Assignments in Mathematics Class IX (Term 2)
 9. AREAS OF PARALLELOGRAMS AND TRIANGLES

IMPORTANT TERMS, DEFINITIONS AND RESULTS

। If two figures A and B are congruent, they must have equal areas.
Or, if A and B are congruent figures, then $\operatorname{ar}(\mathrm{A})=\operatorname{ar}(\mathrm{B})$
। If a planar region formed by a figure T is made up of two non-overlapping planar regions formed by figures P and Q , then ar $(\mathrm{T})=\operatorname{ar}(\mathrm{P})+\operatorname{ar}(\mathrm{Q})$.
। Two figures are said to be on the same base and between the same parallels, if they have a common base (side) and the vertices (or the vertex) opposite to the common base of each figure lie on a line parallel to the base.
। Parallelograms on the same base and between the same parallels are equal in area.

। Area of a parallelogram is the product of its any side and the corresponding altitude.
। Parallelograms on the same base and having equal areas lie between the same parallels.
। If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle, is half the area of the parallelogram.
। Two triangles on the same base and between the same parallels are equal in area.
। Two triangles having the same base and equal areas lie between the same parallels.
1 Area of a triangle is half the product of its base and the corresponding altitude (or height).
। A median of a triangle divides it into two triangles of equal areas.

SUMMATIVE ASSESSMENT

A. Important Questions

1. If sum of two parallel sides of a trapezium is 15 cm and its area is $30 \mathrm{~cm}^{2}$, then the height of the trapezium is :
(a) 2 cm
(b) 4 cm
(c) 6 cm
(d) 8 cm
2. The area of a triangle is $36 \mathrm{~cm}^{2}$ and one of its sides is 9 cm . Then, the length of the corresponding altitude to the given side is :
(a) 8 cm
(b) 4 cm
(c) 6 cm
(d) 9 cm
3. The altitude of a parallelogram is twice the length of the base and its area is $1250 \mathrm{~cm}^{2}$. The lengths of the base and the altitude respectively are :
(a) $20 \mathrm{~cm}, 40 \mathrm{~cm}$
(b) $35 \mathrm{~cm}, 70 \mathrm{~cm}$
(c) $25 \mathrm{~cm}, 50 \mathrm{~cm}$
(d) $15 \mathrm{~cm}, 30 \mathrm{~cm}$
4. In the figure, PQRS is a parallelogram, $\mathrm{PM} \perp \mathrm{RS}$ and $\mathrm{RN} \perp \mathrm{PS}$. If $\mathrm{PQ}=12 \mathrm{~cm}, \mathrm{PM}=6 \mathrm{~cm}$ and $\mathrm{RN}=8 \mathrm{~cm}$, then the length of PS is equal to :

(a) 18 cm
(b) 9 cm
(c) 4 cm
(d) 12 cm
5. ABCD is a parallelogram one of whose diagonals is AC. Then, which of the following is true ?

(a) ar $(\triangle \mathrm{ADC})>$ ar $(\triangle \mathrm{CBA})$
(b) ar $(\triangle \mathrm{ADC})=$ ar $(\triangle \mathrm{CBA})$
(c) ar $(\triangle \mathrm{ABC})<$ ar $(\triangle \mathrm{ADC})$
(d) none of these
6. The area of a rhombus is $20 \mathrm{~cm}^{2}$. If one of its diagonals is 5 cm , then the other diagonal is :
(a) 8 cm
(b) 5 cm
(c) 4 cm
(d) 10 cm
7. Which of the following is true ?
(a) Area of a triangle $=$ Base \times Altitude
(b) Altitude of a triangle $=\frac{\text { Area }}{\text { Base }}$
(c) Base of triangle $=2 \times \frac{\text { Area }}{\text { Altitude }}$
(d) none of these
8. The sum of the lengths of bases of a trapezium is 13.5 cm and its area is $54 \mathrm{~cm}^{2}$. The altitude of the trapezium is :
(a) 9 cm
(b) 6 cm
(c) 8 cm
(d) 12 cm
9. Two adjacent sides of a parallelogram are 24 cm and 18 cm . If the distance between the longer sides is 12 cm , then the distance between the shorter sides is :
(a) 18 cm (b) 16 cm (c) 9 cm (d) none of these
10. Which of the following figures lies on the same base and between the same parallels ?
(i)

