Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Question 1:

A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '.
Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Solution 1:

Side of traffic signal board $=\mathrm{a}$
Perimeter of traffic signal board $=3 \times \mathrm{a}$
$2 s=3 a \Rightarrow s=\frac{3}{2} a$
By Heron's formula, Area of triangle =

$$
\begin{align*}
\text { Area of given triangle } & =\sqrt{\frac{3}{2} a\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)} \\
& =\sqrt{\frac{3}{2} a\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)} \\
& =\frac{\sqrt{3}}{2} a^{2} \tag{1}
\end{align*}
$$

Perimeter of traffic signal board $=180 \mathrm{~cm}$
Side of traffic signal board $(a)=\left(\frac{180}{3}\right) \mathrm{cm}=60 \mathrm{~cm}$
Using Equation (1), area of traffic signal board $=\frac{\sqrt{3}}{2}(60 \mathrm{~cm})^{2}$
$=\left(\frac{3600}{4} \sqrt{3}\right) \mathrm{cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}$

Question 2:

The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m (see the given figure). The advertisements yield an earning of Rs. 5000 per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

Solution 2:

The sides of the triangle (i.e., $\mathrm{a}, \mathrm{b}, \mathrm{c}$) are of $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m respectively.
Perimeter of triangle $=(122+22+120) \mathrm{m}$
$2 \mathrm{~s}=264 \mathrm{~m}$
$\mathrm{s}=132 \mathrm{~m}$
By Heron's formula,
Area of triangle $=$
Area of given triangle $=[\sqrt{132(132-122)(132-22)(132-120)}] \mathrm{m}^{2}$
$=\left[\sqrt{132(10)(110)(\sqrt{150)}-119)^{2}\left(\pm+3220 \mathrm{~m}^{\varepsilon}\right)}\right.$
Rent of $1 \mathrm{~m}^{2}$ area per year $=$ Rs. 5000
Rent of $1 \mathrm{~m}^{2}$ area per month $=$ Rs. $\frac{5000}{12}$
Rent of $1320 \mathrm{~m}^{2}$ area for 3 months $=$ Rs. $\left(\frac{5000}{12} \times 3 \times 1320\right)$
$=$ Rs. $(5000 \times 330)=$ Rs. 1650000
Therefore, the company had to pay Rs. 1650000.

Question 3:

The floor of a rectangular hall has a perimeter 250 m . If the cost of panting the four walls at the rate of Rs. 10 per m^{2} is Rs. 15000 , find the height of the hall.
[Hint: Area of the four walls $=$ Lateral surface area.]

Solution 3:

Let length, breadth, and height of the rectangular hall be $l \mathrm{~m}, b \mathrm{~m}$, and $h \mathrm{~m}$ respectively.
Area of four walls $=2 l h+2 b h=2(l+b) h$
Perimeter of the floor of hall $=2(l+b)=250 \mathrm{~m}$
\therefore Area of four walls $=2(1+b) h=250 \mathrm{hm}^{2}$
Cost of painting per m^{2} area $=$ Rs. 10
Cost of painting $250 \mathrm{~h} \mathrm{~m}^{2}$ area $=$ Rs. $(250 \mathrm{~h} \times 10)=$ Rs. 2500 h
However, it is given that the cost of paining the walls is Rs. 15000.
$\therefore 15000=2500 \mathrm{~h}$
$\mathrm{h}=6$
Therefore, the height of the hall is 6 m .

Question 4:

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Solution 4:

Let the third side of the triangle be x .
Perimeter of the given triangle $=42 \mathrm{~cm}$
$18 \mathrm{~cm}+10 \mathrm{~cm}+\mathrm{x}=42$
$\mathrm{x}=14 \mathrm{~cm}$
$s=\frac{\text { Perimeter }}{2}=\frac{42 \mathrm{~cm}}{2}=21 \mathrm{~cm}$
By Heron's formula, Area of triangle $=$
Area of given triangle $=[\sqrt{21(21-18)(21-10)(21-14)}] \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left[\sqrt{21(3)(11)(7)} \sqrt{\left.s \sin ^{2} a\right)(s-b)(s-c)}\right. \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

Question 5:

Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm . Find its area.

