# **Exponents and Powers**

**CHAPTER** 

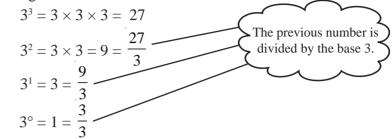
#### 12.1 Introduction exponent Do you know? Mass of earth is 5,970,000,000,000, 000, 000, 000, 000 kg. We have **10<sup>24</sup>** already learnt in earlier class how to write such large numbers more conveniently using exponents, as, $5.97 \times 10^{24}$ kg. We read $10^{24}$ as 10 raised to the power 24. $2^5 = 2 \times 2 \times 2 \times 2 \times 2$ base We know $2^m = 2 \times 2 \times 2 \times 2 \times ... \times 2 \times 2 ...$ (*m* times) and We say: 10 raised to the power 24. Let us now find what is $2^{-2}$ is equal to? **12.2 Powers with Negative Exponents** Exponent is a $10^2 = 10 \times 10 = 100$ You know that. negative integer. $10^1 = 10 = \frac{100}{10}$ $10^{\circ} = 1 = \frac{10}{10}$ As the exponent decreases by1, the value becomes one-tenth of the $10^{-1} = ?$ previous value. Continuing the above pattern we get, $10^{-1} = \frac{1}{10}$ $10^{-2} = \frac{1}{10} \div 10 = \frac{1}{10} \times \frac{1}{10} = \frac{1}{100} = \frac{1}{10^2}$ Similarly $10^{-3} = \frac{1}{100} \div 10 = \frac{1}{100} \times \frac{1}{10} = \frac{1}{1000} = \frac{1}{10^3}$

What is  $10^{-10}$  equal to?

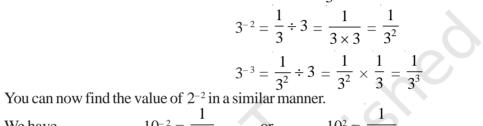
#### **194** MATHEMATICS

Now consider the following.





So looking at the above pattern, we say



We have,

$$10^{-2} = \frac{1}{10^{2}} \quad \text{or} \quad 10^{2} = \frac{1}{10^{-2}}$$

$$10^{-3} = \frac{1}{10^{3}} \quad \text{or} \quad 10^{3} = \frac{1}{10^{-3}}$$

$$3^{-2} = \frac{1}{3^{2}} \quad \text{or} \quad 3^{2} = \frac{1}{3^{-2}} \quad \text{etc.}$$

 $3^{-1} = 1 \div 3 = \frac{1}{3}$ 

In general, we can say that for any non-zero integer *a*,  $a^{-m} = \frac{1}{a^m}$ , where *m* is a positive integer.  $a^{-m}$  is the multiplicative inverse of  $a^{m}$ .



#### **TRY THESE**

| Find the multiplicative inverse of the following. |          |      |      |       |          |      |     |     |         |
|---------------------------------------------------|----------|------|------|-------|----------|------|-----|-----|---------|
| (i)                                               | $2^{-4}$ | (ii) | 10-5 | (iii) | $7^{-2}$ | (iv) | 5-3 | (v) | 10- 100 |

We learnt how to write numbers like 1425 in expanded form using exponents as  $1 \times 10^3 + 4 \times 10^2 + 2 \times 10^1 + 5 \times 10^\circ$ .

Let us see how to express 1425.36 in expanded form in a similar way.

We have  $1425.36 = 1 \times 1000 + 4 \times 100 + 2 \times 10 + 5 \times 1 + \frac{3}{10} + \frac{6}{100}$  $= 1 \times 10^3 + 4 \times 10^2 + 2 \times 10 + 5 \times 1 + 3 \times 10^{-1} + 6 \times 10^{-2}$  $10^{-1} = \frac{1}{10}$ ,  $10^{-2} = \frac{1}{10^2} = \frac{1}{100}$ **TRY THESE** Expand the following numbers using exponents. (i) 1025.63 (ii) 1256.249

### 12.3 Laws of Exponents

We have learnt that for any non-zero integer a,  $a^m \times a^n = a^{m+n}$ , where m and n are natural numbers. Does this law also hold if the exponents are negative? Let us explore.