(a) only (i)
(b) both (i) and (ii)
(c) only (iii)
(d) only (ii)
11. Area of a rhombus is $24 \mathrm{~cm}^{2}$, the product of its diagonals is :
(a) $48 \mathrm{~cm}^{2}$
(b) $24 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~cm}^{2}$
(d) none of these
12. Sum of the parallel sides of a trapezium is 10 cm and its area is $20 \mathrm{~cm}^{2}$. The distance between the parallel sides is :
(a) 10 cm
(b) 8 cm
(c) 4 cm
(d) 2 cm
13. The area of an isosceles triangle, if its base and corresponding altitude are 6 cm and 4 cm respectively, is :
(a) $10 \mathrm{~cm}^{2}$ (b)
b) $24 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~cm}^{2}$
(d) $20 \mathrm{~cm}^{2}$
14. The side of an equilateral triangle is 4 cm . Its area is :
(a) $\frac{\sqrt{3}}{4} \mathrm{~cm}^{2}$
(b) $4 \sqrt{3} \mathrm{~cm}^{2}$
(c) $16 \sqrt{3} \mathrm{~cm}^{2}$
(d) $12 \sqrt{3} \mathrm{~cm}^{2}$
15. The area of the parallelogram ABCD is :
(a) $10 \mathrm{~cm}^{2}$
(b) $9 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~cm}^{2}$
(d) $15 \mathrm{~cm}^{2}$

16. In the figure, $A B C D$ is a parallelogram and EFCD is a rectangle. Now which of the following is correct option ?

(a) ar $(l l \mathrm{gm} \mathrm{ADCF})=$ ar $($ rect. EFCD)
(b) $\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\operatorname{ar}($ rect. EFCD)
(c) $\operatorname{ar}(l l \mathrm{gm} \mathrm{ADCF})=$ ar $($ rect. ABCD$)$
(d) none of these
17. If the sum of the parallel sides of a trapezium is 7 cm and distance between them is 4 cm , then area of the trapezium is :
(a) $28 \mathrm{~cm}^{2}$
(b) $7 \mathrm{~cm}^{2}$
(c) $21 \mathrm{~cm}^{2}$
(d) $14 \mathrm{~cm}^{2}$
18. ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD :
(a) is a rectangle
(b) is always a rhombus
(c) is a parallelogram
(d) need not be any of (a), (b) or (c)
19. The median of a triangle divides it into two :
(a) triangles of equal area
(b) congruent triangles
(c) right triangles
(d) isosceles triangles
20. If $A B C D$ is a parallelogram, then which of the following is true ?

(a) $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BCD})$
(b) $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABC})$
(c) $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ACD})$
(d) all are true
21. In the figure, $P Q R S$ and $P Q L M$ are parallelogram and X is any point on side QL. The area of $\triangle \mathrm{PMX}$ is equal to :

(a) area of $\triangle \mathrm{RQL}$ (b) area of II gm PQRS
(c) area of $\triangle \mathrm{SPM}$ (d) $\frac{1}{2}$ area of II gm PQLM
22. ABC is an isosceles triangle with each equal side 5 cm , perimeter 18 cm and height $\mathrm{AD}=7 \mathrm{~cm}$. Then, the area of the triangle ABC is :

(a) $30 \mathrm{~cm}^{2}$
(b) $28 \mathrm{~cm}^{2}$
(c) $14 \mathrm{~cm}^{2}$ (d
d) $36 \mathrm{~cm}^{2}$
23. The area of a triangle is equal to the area of a rectangle whose length and breadth are 18 cm and 12 cm respectively. If the base of the triangle is 24 cm , then its altitude is :
(a) 18 cm (b) 24 cm
(c) 36 cm
(d) 48 cm
24. In the given figure, ABC is a triangle and AD is one of its medians. The ratio of areas of triangles $A B D$ and $A C D$ respectively is :

(a) $2: 1$
(b) $1: 2$
(c) $1: 1$
(d) $3: 1$
25. If the base of an isosceles triangle is 8 cm and one of the equal sides measures 5 cm , then the area of the isosceles triangle is :
(a) $24 \mathrm{~cm}^{2}$ (b) $18 \mathrm{~cm}^{2}$ (c) $12 \mathrm{~cm}^{2}$ (d) $30 \mathrm{~cm}^{2}$
26. In the figure, point D divides the side $B C$ of $\Delta \mathrm{ABC}$ in the ratio $p: q$. The ratio between the ar $(\triangle \mathrm{ABD})$ and ar $(\triangle \mathrm{ADC})$ is :

(a) $\frac{p}{p+q}: \frac{q}{p+q}$
(b) $p: q$
(c) $q: p$
(d) none of these
27. In the figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{CD}$ and its diagonals AC and BD intersect at O. Now ar ($\triangle \mathrm{AOD}$) is equal to :

(a) ar ($\triangle \mathrm{AOB})$
(b) ar ($\triangle \mathrm{COD}$)
(c) $\operatorname{ar}(\triangle \mathrm{BOC})$
(d) none of these
28. In the figure, $\mathrm{DE} \| \mathrm{BC}$. Then, which of the following relations is true ?

