(www.tiwariacademy.com)

(Chapter – 10) (Visualising Solid Shapes) (Class – VIII)

Exercise 10.3

Question 1:

Can a polygon have for its faces:

(i) 3 triangles (ii) 4 triangles (iii) a square and four triangles

Answer 1:

- (i) No, a polyhedron cannot have 3 triangles for its faces.
- (ii) Yes, a polyhedron can have four triangles which is known as pyramid on triangular base.
- (iii) Yes, a polyhedron has its faces a square and four triangles which makes a pyramid on square base.

Question 2:

Is it possible to have a polyhedron with any given number of faces? (Hint: Think of a pyramid)

Answer 2:

It is possible, only if the number of faces are greater than or equal to 4.

liwar

Question 3:

Which are prisms among the following:

Unsharpened pencil

Answer 3:

Figure (ii) unsharpened pencil and figure (iv) a box are prisms.

www.tiwariacademy.com A Free web support in Education

(www.tiwariacademy.com)

(Chapter – 10) (Visualising Solid Shapes) (Class – VIII)

Question 4:

- (i) How are prisms and cylinders alike?
- (ii) How are pyramids and cones alike?

Answer 4:

- (i) A prism becomes a cylinder as the number of sides of its base becomes larger and larger.
- (ii) A pyramid becomes a cone as the number of sides of its base becomes larger and larger.

Question 5:

Is a square prism same as a cube? Explain. **Answer 5:**

No, it can be a cuboid also.

Question 6:

Verify Euler's formula for these solids.

Answer 6:

(i) Here, figure (i) contains 7 faces, 10 vertices and 15 edges. Using Euler's formula, we see F + V - E = 2Putting F = 7, V = 10 and E = 15, F + V - E = 2 $\Rightarrow 7 + 10 - 5 = 2$ $\Rightarrow 17 - 15 = 2$ $\Rightarrow 2 = 2$ $\Rightarrow L.H.S. = R.H.S.$

(ii) Here, figure (ii) contains 9 faces, 9 vertices and 16 edges.Using Euler's formula, we see F + V - E = 2

(www.tiwariacademy.com)

(Chapter – 10) (Visualising Solid Shapes) (Class – VIII)

F + V - E = 2 $\Rightarrow \quad 9 + 9 - 16 = 2$ $\Rightarrow \quad 18 - 16 = 2$ $\Rightarrow \quad 2 = 2$ $\Rightarrow \quad L.H.S. = R.H.S.$

Question 7:

Using Euler's formula, find the unknown:

Faces	?	5	20
Vertices	6	?	12
Edges	12	9	?

Answer 7:

In first column, F = ?, V = 6 and E = 12 Using Euler's formula, we see F + V - E = 2F + V - E = 2F + 6 - 12 = 2 \Rightarrow F - 6 = 2 \Rightarrow F = 2 + 6 = 8 \Rightarrow Hence there are 8 faces. In second column, F = 5, V = ? and E = 9 Using Euler's formula, we see F + V - E = 2F + V - E = 25 + V - 9 = 2 \Rightarrow V - 4 = 2 \Rightarrow V = 2 + 4 = 6 \Rightarrow Hence there are 6 vertices. F = 20, V = 12 and E = ? In third column, Using Euler's formula, we see F + V - E = 2F + V - E = 220 + 12 - E = 2 \Rightarrow 32 - E = 2 \Rightarrow \Rightarrow E = 32 - 2 = 30Hence there are 30 edges.

> www.tiwariacademy.com A Free web support in Education

3

(www.tiwariacademy.com)

(Chapter – 10) (Visualising Solid Shapes) (Class – VIII)

Question 8:

Can a polyhedron have 10 faces, 20 edges and 15 vertices?

Answer 8:

If F = 10, V = 15 and E = 20. Then, we know Using Euler's formula, F + V - E = 2 L.H.S. = F + V - E = 10 + 15 - 20 = 25 - 20 = 5 R.H.S. = 2 \therefore L.H.S. \neq R.H.S. Therefore, it does not follow Euler's formula.

www.tiwariacademy.com A Free web support in Education