| (i)   | (i) We know that $2^{-3} = \frac{1}{2^3}$ and $2^{-2} = \frac{1}{2^2}$ $a^{-m} = \frac{1}{a^m}$ for any                        | non-zero integer a.                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|       | Therefore, $2^{-3} \times 2^{-2} = \frac{1}{2^3} \times \frac{1}{2^2} = \frac{1}{2^3 \times 2^2} = \frac{1}{2^{3+2}} = 2^{-5}$ |                                     |
| (ii)  | ii) Take $(-3)^{-4} \times (-3)^{-3}$<br>= -5 is the sum of two ex                                                             | ponents $-3$ and $-2$               |
|       | $(-3)^{-4} \times (-3)^{-3} = \frac{1}{(-3)^4} \times \frac{1}{(-3)^3}$                                                        |                                     |
|       | $=\frac{1}{(-3)^4 \times (-3)^3} = \frac{1}{(-3)^{4+3}} = (-3)^{-7}$                                                           | 3                                   |
| (iii) | ii) Now consider $5^{-2} \times 5^4$<br>In Class VII, you h                                                                    | ave learnt that for any             |
|       | $5^{-2} \times 5^4 = \frac{1}{5^2} \times 5^4 = \frac{5^4}{5^2} = 5^{4-2} = 5^{(2)}$ non-zero integer <i>a</i>                 | $\frac{a^m}{a^n} = a^{m-n}$ , where |
| (iv)  | v) Now consider $(-5)^{-4} \times (-5)^2$ <i>m</i> and <i>n</i> are natural                                                    | l numbers and $m > n$ .             |
|       | $(-5)^{-4} \times (-5)^2 = \frac{1}{(-5)^4} \times (-5)^2 = \frac{(-5)^2}{(-5)^4} = \frac{1}{(-5)^4 \times (-5)^{-2}}$         |                                     |
|       | $= \frac{1}{(-5)^{4-2}} = (-5)^{-(2)} \underbrace{(-4) + 2 = -2}_{-2}$                                                         |                                     |

In general, we can say that for any non-zero integer *a*,  $a^m \times a^n = a^{m+n}$ , where *m* and *n* are integers.

#### **TRY THESE**

Simplify and write in exponential form.

(i) 
$$(-2)^{-3} \times (-2)^{-4}$$
 (ii)  $p^3 \times p^{-10}$  (iii)  $3^2 \times 3^{-5} \times 3^6$ 

On the same lines you can verify the following laws of exponents, where a and b are non zero integers and m, n are any integers.

(i) 
$$\frac{a^m}{a^n} = a^{m-n}$$
 (ii)  $(a^m)^n = a^{mn}$  (iii)  $a^m \times b^m = (ab)^m$   
(iv)  $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$  (v)  $a^0 = 1$ 
(iv)  $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$  (v)  $a^0 = 1$ 

Let us solve some examples using the above Laws of Exponents.

**Example 1:** Find the value of

(ii)  $\overline{3^{-2}}$ (i)  $2^{-3}$ 

Solution:

(i) 
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
 (ii)  $\frac{1}{3^{-2}} = 3^2 = 3 \times 3 = 9$ 

#### **Example 2:** Simplify

(i)  $(-4)^5 \times (-4)^{-10}$  (ii)  $2^5 \div 2^{-6}$ 

Solution:

(i) 
$$(-4)^5 \times (-4)^{-10} = (-4)^{(5-10)} = (-4)^{-5} = \frac{1}{(-4)^5}$$
  
(ii)  $2^5 \div 2^{-6} = 2^{5-(-6)} = 2^{11}$   $(a^m \div a^n = a^{m-n})$ 

$$\times a^n = a^{m+n}, \ a^{-m} = \frac{1}{a^m})$$

$$a^{-10} = (-4)^{(5-10)} = (-4)^{-5} = \frac{1}{(-4)^5}$$
  $(a^m \times a^n)^{-10} = (a^m \times a^n)$ 

$$2^5 \div 2^{-6} = 2^{5 - (-6)} = 2^{11} \quad (a^m \div a^n = a^{m - n})$$

**Example 3:** Express  $4^{-3}$  as a power with the base 2.

**Solution:** We have,  $4 = 2 \times 2 = 2^2$ 

Therefore,  $(4)^{-3} = (2 \times 2)^{-3} = (2^2)^{-3} = 2^{2 \times (-3)} = 2^{-6}$  $[(a^m)^n = a^{mn}]$ 