(a) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{BOC})$
(b) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ABE})$
(c) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{BDE})$
(d) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{CDE})$
29. P and Q are any two points lying on the sides $C D$ and $A D$ respectively of a parallelogram ABCD . Now which of the two triangles have equal area?

(a) $\triangle \mathrm{APD}$ and $\triangle \mathrm{BPC}$
(b) $\triangle \mathrm{ABQ}$ and $\triangle \mathrm{CDQ}$
(c) $\triangle \mathrm{APB}$ and $\triangle \mathrm{BQC}$
(d) none of these
30. The figure obtained by joining the mid-points of the adjacent sides of a reactangle of sides 8 cm and 6 cm is :
(a) a rectangle of area $24 \mathrm{~cm}^{2}$
(b) a square of area $25 \mathrm{~cm}^{2}$
(c) a trapezium of area $24 \mathrm{~cm}^{2}$
(d) a rhombus of area $24 \mathrm{~cm}^{2}$
31. In the figure, the area of paralleogram $A B C D$ is :

(a) $\mathrm{AB} \times \mathrm{BM}$
(b) $\mathrm{BC} \times \mathrm{BN}$
(c) $\mathrm{DC} \times \mathrm{DL}$
(d) $\mathrm{AD} \times \mathrm{DL}$
32. The area of the figure formed by joining the mid-points of the adjacent sides of a rhombus with diagonals 12 cm and 16 cm is :
(a) $48 \mathrm{~cm}^{2}$
(b) $64 \mathrm{~cm}^{2}$
(c) $96 \mathrm{~cm}^{2}$
(d) $192 \mathrm{~cm}^{2}$

B. Questions From CBSE Examination Papers

1. If a triangle and a parallelogram are on the same base and between the same parallels, then the ratio of the area of the triangle to the area of parallelogram is :
[T-II (2011)]
(a) 1:4
(b) $1: 3$
(c) $1: 2$
(d) $1: 1$
2. The mid point of the sides of a triangle $A B C$ along with any one of the vertices as the fourth point makes a parallelogram whose are is equal to :
[T-II (2011)]
(a) $\frac{2}{3}$ ar (ABC)
(b) $\frac{1}{4}$ ar (ABC)
(c) $\frac{1}{3}$ ar (ABC)
(d) $\frac{1}{2}$ ar (ABC)
3. In $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are respectively the mid points of the sides AB, BC and AC . Area of $\triangle \mathrm{DEF}$: area of $\triangle \mathrm{ABC}$ is :
[T-II (2011)]
(a) $2: 1$
(b) $3: 4$
(c) $2: 3$
(d) $1: 4$
4. $A B C D$ is parallelogram and O is mid point of $A B$. If area of the parallelogram is 74 sq cm , then area of $\triangle \mathrm{DOC}$ is :
[T-II (2011)]

(a) 158 sq cm
(b) 37 sq cm
(c) 18.5 sq cm
(d) 222 sq cm
5. In the figure, ABCD is a parallelogram. $\mathrm{AE} \perp$ $\mathrm{DC}, \mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$, then AD equals :
[T-II (2011)]

(a) 12 cm
(b) 15 cm
(c) 12.8 cm
(d) 15.5 cm
6. AD is the median of a triangle ABC . Area of triangle $\mathrm{ADC}=15 \mathrm{~cm}^{2}$, then ar $(\triangle \mathrm{ABC})$ is :
[T-II (2011)]
(a) $15 \mathrm{~cm}^{2}$
(b) $22.5 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$
(d) $37.5 \mathrm{~cm}^{2}$
7. ABCD is a parallelogram. O is an interior point. If ar $(\mathrm{AOB})+\operatorname{ar}(\mathrm{DOC})=43$ sq units, then ar (llgm ABCD) is :
[T-II (2011)]
(a) 172 sq units
(b) 176 sq units
(c) 43 sq units
(d) 86 sq units
8. In the figure, $\mathrm{AB} \| \mathrm{DC}$. Which of the following is true about the figure?
[T-II (2011)]

