Mathematics Assignment - Squares and Square Roots.
Square
Basic Concepts
When any number in multiplied by itself we get the product of two same numbers

If ' n ' is any number multiplied by itself ie. ' n ' we get $n \times n$ OR n^{2} so the square of a number is that number whose power is raised by 2 .

$$
\text { i.e, square of } \begin{aligned}
2 & =2^{2}=2 \times 2=4 \\
\prime \prime 3 & =3^{2}=3 \times 3=9 \\
\prime \prime \quad \therefore \quad 4 & =4^{2}=4 \times 4=16
\end{aligned}
$$

Perfect square - A natural number is Called a perfect square or a square number, if it is the square of Some natural number
eg. $1=1^{2}$

$$
\begin{aligned}
& 4=2^{2} \\
& 9=3^{2}
\end{aligned} \quad \text { et }
$$

© www.studiestoday.com.
Downloaded from www.studiestoday.com
3, 5, 7,.... are not perfect $\mathrm{Bg}-2$
squares as it Cannot be expressed as the product of two equal factors.

Some properties of squares
(a) A number ending with $2,3,7,8$ is lever a perfect square.
(b) A number ending in an odd number of zeros is never a perfect square
(c) Squares of even numbers are even.
(d) squares of odd numbers are odd.
(e) For every natural number n, we have $\quad(n+1)^{2}-n^{2}=(n+1)+n=2 n+1$
(f) A triplet (a, b, c) is Called a pythagorean timiblet is $a^{2}+b^{2}=c^{2}$
For every natural number m (2m, $m^{2}-1, m^{2}+1$) is a pyragorean triplet e, g if $m=3$ then $(6,8,10)$ in a pythagorean triplet

$$
6^{2}+8^{2}=10^{2} \text { is true }
$$

$\xrightarrow{\text { Cent-lg-3 }}$
(g) The square of a natural number ' n ' is equal to the sum of first ' n ' odd numbers.

So for any natural number ' n ' We have $n^{2}=$ sum of first n odd nos. egg, $1^{2}=1=$ sum of first 1 odd ho. $2^{2}=4=1+3=1 \quad$ ". 2 ".is.

$$
3^{2}=9=1+3+5=\ldots \quad 3
$$

and so on.
(h) Between the squares of the numbers n and $(n+1)$, there are ' $2 n$ ' non perfect square numbers

$$
\therefore \quad(n+1)^{2}-n^{2}-1=2 n
$$

(i) If a natural number cannot be expressed as a sum of successive odd natural numbers starting with 1, then it is not a perfect square egg,

17 Can not be expressed on a Sum of odd hos starting with 1
Whereas $\quad \begin{array}{ll}17 & \neq 1+3+5+7+9 \\ 25 & =1+3+5+7+9\end{array}$ so 25 in a perfect $25=1+3+5+7+9$ so 25 is a pertech
Cont-g-y
© www.studiestoday.com.
Downloaded from www.studiestoday.com
(j) The square of any odd number Can be expressed as a sum of two Consecutive positive integer.

Let n be any odd no. Now its square $\left(h^{2}\right)$ is expressed as sum of two Consecutive positive integer an

$$
\begin{gathered}
\frac{h^{2}-1}{2} \text { and } \frac{h^{2}+1}{2} \\
{\left[\operatorname{sim} \frac{h^{2}-1}{2}+\frac{h^{2}+1}{2}=\frac{h^{2}-x+h^{2}+1}{2}=\frac{2 n^{3}}{2}=n^{2}\right]}
\end{gathered}
$$

Square-Root - $2 t$ is the inverse operation of square.

Lot the number be ' n '
The square root of ' n ' is that number which when multiplied by itself gives n as the product.
It in denoted by $\sqrt{ }$ e.g, $\sqrt{4}=2, \quad \sqrt{9}=3$ etc.
square root of a number can be obtained by different method

© www.studiestoday.com.
Downloaded from www.studiestoday.com
method Mo. 1: By prime factorization $\mathrm{gg}-5$ method.
Following one the main steps
(i) Resolve the given number into prime factors.
(ii) Make pairs of similar factors.
(iii) Take the product of prime factors by choosing one out of every pair.
This gives you the square rat of the required number.

Method Mo. 2 - (By division method)This method is used when the number is large because doing factorization of large number is difficult and lengthy also. To overcome thin problem we use long division method.

Following are the most important steps to find the square root by long division method.
step 1. Place a bar over every pair of digits starting from unit place. If
© www.studiestoday.com. Downloaded from www.studiestoday.com by chance at last one digit Ig-6 left then put the bar over this single digit colo.

$$
\text { eng, } \sqrt{\overleftarrow{10} \overleftarrow{24}}
$$

step 2. Now find a number whose square is less than or equal to the number Under the extreme lett bar. Write This number at three places as shown below. And find 2 : the remainders

$$
\begin{aligned}
& 2 \longdiv { 6 } \overline { 2 5 } \\
& \times 2 \leftrightarrows
\end{aligned}
$$

Step 3. Bring The text number under the bar along with remainder as shown below

step 4. Now to divide the remainder, we reed the kew divisor thin will be the Combinations double the quotient along with the new number (This is to be searched). Divide
© www.studiestoday.com.
Downloaded from www.studiestoday.com
The remainder by the number (which in Pg -7 double the quotient) approximately and Write thin number at three places shown

Finally procede as shown above. If the number is large, proceede as explained in step Mo. 3,4. and we Will get the square root

$$
\sqrt{1024}=32 ; \quad \sqrt{625}=25
$$

Square Roots of Decimals - It should be noted that a decimal number has two parts, integral part and decimal part. How method of putting the bars will be different. In integral part bars to be placed from right to loft and in decimal part, from left to Right. In decines part, we can take help of zero if the © www.studiestoday.com. $\xrightarrow{\text { Cont-188 }}$
© www.studiestoday.com.
Downloaded from www.studiestoday.com last number is not in pair. placing the $\frac{p g-8}{}$ bars over decimal numbers shown below.

$$
\overleftarrow{255} \cdot \overrightarrow{56} \overrightarrow{75} ; \quad \overleftarrow{2} \cdot \overrightarrow{35} \overrightarrow{7}
$$

Rest the method is same as explained earlier. After finishing the steps of square root for integral part, put re decimal and follow the same steps as in integral part.
Estimating Square Root - It means, to find the square root of a number not exactly but nearby. Thin, I will explain with the help of an example. suppose we have to lind the square root of 250. Its square root will have two digits (Thin you Cam find just by Counting the bars, 2 , as $\frac{(2)}{250}$)
Now we will find a two digit no. Whose square in just less than 250 ie, $15^{2}=225<250$
It text no. $16^{2}=256>250$
If means $225<250<256$
from above 256 in very meas to 250 so approximate root of 250 is 16 .