Solution 5:

Let the common ratio between the sides of the given triangle be x .
Therefore, the side of the triangle will be $12 \mathrm{x}, 17 \mathrm{x}$, and 25 x .
Perimeter of this triangle $=540 \mathrm{~cm}$
$12 \mathrm{x}+17 \mathrm{x}+25 \mathrm{x}=540 \mathrm{~cm}$
$54 \mathrm{x}=540 \mathrm{~cm}$
$\mathrm{x}=10 \mathrm{~cm}$

Sides of the triangle will be $120 \mathrm{~cm}, 170 \mathrm{~cm}$, and 250 cm .
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{540 \mathrm{~cm}}{2}=270 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=\lfloor\sqrt{270(270-120)(270-170)(270-250)}\rfloor \mathrm{cm}^{2}$
$=\lfloor\sqrt{270(150)(100)(20)}\rfloor \mathrm{cm}^{2}$
$=9000 \mathrm{~cm}^{2}$

Therefore, the area of this triangle is $9000 \mathrm{~cm}^{2}$.

Question 6:

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.

$$
\sqrt{s(s-a)(s-b)(s-c)}
$$

Solution 6:

Let the third side of this triangle be x .
Perimeter of triangle $=30 \mathrm{~cm}$
$12 \mathrm{~cm}+12 \mathrm{~cm}+\mathrm{x}=30 \mathrm{~cm}$
$\mathrm{x}=6 \mathrm{~cm}$
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{30 \mathrm{~cm}}{2}=15 \mathrm{~cm}$
By Heron's formula, Area of triangle $=$
Area of given triangle $=\lfloor\sqrt{15(15-12)(15-12)(15-6)}\rfloor \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\lfloor\sqrt{15(3)(3)(9)}\rfloor \mathrm{cm}^{2} \\
& =9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Exercise (12.2)

Question 1:

A park, in the shape of a quadrilateral ABCD , has $\angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}=5 \mathrm{~m}$ and $\mathrm{AD}=8 \mathrm{~m}$. How much area does it occupy?

Solution 1:

Let us join BD.
In $\triangle \mathrm{BCD}$, applying Pythagoras theorem,

$$
\begin{aligned}
\mathrm{BD}^{2} & =\mathrm{BC}^{2}+\mathrm{CD}^{2} \\
& =(12)^{2}+(5)^{2} \\
& =144+25 \\
\mathrm{BD}^{2} & =169 \\
\mathrm{BD} & =13 \mathrm{~m}
\end{aligned}
$$

Area of $\triangle \mathrm{BCD}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CD}=\left(\frac{1}{2} \times 12 \times 5\right) \mathrm{m}^{2}=30 \mathrm{~m}^{2}$
For $\triangle \mathrm{ABD}$,
$s=\frac{\text { Perimeter }}{2}=\frac{(9+8+13) \mathrm{m}}{2}=15 \mathrm{~m}$
By Heron's formula, Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle \mathrm{ABD}=\sqrt{15(15-9)(15-8)(15-13)} \mathrm{m}^{2}$

$$
\begin{aligned}
& =\sqrt{15(6)(7)(2)} \mathrm{m}^{2} \\
& =6 \sqrt{35} \mathrm{~m}^{2} \\
& =(6 \times 5.916) \mathrm{m}^{2} \\
& =35.496 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the park $=$ Area of $\triangle \mathrm{ABD}+$ Area of $\triangle \mathrm{BCD}$

$$
=35.496+30 \mathrm{~m}^{2}
$$

$$
=65.496 \mathrm{~m}^{2}=65.5 \mathrm{~m}^{2} \text { (approximately). }
$$

Question 2:

Find the area of a quadrilateral ABCD in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{DA}=5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

Solution 2:

For $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$(5)^{2}=(3)^{2}+(4)^{2}$
Therefore, $\triangle \mathrm{ABC}$ is a right-angled triangle, right-angled at point B .
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\left(\frac{1}{2} \times 3 \times 4\right)=6 \mathrm{~cm}^{2}$
For $\triangle \mathrm{ADC}$,
Perimeter $=2 \mathrm{~s}=\mathrm{AC}+\mathrm{CD}+\mathrm{DA}=(5+4+5) \mathrm{cm}=14 \mathrm{~cm}$
$\mathrm{s}=7 \mathrm{~cm}$
By Heron's formula, Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle \mathrm{ADC}=\sqrt{7(7-5)(7-5)(7-4)} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\sqrt{7(2)(2)(3)} \mathrm{cm}^{2} \\
& =2 \sqrt{21} \mathrm{~cm}^{2} \\
& =(2 \times 4.583) \mathrm{cm}^{2} \\
& =9.166 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ACD}$

$$
\begin{aligned}
& =(6+9.166) \mathrm{cm}^{2} \\
& =15.166 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2} \text { (approximately). }
\end{aligned}
$$

Question 3:

Radha made a picture of an aeroplane with coloured papers as shown in the given figure. Find the total area of the paper used.