(a) ar $(\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC})$
(b) $\operatorname{ar}(\mathrm{AOB})=\operatorname{ar}(\mathrm{COD})$
(c) $\operatorname{ar}(\mathrm{ADC})=\operatorname{ar}(\mathrm{ABC})$
(d) $\operatorname{ar}(\mathrm{AOB})=\frac{1}{4} \operatorname{ar}(\mathrm{ABCD})$
9. A rectangle and a rhombus are on the same base and between the same parallels. Then the ratio of their areas is :
[T-II (2011)]
(a) $1: 1$
(b) $1: 2$
(c) $1: 3$
(d) $1: 4$
10. ABCD is a trapezium with parallel sides $\mathrm{AB}=a \mathrm{~cm}, \mathrm{CD}=b \mathrm{~cm} . \mathrm{E}$ and F are the midpoints of non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is :
[T-II (2011)]

(a) $a: b$
(b) $(3 a+b):(a+3 b)$
(c) $(a+3 b):(3 a+b)$
(d) $(2 a+b:(3 a+b)$
11. If $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are respectively the mid points of the sides of a parallelogram ABCD , and ar (EFGH) $=40 \mathrm{~cm}^{2}$, then ar (parallelogram ABCD) is :
[T-II (2011)]
(a) $40 \mathrm{~cm}^{2}$ (b) $20 \mathrm{~cm}^{2}$ (c) $80 \mathrm{~cm}^{2}$ (d) $60 \mathrm{~cm}^{2}$
12. AD is the median of a $\triangle \mathrm{ABC}$. Area of $\triangle \mathrm{ADC}=15 \mathrm{~cm}^{2}$, then ar $(\triangle \mathrm{ABC})$ is :
[T-II (2011)]
(a) $15 \mathrm{~cm}^{2}$
(b) $22.5 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$
(d) $37.5 \mathrm{~cm}^{2}$
13. In the figure, D is the midpoint of side $B C$ of $\triangle \mathrm{ABC}$. and E is the midpoint of AD . Then the area of $\triangle \mathrm{ABE}$ is :
[T-II (2011)]

(a) $\frac{1}{3} \operatorname{area}(\triangle \mathrm{ABC})$
(b) $\frac{1}{2} \operatorname{area}(\triangle \mathrm{AEC})$
(c) $\frac{1}{2} \operatorname{area}(\triangle \mathrm{BEC})$
(d) $\frac{1}{4}$ area of $(\triangle \mathrm{ABC})$
14. Two parallelograms are on the same base and between the same parallels. The ratio of their areas is :
[T-II (2011)]
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $1: 4$
15. In a parallelogram $A B C D, P$ is a point in its interior. If ar $(\| \mathrm{gm} \mathrm{ABCD})=18 \mathrm{~cm}^{2}$, then $[\mathrm{ar}$ $(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{CPB})]$ is :
[T-II (2011)]
(a) $9 \mathrm{~cm}^{2}$
(b) $12 \mathrm{~cm}^{2}$
(c) $18 \mathrm{~cm}^{2}$
(d) $15 \mathrm{~cm}^{2}$
16. ABCD is a parallelogram. If E and F are mid points of sides AB and CD and diagonal AC is joined, then ar (FCBE) : ar (CAB) is :
[T-II (2011)]
(a) $1: 2$
(b) $2: 1$
(c) $1: 1$
(d) $1: 4$
17. If area of $\|^{\mathrm{gm}} \mathrm{ABCD}$ is $80 \mathrm{~cm}^{2}$, then ar ($\triangle \mathrm{ADP}$) is :
[T-II (2011)]

(a) $80 \mathrm{~cm}^{2}$
(b) $60 \mathrm{~cm}^{2}$
(c) $50 \mathrm{~cm}^{2}$
(d) $40 \mathrm{~cm}^{2}$
18. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is median of $\triangle \mathrm{ABC}$ and BE is median of $\triangle \mathrm{ABD}$. If ar $(\triangle \mathrm{ABE})=15 \mathrm{~cm}^{2}$, then ar $(\triangle A B C)$ is :
[T-II (2011)]

(a) $60 \mathrm{~cm}^{2}$
(b) $50 \mathrm{~cm}^{2}$
(c) $40 \mathrm{~cm}^{2}$
(d) $30 \mathrm{~cm}^{2}$
19. In $\triangle \mathrm{ABC}, \mathrm{E}$ is the mid-point of median AD . ar ($\triangle \mathrm{BED})$ is :
[T-II (2011)]
(a) $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
(b) $\frac{1}{3}$ ar $(\triangle \mathrm{ABC})$
(c) $\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
(d) none of the above
20. If a triangle and a square are on the same base and between the same parallels, then the ratio of area of triangle to the area of square is: [T-II (2011)]
(a) $1: 3$
(b) $1: 2$
(c) $3: 1$
(d) $1: 4$
21. In the figure, $\mathrm{AB} \| \mathrm{DC}$, then the triangles that have equal area are :
[T-II (2011)]
(a) $\triangle \mathrm{ADX}, \triangle \mathrm{ACX}$
(b) $\triangle \mathrm{ADX}, \triangle \mathrm{XCB}$
(c) $\triangle \mathrm{ACX}, \triangle \mathrm{XCB}$
(d) all of the above