**Example 4:** Simplify and write the answer in the exponential form.

(i)  $(2^5 \div 2^8)^5 \times 2^{-5}$ (ii)  $(-4)^{-3} \times (5)^{-3} \times (-5)^{-3}$ 

(iii) 
$$\frac{1}{8} \times (3)^{-3}$$
 (iv)  $(-3)^4 \times \left(\frac{5}{3}\right)^{-3}$ 

**Solution:** 

(i) 
$$(2^5 \div 2^8)^5 \times 2^{-5} = (2^{5-8})^5 \times 2^{-5} = (2^{-3})^5 \times 2^{-5} = 2^{-15-5} = 2^{-20} = \frac{1}{2^{20}}$$
  
(ii)  $(-4)^{-3} \times (5)^{-3} \times (-5)^{-3} = [(-4) \times 5 \times (-5)]^{-3} = [100]^{-3} = \frac{1}{100^3}$ 

[using the law 
$$a^m \times b^m = (ab)^m$$
,  $a^{-m} = \frac{1}{a^m}$ ]

(iii) 
$$\frac{1}{8} \times (3)^{-3} = \frac{1}{2^3} \times (3)^{-3} = 2^{-3} \times 3^{-3} = (2 \times 3)^{-3} = 6^{-3} = \frac{1}{6^3}$$
  
(iv)  $(-3)^4 \times \left(\frac{5}{3}\right)^4 = (-1 \times 3)^4 \times \frac{5^4}{3^4} = (-1)^4 \times 3^4 \times \frac{5^4}{3^4}$   
 $= (-1)^4 \times 5^4 = 5^4$  [(-1)<sup>4</sup> = 1]

**Example 5:** Find *m* so that  $(-3)^{m+1} \times (-3)^5 = (-3)^7$ **Solution:**  $(-3)^{m+1} \times (-3)^5 = (-3)^7$  $(-3)^{m+1+5} = (-3)^7$  $(-3)^{m+6} = (-3)^7$ 

On both the sides powers have the same base different from 1 and -1, so their exponents must be equal.

Therefore, m + 6 = 7or m = 7 - 6 = 1**Example 6:** Find the value of  $\left(\frac{2}{3}\right)^{-2}$ . **Solution:**  $\left(\frac{2}{3}\right)^{-2} = \frac{2^{-2}}{3^{-2}} = \frac{3^2}{2^2} = \frac{9}{4}$ 

 $a^n = 1$  only if n = 0. This will work for any aexcept a = 1 or a = -1. For a = 1,  $1^1 = 1^2 = 1^3$  $= 1^{-2} = ... = 1$  or  $(1)^n = 1$  for infinitely many n. For a = -1,  $(-1)^0 = (-1)^2 = (-1)^4 = (-1)^{-2} = ... = 1$  or  $(-1)^p = 1$  for any even integer p.

Solution: 
$$(\frac{1}{3})^{-2} = \frac{1}{2^2} = \frac{1}{4}$$
  
Example 7: Simplify (i)  $\left\{ \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-2}$   
(ii)  $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5}$   
 $\left(\frac{1}{4}\right)^{-2}$   
 $\left(\frac{1}{2}\right)^{-2} = \frac{2^{-2}}{3^{-2}} = \frac{3^2}{2^2} = \left(\frac{3}{2}\right)^2$   
In general,  $\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^m$ 

Solution:

(i) 
$$\left\{ \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-2} = \left\{ \frac{1^{-2}}{3^{-2}} - \frac{1^{-3}}{2^{-3}} \right\} \div \frac{1^{-2}}{4^{-2}}$$
  
 $= \left\{ \frac{3^2}{1^2} - \frac{2^3}{1^3} \right\} \div \frac{4^2}{1^2} = \{9 - 8\} \div 16 = \frac{1}{16}$   
(ii)  $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-5}}{5^{-5}} = \frac{5^{-7}}{5^{-5}} \times \frac{8^{-5}}{8^{-7}} = 5^{(-7) - (-5)} \times 8^{(-5) - (-7)}$   
 $= 5^{-2} \times 8^2 = \frac{8^2}{5^2} = \frac{64}{25}$ 

# EXERCISE 12.1

1. Evaluate.

(ii)  $(-4)^{-2}$ 

2. Simplify and express the result in power notation with positive exponent.

(i) 
$$(-4)^5 \div (-4)^8$$
 (ii)  $\left(\frac{1}{2^3}\right)^2$   
(iii)  $(-3)^4 \times \left(\frac{5}{3}\right)^4$  (iv)  $(3^{-7} \div 3^{-10}) \times 3^{-5}$  (v)  $2^{-3} \times (-7)^{-3}$ 

