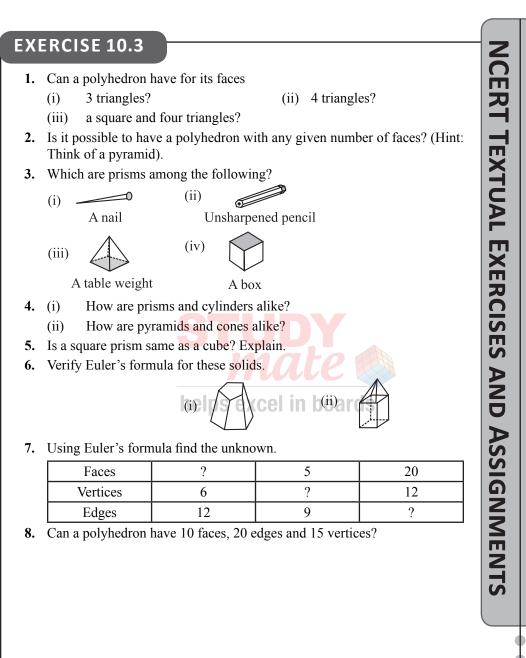


73

EXERCISE 10.2

1. Look at the given map of a city.



Answer the following.

- (a) Colour the map as follows: Blue-water, red-fire station, orange-library, yellow schools, Green park, Pink College, Purple Hospital, Brown Cemetery.
- (b) Mark a green 'X' at the intersection of Road 'C' and Nehru Road, Green 'Y' at the intersection of Gandhi Road and Road A.
- (c) In red, draw a short street route from Library to the bus depot.
- (d) Which is further east, the city park or the market?
- (e) Which is further south, the primary school or the Sr. Secondary School?
- 2. Draw a map of your class room using proper scale and symbols for different objects.
- **3.** Draw a map of your school compound using proper scale and symbols for various features like play ground main building, garden etc.
- 4. Draw a map giving instructions to your friend so that she reaches your house without any difficulty.

NCERT TEXTUAL EXERCISES AND ASSIGNMENTS

TEST YOURSELF (VSS-3)

1. Tabulate the number of faces, edges and vertices for the following polyhedrons: (Here 'V' stands for number of vertices, 'F' stands for number of faces and 'E' stands for number of edges).

		-			
Solid	F	V	E	F + V	E + 2
Cuboid					
Triangular pyramid					
Triangular prism					
Pyramid with square base					
Prism with square base					

NCERT TEXTUAL EXERCISES AND ASSIGNMENTS

NCERT Textual Exercises and Assignments

Exercise - 10.1

(a) → (iii) → (iv)

 (a) → (i) → (v)
 (c) → (iv) → (ii)
 (d) → (iv) → (ii)
 (e) → (ii) → (i)

(a) → (i) → Front (ii) → Side (iii) → Top view
(b) → (i) → Side (ii) → Front (iii) → Top view
 (c) → (i) → Front (ii) → Side (iii) → Top view
 (d) → (i) → Front (ii) → Side (iii) → Top view
 (a) → (i) → Top view (ii) → Front view (iii) → Side view
 (b) → (i) → Side view (ii) → Front view (iii) → Top view
 (c) → (i) → Top view (ii) → Front view (iii) → Top view
 (d) → (i) → Side view (ii) → Front view (iii) → Top view
 (c) → (i) → Top view (ii) → Front view (iii) → Top view
 (d) → (i) → Side view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Top view
 (d) → (i) → Front view (ii) → Front view (iii) → Front view
 (d) → (i) → Front view (ii) → Front view (iii) → Front view
 (d) → (i) → Front view (ii) → Front view (iii) → Front view
 (e) → (i) → Front view (ii) → Front view (iii) → Front view
 (f) → Front view (ii) → Front view
 (h) → Front view
 (h) → Front view
 (h) → Front view
 (h) → Front view
 </ul

S. No.	Object	Front view Side view		Top view	
(a)	A Millitary Tent				
(b)	A Table Top Front Side			$\langle \rangle$	
(c)	A Nut Top Side Front				
(d)	A Hexagonal Block Top Side Front		ards		
(e)	A Dice Top Side Front	0 0 0	0		
(f)	A Solid Top Front				

1.

Test Yourself (VSS-1)

	Object	Picture	Shape	
(i)	An agricultural field		A triangular field adjoining a square field.	
(ii)	A groove		A cone taken out of a cylinder.	
(iii)	A toy		A hemisphere surmounted on a cone.	
(iv)	A circular park	0	A circular path around a circular ground.	
(v)	A cross path		Two rectangular cross paths inside a rectangular park.	

Exercise – 10.3

- 1. (i) No. a polyhedron cannot have 3 triangles for its faces.
 - (ii) Yes, a polyhedron can have four triangles which is known as pyramid on triangular base

(iii) Yes, a polyhedron has its faces a square and four triangles which makes a pyramid on square base.

- 2. It is possible, only if the number of faces are greater than or equal to 4.
- 3. Figure (ii) unsharpened pencil and figure (iv) a box are prisms.
- **4.** (i) A prism becomes a cylinder as the number of sides of its base becomes larger and larger. (ii) A pyramid becomes a cone as the number of sides of its base becomes larger and larger
- 5. No. it can be a cuboid also.
- 6. (i) Here, figure (i) contains 7 faces, 10 vertices and 15 edges.

Using Eucler's formula, we see F + V - E = 2Putting F = 7, V = 10 and E = 15, F + V - E = 2 $\Rightarrow 7 + 10 - 5 = 2$ $\Rightarrow 17 - 15 = 2$ $\Rightarrow 2 = 2$ $\Rightarrow L.H.S. = R.H.S.$

(ii) Here, figure (ii) contains 9 faces, 9 vertices and 16 edges. Using Eucler's formula, we see F + V - E = 2

 \Rightarrow 9+9-16=2 F + V - E = 2 $\Rightarrow 18 - 16 = 2$ $\Rightarrow 2=2$ \Rightarrow L.H.S. = R.HS. Hence verified Euclei's formula F = ?, V = 6 and E = 127. In first column, Using Eucler's formula, we see F + V - E = 2F + V - E = 2 \Rightarrow F + 6 - 12 = 2 \Rightarrow F-6=2 \Rightarrow F = 2 + 6 = 8 Hence there are 8 faces In second column, F = 5, V = ? and E = 9Using Eucler's formula, we see F + V - E = 2F + V - E = 2 \Rightarrow S+V-9=2 \Rightarrow V-4=2 \Rightarrow V = 2+4 = 6 Hence there are 6 vertices. In third column, F = 20, V = 12 and E = ?Using Eucler's formula, we see F + V - E = 2F + V - E = 2 \Rightarrow 20 + 12 - E = 2 \Rightarrow E = 32-2 = 30 $\Rightarrow 32 - E = 2$ Hence there are 30 edges. 8. If F = 10, V = 15 and E = 20. Then, we know Using Eucler's formula, F + V - E = 2L.H.S. = F + V - E= 10 + 15 - 20= 25 - 20= 5 R.H.S. = 2L.H.S. \neq R.H.S. Therefore, it does not follow Eucler's formula.

So polyhedron cannot have 10 faces, 20 edges and 15 vertices.

Solid	F	V	Е	$\mathbf{F} + \mathbf{V}$	E + 2
	r	v			
Cuboid	6	8	12	14	14
Triangular pyramid	4	4	6	8	8
Triangular prism	5	6	9	11	11
Pyramid with square base	5	5	8	10	10
Prism with square base	6	8	12	14	14

Test Yourself (VSS-3)

1.