22. D and E are the points on the sides $A B$ and $A C$ respectively of triangle ABC such that $\mathrm{DE} \| \mathrm{BC}$. If area of $\triangle \mathrm{DBC}=15 \mathrm{~cm}^{2}$, then area $\triangle \mathrm{EBC}$ is :
[T-II (2011)]
(a) $30 \mathrm{~cm}^{2}$
(b) $7.5 \mathrm{~cm}^{2}$
(c) $15 \mathrm{~cm}^{2}$
(d) $20 \mathrm{~cm}^{2}$
23. In the given figure, PQRS is a parallelogram and PQCD is a rectangle, then :
[T-II (2011)]

(a) ar (PQRS) < ar (PQCD)
(b) $\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{PQCD})$
(c) $\operatorname{ar}(\mathrm{PQRS})>\operatorname{ar}(\mathrm{PQCD})$
(d) none of the above
24. In the given figure, if ABCD is a parallelogram, then length of BE is :
[T-II (2011)]

(a) 24 cm
(b) 26 cm
(c) 6 cm
(d) 8 cm
25. If area of parallelogram ABCD is $25 \mathrm{~cm}^{2}$ and on the same base $C D$, a triangle $B C D$ is given such that area of $\mathrm{BCD}=x \mathrm{~cm}^{2}$, then the value of x is :
[T-II (2011)]
(a) $25 \mathrm{~cm}^{2}$
(b) $12.5 \mathrm{~cm}^{2}$
(c) $15 \mathrm{~cm}^{2}$
(d) $20 \mathrm{~cm}^{2}$
26. A triangle and a rhombus are on the same base and between the same parallels. Then the ratio of area of triangle to that of rhombus is :
[T-II (2011)]
(a) $1: 1$
(b) $1: 2$
(c) $1: 3$
(d) $1: 4$
27. If the base of a parallelogram is 8 cm and its altitude is 5 cm , then its area is equal to :
[T-II (2011)]
(a) $15 \mathrm{~cm}^{2}$
(b) $20 \mathrm{~cm}^{2}$
(c) $40 \mathrm{~cm}^{2}(d) 10 \mathrm{~cm}^{2}$
28. In the figure, if parallelogram ABCD and rectangle ABEF are of equal area, then :
[T-II (2011)]

(a) perimeter of $\mathrm{ABCD}=$ perimeter of ABEF
(b) perimeter of ABCD < perimeter of ABEF
(c) perimeter of $\mathrm{ABCD}>$ perimeter of ABEF
(d) perimeter of $\mathrm{ABCD}=\frac{1}{2}$ (perimeter of ABEF)
29. In which of the following figures, one quadrilateral and one triangle, lie on the same base and between the same parallels?
[T-II (2011)]
(a)

(b)

(c)

(d)

30. The diagonal of a square is 10 cm . Its area is :
(a) $20 \mathrm{~cm}^{2}$
(b) $25 \mathrm{~cm}^{2}$
(c) $50 \mathrm{~cm}^{2}$
(d) $100 \mathrm{~cm}^{2}$
[T-II (2011)]
31. Two polygons have the same area in figure :
(a)

(b)

(c)

(d)

[T-II (2011)]
32. The length of the diagonal of the square is 10 cm . The area of the square is :
[T-II (2011)]
(a) $20 \mathrm{~cm}^{2}$
(b) $100 \mathrm{~cm}^{2}$
(c) $50 \mathrm{~cm}^{2}$
(d) $70 \mathrm{~cm}^{2}$

SHORT ANSWERS TYPE QUESTIONS

[2 Marks]

A. Important Questions

1. PQRS is a parallelogram whose area is $180 \mathrm{~cm}^{2}$ and A is any point on the diagonal QS. The area of $\triangle \mathrm{ASR}$ is $90 \mathrm{~cm}^{2}$. Is it true?
2. P is any point on the median $A D$ of $\triangle A B C$. Show that $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(\mathrm{ACP})$.
3. In the figure, $P Q R S$ and EFRS are two paralleograms. Is area of $\triangle \mathrm{MFR}$ equal to $\frac{1}{2}$ area of II gm PQRS ?

4. In the figure, ABCD is a quadrilateral and BD is one of its diagonals. Show that ABCD is a parallelogram and find its area.