3. Find the value of.

(i) 
$$(3^{\circ} + 4^{-1}) \times 2^{2}$$
 (ii)  $(2^{-1} \times 4^{-1}) \div 2^{-2}$  (iii)  $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$ 

(iii)  $\left(\frac{1}{2}\right)^{-5}$ 



(iv) 
$$(3^{-1} + 4^{-1} + 5^{-1})^0$$
 (v)  $\left\{ \left( \frac{-2}{3} \right)^{-2} \right\}$   
**4.** Evaluate (i)  $\frac{8^{-1} \times 5^3}{2^{-4}}$  (ii)  $(5^{-1} \times 2^{-1}) \times 6^{-1}$ 

5. Find the value of *m* for which  $5^m \div 5^{-3} = 5^5$ .

6. Evaluate (i) 
$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$$
 (ii)  $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4}$ 

7. Simplify.

(i) 
$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}$$
  $(t \neq 0)$  (ii)  $\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$ 

## 12.4 Use of Exponents to Express Small Numbers in Standard Form

Observe the following facts.

- 1. The distance from the Earth to the Sun is 149,600,000,000 m.
- 2. The speed of light is 300,000,000 m/sec.
- 3. Thickness of Class VII Mathematics book is 20 mm.
- 4. The average diameter of a Red Blood Cell is 0.000007 mm.
- 5. The thickness of human hair is in the range of 0.005 cm to 0.01 cm.
- 6. The distance of moon from the Earth is 384, 467, 000 m (approx).
- 7. The size of a plant cell is 0.00001275 m.
- 8. Average radius of the Sun is 695000 km.
- 9. Mass of propellant in a space shuttle solid rocket booster is 503600 kg.
- 10. Thickness of a piece of paper is 0.0016 cm.
- 11. Diameter of a wire on a computer chip is 0.000003 m.
- 12. The height of Mount Everest is 8848 m.

Observe that there are few numbers which we can read like 2 cm, 8848 m, 05 000 km. Those are some lange

6,95,000 km. There are some large numbers like 150,000,000,000 m and some very small numbers like 0.000007 m.

Identify very large and very small numbers from the above facts and write them in the adjacent table:

We have learnt how to express very large numbers in standard form in the previous class.

| Very large numbers | Very small numbers |
|--------------------|--------------------|
| 150,000,000,000 m  | 0.000007 m         |
|                    |                    |
|                    |                    |

2

in the previous class. For example:  $150,000,000,000 = 1.5 \times 10^{11}$ 

Now, let us try to express 0.000007 m in standard form.

$$0.000007 = \frac{7}{1000000} = \frac{7}{10^6} = 7 \times 10^{-6}$$

 $0.000007 \text{ m} = 7 \times 10^{-6} \text{ m}$ 

Similarly, consider the thickness of a piece of paper which is 0.0016 cm.

$$0.0016 = \frac{16}{10000} = \frac{1.6 \times 10}{10^4} = 1.6 \times 10 \times 10^{-4}$$
$$= 1.6 \times 10^{-3}$$

Therefore, we can say thickness of paper is  $1.6 \times 10^{-3}$  cm.

#### TRY THESE

- 1. Write the following numbers in standard form.
- (i) 0.000000564 (ii) 0.0000021 (iii) 21600000
- 2. Write all the facts given in the standard form.

#### 12.4.1 Comparing very large and very small numbers

The diameter of the Sun is  $1.4 \times 10^9$  m and the diameter of the Earth is  $1.2756 \times 10^7$  m. Suppose you want to compare the diameter of the Earth, with the diameter of the Sun.

Diameter of the Sun =  $1.4 \times 10^9$  m Diameter of the earth =  $1.2756 \times 10^7$  m

Therefore 
$$\frac{1.4 \times 10^9}{1.2756 \times 10^7} = \frac{1.4 \times 10^{9-7}}{1.2756} = \frac{1.4 \times 100}{1.2756}$$
 which is approximately 100

So, the diameter of the Sun is about 100 times the diameter of the earth. Let us compare the size of a Red Blood cell which is 0.000007 m to that of a plant cell which is 0.00001275 m.