Solution 3:

For triangle I

This triangle is an isosceles triangle.

Perimeter $=2 \mathrm{~s}=(5+5+1) \mathrm{cm}=11 \mathrm{~cm}$

$$
s=\frac{11 \mathrm{~cm}}{2}=5.5 \mathrm{~cm}
$$

Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{5.5(5.5-5)(5.5-5)(5.5-1)} \mathrm{cm}^{2}$
$=\sqrt{5.5(0.5)(0.5)(4.5)} \mathrm{cm}^{2}$
$=0.75 \sqrt{11} \mathrm{~cm}^{2}$
$=(0.75 \times 3.317) \mathrm{cm}^{2}$
$=2.488 \mathrm{~cm}^{2}$ (approximately)

For quadrilateral II

This quadrilateral is a rectangle.
Area $=1 \times b=(6.5 \times 1) \mathrm{cm}^{2}=6.5 \mathrm{~cm}^{2}$

For quadrilateral III

This quadrilateral is a trapezium.
Perpendicular height of parallelogram $=\sqrt{1^{2}-(0.5)^{2}} \mathrm{~cm}$
$=\sqrt{0.75} \mathrm{~cm}=0.866 \mathrm{~cm}$
Area $=$ Area of parallelogram + Area of equilateral triangle
$=(0.866) 1+\frac{\sqrt{3}}{4}(1)^{2}$
$=0.866+0.433=1.299 \mathrm{~cm}^{2}$

Area of triangle $(\mathrm{IV})=$ Area of triangle in (V)
$=\left(\frac{1}{2} \times 1.5 \times 6\right) \mathrm{cm}^{2}=4.5 \mathrm{~cm}^{2}$
Total area of the paper used $=2.488+6.5+1.299+4.5 \times 2$
$=19.287 \mathrm{~cm}^{2}$

Question 4:

A triangle and a parallelogram have the same base and the same area. If the sides of triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , and the parallelogram stands on the base 28 cm , find the height of the parallelogram.

Solution 4:

Perimeter of triangle $=(26+28+30) \mathrm{cm}=84 \mathrm{~cm}$
$2 \mathrm{~s}=84 \mathrm{~cm}$
$\mathrm{s}=42 \mathrm{~cm}$
By Heron's formula, Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=\sqrt{42(42-26)(42-28)(42-30)} \mathrm{cm}^{2}$

$$
=\sqrt{42(16)(14)(12)} \mathrm{cm}^{2}=336 \mathrm{~cm}^{2}
$$

Let the height of the parallelogram be h.
Area of parallelogram = Area of triangle
$\mathrm{h} \times 28 \mathrm{~cm}=336 \mathrm{~cm}^{2}$
$\mathrm{h}=12 \mathrm{~cm}$
Therefore, the height of the parallelogram is 12 cm .

Question 5:

A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?

Solution 5:

Let ABCD be a rhombus-shaped field.
For $\triangle B C D$,
Semi-perimeter, $s=\frac{(48+30+30) \mathrm{m}}{2}=54 \mathrm{~m}$
By Heron's formula, Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore, area of $\Delta \mathrm{BCD}=\sqrt{54(54-48)(54-30)(54-30)} \mathrm{m}^{2}$
$=\sqrt{54(6)(24)(24)}=3 \times 6 \times 24=432 \mathrm{~m}^{2}$

Area of field $=2 \times$ Area of $\triangle B C D$
$=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Area for grazing for 1 cow $=\frac{864}{18}=48 \mathrm{~m}^{2}$
Each cow will get $48 \mathrm{~m}^{2}$ area of grass field.

Question 6:

An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see the given figure), each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm . How much cloth of each colour is required for the umbrella?