5. BD is one of the diagonals of a quadrilateral $\mathrm{ABCD} . \mathrm{AM}$ and CN are the perpendiculars from A and C respectively on BD. Show that ar
$(\mathrm{ABCD})=\frac{1}{2} \mathrm{BD}(\mathrm{AM}+\mathrm{CN})$.
6. Check whether the following statement is true. PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm . A is any point on PQ . If PS $=5 \mathrm{~cm}$, then $\operatorname{ar}(\mathrm{PAS})=30 \mathrm{~cm}^{2}$.
7. In $\triangle \mathrm{ABC}, \mathrm{O}$ is any point on its median AD . Show that $\operatorname{ar}(\Delta \mathrm{ABO})=\operatorname{ar}(\Delta \mathrm{ACO})$.
8. $A B C D$ is a parallelogram and X is the mid-point of $A B$. If ar $(A X C D)=24 \mathrm{~cm}^{2}$, then $\operatorname{ar}(A B C)$ $=24 \mathrm{~cm}^{2}$. It is true ?
9. In the figure, $\mathrm{LM}=\frac{3}{4} \mathrm{QR}, \mathrm{LM} \| \mathrm{QR}$ and distance between LM and QR is 3 cm . If length of $\mathrm{QR}=6 \mathrm{~cm}$, find the area of LQRM .

10. ABC and BDE are two equilateral triangles such that D is mid-point of BC . Show that $\operatorname{ar}(\mathrm{BDE})=\frac{1}{4}$ ar (ABC).
11. In parallelogram $\mathrm{ABCD}, \mathrm{AB}=10 \mathrm{~cm}$. The altitude corresponding to the sides $A B$ and $A D$ are respectively 7 cm and 8 cm . Find AD.
12. Show that the segment joining the mid-points of a pair of opposite sides of a parallelgoram divides it into two equal parallelograms.
13. In the figure, $A B C D$ and EFGD are two parallegorams and G is the mid-point of $C D$. Check whether area of $\triangle \mathrm{PDC}$ is equal to half of area EFGD.

14. In the figure, $P Q R S$ is square and T and U are respectively the mid-points of PS and QR. Find the area of \triangle OTS, if $P Q=8 \mathrm{~cm}$.

15. Each side of a rhombus is 8 cm and its area is $36 \mathrm{~cm}^{2}$. Find its altitude.

B. Questions From CBSE Examination Papers

1. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are respectively the mid point of the sides $B C, C A$ and $A B$ of triangle $A B C$. Show that. $\operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.
[T-II (2011)]
2. In the figure, AD is a median of $\triangle \mathrm{ABC} . \mathrm{E}$ is any point on AD . Show that ar $(\triangle \mathrm{BED})=$ ar $(\triangle \mathrm{CED})$.

[T-II (2011)]
3. PQRS is a trapezium with $\mathrm{PQ} \| \mathrm{SR}$. A line parallel to PR intersects PQ at L and QR at M . Prove that ar $(\triangle \mathrm{PSL})=$ ar $(\triangle \mathrm{PRM})$.
[T-II (2011)]
4. In the figure, E is any point on median AD of a $\triangle A B C$. Show that ar $(A B E)=$ ar $(A C E)$.
[T-II (2011)]

5. Show that the median of a triangle divides it into two triangles of equal areas.
[T-II (2011)]
6. In the given figure, ABCD is a parallelogram and $\mathrm{AE} \perp \mathrm{DC}$. If AB is 20 cm and the area of parallelogram ABCD is $80 \mathrm{~cm}^{2}$, find AE. [T-II (2011)]

7. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD . Show that ar ($\triangle \mathrm{APB}=$ ar $(\triangle \mathrm{BQC})$ [T-II (2011)]

8. In the figure, ABCD is a trapezium. $\mathrm{BC}=17 \mathrm{~cm}$, $\mathrm{AB}=16 \mathrm{~cm}$ and $\mathrm{DC}=8 \mathrm{~cm}$. Find the area of ABCD.
[T-II (2011)]

9. The area of a parallelogram $A B C D$ is 40 sq. cm . If X be the mid point of $A D$, find area of $\triangle A X B$.
[T-II (2011)]
10. Diagonals AC and BD of a trapezium ABCD with AD \| CD intersect each other at O. Prove that ar $(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.
[T-II (2011)]
[3 Marks]

SHORT ANSWERS TYPE QUESTIONS

A. Important Questions

1. If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of that of the given quadrilateral.
2. In the figure, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $\mathrm{AD}=\mathrm{CQ}$. If AQ intersects DC at P, show that ar $(B P C)=a r$ (DPQ).