> Size of Red Blood cell =  $0.000007 \text{ m} = 7 \times 10^{-6} \text{ m}$ Size of plant cell =  $0.00001275 = 1.275 \times 10^{-5}$  m

The

perefore, 
$$\frac{7 \times 10^{-6}}{1.275 \times 10^{-5}} = \frac{7 \times 10^{-6-(-5)}}{1.275} = \frac{7 \times 10^{-1}}{1.275} = \frac{0.7}{1.275} = \frac{0.7}{1.3} = \frac{1}{2}$$
 (approx.)

So a red blood cell is half of plant cell in size.

~

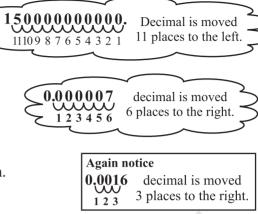
Mass of earth is  $5.97 \times 10^{24}$  kg and mass of moon is  $7.35 \times 10^{22}$  kg. What is the total mass?

Total mass = 
$$5.97 \times 10^{24}$$
 kg +  $7.35 \times 10^{22}$  kg.  
=  $5.97 \times 100 \times 10^{22} + 7.35 \times 10^{22}$   
=  $597 \times 10^{22} + 7.35 \times 10^{22}$   
=  $(597 + 7.35) \times 10^{22}$   
=  $604.35 \times 10^{22}$  kg.

The distance between Sun and Earth is  $1.496 \times 10^{11}$ m and the distance between Earth and Moon is  $3.84 \times 10^8$ m.

During solar eclipse moon comes in between Earth and Sun.

At that time what is the distance between Moon and Sun.



(iv) 15240000

```
Distance between Sun and Earth = 1.496 \times 10^{11}m

Distance between Earth and Moon = 3.84 \times 10^{8}m

Distance between Sun and Moon = 1.496 \times 10^{11} - 3.84 \times 10^{8}

= 1.496 \times 1000 \times 10^{8} - 3.84 \times 10^{8}

= (1496 - 3.84) \times 10^{8}m = 1492.16 \times 10^{8}m
```

**Example 8:** Express the following numbers in standard form.

(i) 0.000035 (ii) 4050000 **Solution:** (i)  $0.000035 = 3.5 \times 10^{-5}$ (ii)  $4050000 = 4.05 \times 10^{6}$ **Example 9:** Express the following numbers in usual form. (i)  $3.52 \times 10^5$ (ii)  $7.54 \times 10^{-4}$ (iii)  $3 \times 10^{-5}$ Solution: (i)  $3.52 \times 10^5 = 3.52 \times 100000 = 352000$ Again we need to convert (ii)  $7.54 \times 10^{-4} = \frac{7.54}{10^4} = \frac{7.54}{10000} = 0.000754$ numbers in standard form into a numbers with the same (iii)  $3 \times 10^{-5} = \frac{3}{10^5} = \frac{3}{100000} = 0.00003$ exponents. **EXERCISE 12.2** 1. Express the following numbers in standard form. (i) 0.00000000085 (ii) 0.0000000000942 (iii) 602000000000000 (iv) 0.0000000837 (v) 3186000000 Express the following numbers in usual form. 2. (i)  $3.02 \times 10^{-6}$  (ii)  $4.5 \times 10^{4}$ (iii)  $3 \times 10^{-8}$ (iv)  $1.0001 \times 10^9$  (v)  $5.8 \times 10^{12}$ (vi)  $3.61492 \times 10^{6}$ 3. Express the number appearing in the following statements in standard form. (i) 1 micron is equal to  $\frac{1}{1000000}$  m. (ii) Charge of an electron is 0.000,000,000,000,000,000,16 coulomb. (iii) Size of a bacteria is 0.0000005 m (iv) Size of a plant cell is 0.00001275 m (v) Thickness of a thick paper is 0.07 mm 4. In a stack there are 5 books each of thickness 20mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack.

# WHAT HAVE WE DISCUSSED?

(f)  $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$ 

1. Numbers with negative exponents obey the following laws of exponents. (a)  $a^m \times a^n = a^{m+n}$  (b)  $a^m \div a^n = a^{m-n}$  (c)  $(a^m)^n = a^{mn}$ 

(a) 
$$u \wedge u - u$$
 (b)  $u - u$ 

- (d)  $a^m \times b^m = (ab)^m$  (e)  $a^0 = 1$
- 2. Very small numbers can be expressed in standard form using negative exponents.