:

Theorem 10.9: If a line is to a circle, then it is
\qquad to the \qquad drawn to the point of
\qquad -

Ex:

Example \#1: $\overline{R S}$ is tangent to circle Q at point R. Find y.

\qquad is perpendicular to a radius of a circle at its
\qquad on the circle, then the line is \qquad to the circle.

Ex:

Example \#2: Determine whether the given segments are tangent to the given circles.
a.) $\overline{B C}$

b.) $\overline{W E}$

Theorem 10.11: If two from the same exterior point are
\qquad to a circle, then they are \qquad .

Ex:

Example \#3: Find x. Assume that segments that appear tangent to circles are tangent.

Example \#4: Triangle $H J K$ is circumscribed about circle G. Find the perimeter of $\Delta H J K$ if $N K=J L+29$.

CRITICAL THINKING "~

AE is a tangent. If $\mathrm{AD}=12$ and $\mathrm{FE}=18$, how long is AE to the nearest tenth unit?

Section 10 - 6: Secants, Tangents, and Angle Measures Notes

$\underline{\text { Secant }- \text { a line that intersects a circle in exactly }}$ \qquad points

Theorem 10.12: (Secant-Secant Angle)
Angle)

Theorem 10.13: (Secant-Tangent

Ex:

Theorem 10.14:

Two Secants

Secant-Tangent

Two Tangents

Example \#1: Find $m \angle 3$ and $m \angle 4$ if $m F G=88$ and $m E H=76$.

Example \#2: Find $m \angle R P S$ if $m P T=144$ and $m T S=136$.

Example \#3: Find x.

Example \#4: Use the figure to find the measure of the bottom arc.

Example \#5: Find x.

$\frac{\text { CRITICAL THINKING }}{\text { In the figure, }<3 \text { is a }}$ numbered angles in order from greatest measure to least measure. Explain your reasoning.