3. O is any point on the diagonal BD of a parallelogram $A B C D$. Show that ar $(\triangle O A B)=$ ar $(\triangle O B C)$.
4. D is the mid-point of side BC of a $\triangle \mathrm{ABC}$ and E is the mid point of BD . If O is the mid-point of AE , then show that ar $(\mathrm{BOE})=\frac{1}{8}$ ar (ABC).
5. In the figure, PSDA is a parallelogram. Points Q and R are taken on PS such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and PA \| QB || RC. Prove that ar $(\mathrm{PQE})=$ ar (CFD).

6. Show that the diagonals of a parallelogram divide it into four triangles of equal area.
7. In the figure, ABCD is a square. E and F are respectively the mid-points of $B C$ and $C D$. If R is the mid point of EF, show that ar (AER) $=$ ar (AFR).

8. In the figure, M, N are points on sides PQ and PR respectively of $\triangle \mathrm{PQR}$, such that ar ($\triangle \mathrm{QRN}$) $=$ ar ($\Delta \mathrm{QRM})$. Show that MN $\| \mathrm{QR}$.

9. In the figure, O is any point on the diagonal PR of a parallelogram PQRS. Show that ar (PSO) $=$ ar (PQO).

10. Show that the area of a rhombus is half the product of the lengths of its diagonals.
11. Triangles $A B C$ and $D B C$ are on the same base $B C$ with vertices A and D on opposite sides of $B C$ such that ar $(\mathrm{ABC})=$ ar (DBC). Show that BC bisects AD.
12. In the figure, ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=\mathrm{BC}$. AE intersects CD at F .
If ar $(\triangle D F B)=3 \mathrm{~cm}^{2}$, find the area of the parallelogram ABCD.

13. ABCD is a trapezium with parallel sides $\mathrm{AB}=a$ cm and $\mathrm{DC}=b \mathrm{~cm}$. E and F are the mid-points of non-parallel sides. Show that ar (ABFE) : ar $(E F C D)=(3 a+b):(a+3 b)$.
14. In the figure, $A B C D$ is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and L is the mid-point of BC . Through L , a line $\mathrm{PQ} \| \mathrm{AD}$ has been drawn which meets AB in P and DC produced to Q . Show that ar $(A B C D)=$ ar $(A P Q D)$.

B. Questions From CBSE Examination Papers

1. XY is a line parallel to side BC of a $\triangle \mathrm{ABC}$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and F respectively, show that ar $(\triangle \mathrm{ABE})=$ ar $(\triangle \mathrm{ACF})$. [T-II (2011)]
2. Prove that a rectangle and a parallelogram on the same base and between the same parallels, the perimeter of the parallelogram is greater than the perimeter of the rectangle.
[T-II (2011)]
3. If medians of a triangle ABC intersects at G, show that ar $(\Delta \mathrm{AGB})=$ ar $(\triangle \mathrm{AGC})$ $=\operatorname{ar}(\triangle \mathrm{BGC})=\frac{1}{3}$ ar $(\triangle \mathrm{ABC})$.

4. In the figure, diagonals AC and BD of quadrilateral $A B C D$ intersect at O such that $O B=C D$. If $\mathrm{AB}=\mathrm{CD}$, then show that ar $(\triangle \mathrm{DOC})=$ ar ($\triangle \mathrm{AOB}$).
[T-II (2011)]

5. In the figure, ar $(\mathrm{DRC})=$ ar (DPC) and ar (BDP) $=$ ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums. [T-II (2011)]

6. In the figure, AD is median. Prove that ar $(\triangle \mathrm{ABD})=$ ar $(\triangle \mathrm{ACD})$.
[T-II (2011)]

7. In the figure, ABCD is a quadrilateral. A line through D parallel to AC meets BC produced at E. Prove that ar $(\triangle A B E)=$ ar quad. $(A B C D)$.
[T-II (2011)]

8. ABCD is a parallelogram in which $\mathrm{CD}=15 \mathrm{~cm}$, its corresponding altitude AM is 8 cm and $\mathrm{CN} \perp$ AD . If $\mathrm{CN}=10 \mathrm{~cm}$, then find the length of AD .
[T-II (2011)]

9. A point D is taken on the base $B C$ of a $\triangle A B C$ and $A D$ is produced to E, such that $D E=A D$. Show that ar $(\triangle \mathrm{BCE})=$ ar $(\triangle \mathrm{ABC})$. [T-II (2011)]
10. ABCD is a parallelogram whose diagonals AC and BD intersect at O . A line through O intersect AB at P and DC at Q . Prove that :
ar $(\triangle \mathrm{POA})=$ ar $(\triangle \mathrm{QOC})$
[T-II (2011)]

