

CBSE Class 09 Mathematics Revision Notes CHAPTER – 6 LINES AND ANGLES

- 1. Basic Terms and Definitions
- 2. Intersecting Lines and Non-intersecting Lines
- 3. Pairs of Angles
- 4. Parallel Lines and a Transversal
- 5. Lines Parallel to the same Line
- 6. Angle Sum Property of a Triangle
- (1) **Point** We often represent a point by a fine dot made with a fine sharpened pencil on a piece of paper.
- (2) **Line** A line is completely known if we are given any two distinct points. Line AB is represented by as $\stackrel{\longleftrightarrow}{AB}$. A line or a straight line extends indefinitely in both the directions.

(3) **Line segment** - A part (or portion) of a line with two end points is called a line segment.

(4) **Ray** - A part of line with one end point is called a ray.It usually denotes the direction of line

- (5) **Collinear points** If three or more points lie on the same line, they are called collinear points, otherwise they are called non-collinear points.
- (6) **Angle** An angle is the union of two non-collinear rays with a common initial point.

Types of Angles -

(1) **Acute angle** - An acute angle measure between 0^o and 90^o

- (2) **Right angle** A right angle is exactly equal to 90^{o}
- (3) **Obtuse angle** An angle greater than 90^o but less than 180^o
- (4) **Straight angle** A straight angle is equal to 180°
- (5) **Reflex angle** An angle which is greater than 180^{o} but less than 360^{o} is called a reflex angle.
- (6) **Complementary angles** Two angles whose sum is 90^o are called complementary angles. Let one angle be x, then its complementary angle be $(90^\circ x)$.
- (7) **Supplementary angle** Two angles whose sum is 180^o are called supplementary angles. Let one angle be x, then its supplementary angle be $(180^\circ x)$.
- (8) **Adjacent angles** -Two **angles** are **Adjacent** when they have a common side and a common vertex (corner point) and don't overlap..
- (9) **Linear pair** A **linear pair** of angles is formed when two lines intersect. Two angles are said to be **linear** if they are adjacent angles formed by two intersecting lines. The measure of a straight angle is 180 degrees, so a **linear pair** of angles must add up to 180 degrees
- (10) **Vertically opposite angles** Vertically opposite angles are formed when two lines intersect each other at a point. Vertically opposite angles are always equal.

TRANSVERSAL - A line which intersects two or more given lines at distinct points, is called a transversal of the given line.

- (a) Corresponding angles
- (b) Alternate interior angles
- (c) Alternate exterior angles
- (d) Interior angles on the same side of the transversal.
 - If a transversal intersects two parallel lines, then
- (i) each pair of corresponding angles is equal.

- (ii) each pair of alternate interior angles is equal.
- (iii) each pair of interior angle on the same side of the transversal is supplementary.
 - If a transversal interacts two lines such that, either
- (i) any one pair of corresponding angles is equal, or
- (ii) any one pair of alternate interior angles is equal or
- (iii) any one pair of interior angles on the same side of the transversal is supplementary ,then the lines are parallel.
 - Lines which are parallel to a given line are parallel to each other.
 - The sum of the three angles of a triangle is 180°
 - The sum of all angles round a point is equal to 360° .
 - If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
 - If two parallel lines are intersected by a transversal, the bisectors of any pair of alternate interior angles are parallel and vice-versa.
 - If two parallel lines are intersected by a transversal, then bisectors of any two corresponding angles are parallel and vice-versa.
 - If a line is perpendicular to one of the given parallel lines, then it is also perpendicular to the other line.