Mathematics

(www.tiwariacademy.com)

(Chapter - 10) (Visualising Solid Shapes)
 (Class - VIII)

Exercise 10.3

Question 1:

Can a polygon have for its faces:
(i) 3 triangles
(ii) 4 triangles
(iii) a square and four triangles

$\epsilon_{\text {mai }}$ Answer 1:

(i) No, a polyhedron cannot have 3 triangles for its faces.
(ii) Yes, a polyhedron can have four triangles which is known as pyramid on triangular base.
(iii) Yes, a polyhedron has its faces a square and four triangles which makes a pyramid on square base.

Question 2:

Is it possible to have a polyhedron with any given number of faces? (Hint: Think of a pyramid)

taid Answer 2:

It is possible, only if the number of faces are greater than or equal to 4 .

Question 3:

Which are prisms among the following:
(i)

A nail

A table weight
(ii)

Unsharpened pencil
(iv)

A box

E Answer 3:

Figure (ii) unsharpened pencil and figure (iv) a box are prisms.

Mathematics

(www.tiwariacademy.com)

(Chapter - 10) (Visualising Solid Shapes)
 (Class - VIII)

Question 4:

(i) How are prisms and cylinders alike?
(ii) How are pyramids and cones alike?

$\operatorname{Enax}^{\text {and }}$ Answer 4:

(i) A prism becomes a cylinder as the number of sides of its base becomes larger and larger.
(ii) A pyramid becomes a cone as the number of sides of its base becomes larger and larger.

Question 5:

Is a square prism same as a cube? Explain.

EAnswer 5:

No, it can be a cuboid also.

Question 6:

Verify Euler's formula for these solids.
(i)

(ii)

Emi Answer 6:

(i) Here, figure (i) contains 7 faces, 10 vertices and 15 edges.

Using Euler's formula, we see $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
Putting $F=7, V=10$ and $E=15$,
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$\Rightarrow \quad 7+10-5=2$
$\Rightarrow \quad 17-15=2$
$\Rightarrow \quad 2=2$
$\Rightarrow \quad$ L.H.S. $=$ R.H.S.
(ii) Here, figure (ii) contains 9 faces, 9 vertices and 16 edges.

Using Euler's formula, we see F $+\mathrm{V}-\mathrm{E}=2$

Mathematics

(www.tiwariacademy.com)

$$
\begin{aligned}
& F+V-E=2 \\
& \Rightarrow \quad 9+9-16=2 \\
& \Rightarrow \quad 18-16=2 \\
& \Rightarrow \quad 2=2 \\
& \Rightarrow \quad \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

Question 7:

Using Euler's formula, find the unknown:

Faces	$\mathbf{?}$	$\mathbf{5}$	$\mathbf{2 0}$
Vertices	6	$?$	12
Edges	12	9	$?$

E Answer 7:
In first column,

$$
F=?, V=6 \text { and } E=12
$$

Using Euler's formula, we see $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$\Rightarrow \quad \mathrm{F}+6-12=2$
$\Rightarrow \quad \mathrm{F}-6=2$
$\Rightarrow \quad \mathrm{F}=2+6=8$
Hence there are 8 faces.
In second column, $\mathrm{F}=5, \mathrm{~V}=$? and $\mathrm{E}=9$
Using Euler's formula, we see $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$F+V-E=2$
$\Rightarrow \quad 5+V-9=2$
$\Rightarrow \quad V-4=2$
$\Rightarrow \quad V=2+4=6$
Hence there are 6 vertices.
In third column
$\mathrm{F}=20, \mathrm{~V}=12$ and $\mathrm{E}=$?
Using Euler's formula, we see $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
$\Rightarrow \quad 20+12-\mathrm{E}=2$
$\Rightarrow \quad 32-\mathrm{E}=2$
$\Rightarrow \quad \mathrm{E}=32-2=30$
Hence there are 30 edges.

Mathematics

(www.tiwariacademy.com)

(Chapter - 10) (Visualising Solid Shapes)
 (Class - VIII)

Question 8:

Can a polyhedron have 10 faces, 20 edges and 15 vertices?
$E_{\text {midi }}$ Answer 8:
If $F=10, V=15$ and $E=20$.
Then, we know Using Euler's formula, $\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
L.H.S. $=\mathrm{F}+\mathrm{V}-\mathrm{E}$
$=10+15-20$
$=25-20$
= 5
R.H.S. $=2$
$\because \quad$ L.H.S. \neq R.H.S.
Therefore, it does not follow Euler's formula.