A. Important Questions

1. The medians $B E$ and $C F$ of a triangle $A B C$ intersect at G. Prove that the area of $\Delta \mathrm{GBC}$ $=$ area of the quadrilateral AFGE.
2. D, E, F are the mid-points of the sides BC, CA and $A B$ respectively of $\triangle A B C$. Prove that BDEF is a parallelogram whose area is half that of ABC .
3. In the figure, ABCD is a parallelogram. Points P and Q on BC trisect BC. Show that ar (APQ) $=\operatorname{ar}(\mathrm{DPQ})=\frac{1}{6}$ ar (ABCD).

4. In $\triangle A B C$, if L and M are the points on $A B$ and $A C$ respectively, such that $\mathrm{LM} \| \mathrm{BC}$, prove that ar $(\mathrm{LOB})=$ ar (MOC).
5. In the figure, ABCD and AEFD are two parallelograms. Prove that ar $(\mathrm{PEA})=$ ar (QFD).

B. Questions From CBSE Examination Papers

1. The side $A B$ of a parallelogram $A B C D$ is produced to any point P . A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed. Show that ar $(\mathrm{ABCD})=$ ar (PBQR).

[T-II (2011)]
2. In the figure, ABC is a triangle, D is the mid-point of $A B, P$ is any point on $B C$. Line $C Q$ is drawn parallel to PD to intersect AB at $\mathrm{Q} . \mathrm{PQ}$ is joined.
Show that ar $(\triangle \mathrm{BPQ})=\frac{1}{2}$ ar $(\triangle \mathrm{ABC})$.
[T-II (2011)]

3. Prove that parallelograms on the same base and between the same parallels are equal in area.
[T-II (2011)]
4. In the figure, ABCD is a parallelogram in which BC is produced to E such that $C E=B C . A E$ intersects CD at F. Show that ar ($\triangle \mathrm{BDF}$) $=\frac{1}{4}$ ar (ABCD).
[T-II (2011)]
5. The figure, ABCDE is a pentagon and a line through B parallel to AC meets DC produced at F. Show that
(i) ar (ACB) $=$ ar (ACF)
(ii) ar $(\mathrm{ABCDE})=$ ar (AEDF).
[T-II (2011)]

6. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY})$.
[T-II (2011)]
7. Diagonals of a parallelogram ABCD intersect at point O. Thourgh O , a line is drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.
[T-II (2011)]
8. Diagonals $P R$ and QS of quadrilateral PQRS intersect at T such that $\mathrm{PT}=\mathrm{TR}$. If $\mathrm{PS}=\mathrm{QR}$, show that ar $(\Delta \mathrm{PTS})=$ ar $(\Delta \mathrm{RTQ}) . \quad[\mathrm{T}-\mathrm{II}$ (2011)]
9. Diagonal AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) $=$ ar (BOC). Prove that ABCD is a trapezium.
[T-II (2011)]
10. PQRS and ABRS are parallelograms and X is any point on side BR. Show that :
[T-II (2011)]
(i) area PQRS = area ABRS
(ii) area $\mathrm{AXS}=\frac{1}{2}$ area PQRS .
11. In the given figure, $A P\|B Q\| C R$. Prove that ar $(\triangle \mathrm{AQC})=\operatorname{ar}(\triangle \mathrm{PBR})$.
[T-II (2011)]

12. A point E is taken as the midpoint of the side $B C$ of a parallelogram $A B C D . A E$ and $D C$ are produced to meet at F. Prove that ar ($\triangle \mathrm{ADF}$) $=\mathrm{ar}(\mathrm{ABFC})$.
[T-II (2011)]
13. In the figure, M is a point in the interior of a parallelogram PQRS. Show that
[T-II (2011)]
(i) $\operatorname{ar}(\triangle \mathrm{PMQ})+\operatorname{ar}(\triangle \mathrm{MRS})=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm} \operatorname{PQRS})$
(ii) $\operatorname{ar}(\triangle \mathrm{PMS})+\operatorname{ar}(\triangle \mathrm{MQR})=\operatorname{ar}(\triangle \mathrm{PMQ})$ + ar (\triangle MRS).

14. In the figure, diagonals AC and BD of quadrilateral $A B C D$ intersect at O, such that $O B=O D$. If $A B=C D$, show that
[T-II (2011)]

(i) ar (DOC) $=$ ar (AOB)
(ii) ar (DCB) $=$ ar (ACB)
(iii) ABCD is a parallelogram.