Solution 6:

For each triangular piece,
Semi-perimeter, $s=\frac{(20+50+50) \mathrm{cm}}{2}=60 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of each triangular piece $==\sqrt{60(60-50)(60-50)(60-20)} \mathrm{cm}^{2}$
$=\sqrt{60(10)(10)(40)}=200 \sqrt{6} \mathrm{~cm}^{2}$
Since there are 5 triangular pieces made of two different coloured cloths,
Area of each cloth required $=(5 \times 200 \sqrt{6}) \mathrm{cm}^{2}-1000 \sqrt{6} \mathrm{~cm}^{2}$

Question 7:

A kite in the shape of a square with a diagonal 32 cm and an isosceles triangles of base 8 cm and sides 6 cm each is to be made of three different shades as shown in the given figure. How much paper of each shade has been used in it?

Solution 7:

We know that
Area of square $=\frac{1}{2}(\text { diagonal })^{2}$
Area of the given kite $=\frac{1}{2}\left(32 \mathrm{~cm}^{2}\right)=512 \mathrm{~cm}^{2}$
Area of $1^{\text {st }}$ shade $=$ Area of $2^{\text {nd }}$ shade
$=\frac{512 \mathrm{~cm}^{2}}{2}=256 \mathrm{~cm}^{2}$
Therefore, the area of paper required in each shape is $256 \mathrm{~cm}^{2}$.

For IIIrd triangle

Semi-perimeter, $s=\frac{(6+6+8) \mathrm{cm}}{2}=10 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of III ${ }^{\text {rd }}$ triangle $=\sqrt{10(10-6)(10-6)(10-8)} \mathrm{cm}^{2}$
$=\sqrt{10(4)(4)(2)}=(4 \times 2 \sqrt{5}) \mathrm{cm}^{2}$
$=8 \sqrt{5} \mathrm{~cm}^{2}$
$=(8 \times 2.24) \mathrm{cm}^{2}$
$=17.92 \mathrm{~cm}^{2}$
Area of paper required for $\mathrm{III}^{\text {rd }}$ shade $=17.92 \mathrm{~cm}^{2}$

Question 8:

A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (see the given figure). Find the cost of polishing the tiles at the rate of 50 p per cm^{2}.

Solution 8:

It can be observed that
Semi-perimeter of each triangular-shaped tile, $s=\frac{(35+28+9) \mathrm{cm}}{2}=36 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of each tile $=\sqrt{36(36-35)(36-28)(36-9)} \mathrm{cm}^{2}$
$=\sqrt{36(1)(8)(27)}=36 \sqrt{6} \mathrm{~cm}^{2}$
$=(36 \times 2.45) \mathrm{cm}^{2}$
$=88.2 \mathrm{~cm}^{2}$

Area of 16 tiles $=(16 \times 88.2) \mathrm{cm}^{2}=1411.2 \mathrm{~cm}^{2}$

Cost of polishing per cm^{2} area $=50 \mathrm{p}$
Cost of polishing $1411.2 \mathrm{~cm}^{2}$ area $=$ Rs. $(1411.2 \times 0.50)=$ Rs. 705.60

Therefore, it will cost Rs. 705.60 while polishing all the tiles.

Question 9:

A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.

Solution 9:

Draw a line BE parallel to AD and draw a perpendicular BF on CD .
It can be observed that ABED is a parallelogram.
$\mathrm{BE}=\mathrm{AD}=13 \mathrm{~m}$
$\mathrm{ED}=\mathrm{AB}=10 \mathrm{~m}$
$\mathrm{EC}=25-\mathrm{ED}=15 \mathrm{~m}$
For $\triangle \mathrm{BEC}$,
Semi-perimeter, $s=\frac{(13+14+15) \mathrm{m}}{2}=21 \mathrm{~m}$
By Heron's formula, Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle \mathrm{BEC}=\sqrt{21(21-13)(21-14)(21-15)} \mathrm{m}^{2}$
$=\sqrt{21(8)(7)(6)} \mathrm{m}^{2}=84 \mathrm{~m}^{2}$
Area of $\Delta \mathrm{BEC}=\frac{1}{2} \times \mathrm{CE} \times \mathrm{BF}$
$\mathrm{BF}=\left(\frac{168}{15}\right)=11.2 \mathrm{~m}$
Area of $\mathrm{ABED}=\mathrm{BF} \times \mathrm{DE}=11.2 \times 10=112 \mathrm{~m}^{2}$
Area of the field $=84+112=196 \mathrm{~m}^{2}$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

