
CHAPTER FOURTEEN

OSCILLATIONS

14.1 INTRODUCTION

In our daily life we come across various kinds of motions.
You have already learnt about some of them, e.g. rectilinear
motion and motion of a projectile. Both these motions are
non-repetitive. We have also learnt about uniform circular
motion and orbital motion of planets in the solar system. In
these cases, the motion is repeated after a certain interval of
time, that is, it is periodic. In your childhood you must have
enjoyed rocking in a cradle or swinging on a swing. Both
these motions are repetitive in nature but different from the
periodic motion of a planet. Here, the object moves to and fro
about a mean position. The pendulum of a wall clock executes
a similar motion. Examples of such periodic to and fro motion
abound : a boat tossing up and down in a river, the piston in
a steam engine going back and forth, etc. Such a motion is
termed as oscillatory motion. In this chapter we study this
motion.

The study of oscillatory motion is basic to physics; its
concepts are required for the understanding of many physical
phenomena. In musical instruments like the sitar, the guitar
or the violin, we come across vibrating strings that produce
pleasing sounds. The membranes in drums and diaphragms
in telephone and speaker systems vibrate to and fro about
their mean positions. The vibrations of air molecules make
the propagation of sound possible. In a solid, the atoms vibrate
about their equilibrium positions, the average energy of
vibrations being proportional to temperature. AC power
supply give voltage that oscillates alternately going positive
and negative about the mean value (zero).

The description of a periodic motion in general, and
oscillatory motion in particular, requires some fundamental
concepts like period, frequency, displacement, amplitude and
phase. These concepts are developed in the next section.
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14.2 PERIODIC AND OSCILLATORY MOTIONS

Fig. 14.1 shows some periodic motions. Suppose
an insect climbs up a ramp and falls down it
comes back to the initial point and repeats the
process identically. If you draw a graph of its
height above the ground versus time, it would
look something like Fig. 14.1 (a). If a child climbs
up a step, comes down, and repeats the process,
its height above the ground would look like that
in Fig. 14.1 (b). When you play the game of
bouncing a ball off the ground, between your
palm and the ground, its height versus time
graph would look like the one in Fig. 14.1 (c).
Note that both the curved parts in Fig. 14.1 (c)
are sections of a parabola given by the Newton’s
equation of motion (see section 3.6),

21
2

 + gth = ut  for downward motion, and

21
2

 – gth = ut  for upward motion,

with different values of u in each case. These
are examples of periodic motion. Thus, a motion
that repeats itself at regular intervals of time is
called periodic motion.

Fig. 14.1 Examples of periodic motion. The period T
is shown in each case.

Very often the body undergoing periodic
motion has an equilibrium position somewhere
inside its path. When the body is at this position
no net external force acts on it. Therefore, if it is
left there at rest, it remains there forever. If the
body is given a small displacement from the
position, a force comes into play which tries to
bring the body back to the equilibrium point,
giving rise to oscillations or vibrations. For
example, a ball placed in a bowl will be in
equilibrium at the bottom. If displaced a little
from the point, it will perform oscillations in the
bowl. Every oscillatory motion is periodic, but
every periodic motion need not be oscillatory.
Circular motion is a periodic motion, but it is
not oscillatory.

There is no significant difference between
oscillations and vibrations. It seems that when
the frequency is small, we call it oscillation (like
the oscillation of a branch of a tree), while when
the frequency is high, we call it vibration (like
the vibration of a string of a musical instrument).

Simple harmonic motion is the simplest form
of oscillatory motion. This motion arises when
the force on the oscillating body is directly
proportional to its displacement from the mean
position, which is also the equilibrium position.
Further, at any point in its oscillation, this force
is directed towards the mean position.

In practice, oscillating bodies eventually
come to rest at their equilibrium positions,
because of the damping due to friction and other
dissipative causes.  However, they can be forced
to remain oscillating by means of some external
periodic agency.  We discuss the phenomena of
damped and forced oscillations later in the
chapter.

Any material medium can be pictured as a
collection of a large number of coupled
oscillators. The collective oscillations of the
constituents of a medium manifest themselves
as waves.  Examples of waves include water
waves, seismic waves, electromagnetic waves.
We shall study the wave phenomenon in the next
chapter.

14.2.1 Period and frequency

We have seen that any motion that repeats itself
at regular intervals of time is called periodic
motion. The smallest interval of time after
which the motion is repeated is called its
period. Let us denote the period by the symbol
T. Its S.I. unit is second. For periodic motions,
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PHYSICS338

which are either too fast or too slow on the scale
of seconds, other convenient units of time are
used. The period of vibrations of a quartz crystal
is expressed in units of microseconds (10–6 s)
abbreviated as μs. On the other hand, the orbital
period of the planet Mercury is 88 earth days.
The Halley’s comet appears after every 76 years.

The reciprocal of T gives the number of
repetitions that occur per unit time. This
quantity is called the frequency of the periodic
motion. It is represented by the symbol ν. The
relation between ν and T is

ν  = 1/T  (14.1)

The unit of ν is thus s–1. After the discoverer of
radio waves, Heinrich Rudolph Hertz (1857-1894),
a special name has been given to the unit of
frequency. It is called hertz (abbreviated as Hz).
Thus,

1 hertz  = 1 Hz =1 oscillation per second =1s–1

 (14.2)

Note, that the frequency, ν, is not necessarily
an integer.

X Example 14.1  On an average a human
heart is found to beat 75 times in a minute.
Calculate its frequency and period.

Answer The beat frequency of heart = 75/(1 min)
        = 75/(60 s)

                                                    = 1.25 s–1

                                                    = 1.25 Hz
             The time period T              = 1/(1.25 s–1)
                                                    = 0.8 s W
14.2.2   Displacement
In section 4.2, we defined displacement of a
particle as the change in its position vector. In
this chapter, we use the term displacement
in a more general sense. It refers to change
with time of any physical property under
consideration. For example, in case of rectilinear
motion of a steel ball on a surface, the distance
from the starting point as a function of time is
its position displacement. The choice of origin
is a matter of convenience. Consider a block
attached to a spring, the other end of which is
fixed to a rigid wall [see Fig.14.2(a)]. Generally it
is convenient to measure displacement of the
body from its equilibrium position. For an
oscillating simple pendulum, the angle from the
vertical as a function of time may be regarded

as a displacement variable [see Fig.14.2(b)]. The
term displacement is not always to be referred

Fig. 14.2(a) A block attached to a spring, the other
end of which is fixed to a rigid wall. The
block moves on a frictionless surface. The
motion of the block can be described in
terms of its distance or displacement x
from the wall.

Fig.14.2(b) An oscillating simple pendulum; its
motion can be described  in terms of
angular displacement θ from the vertical.

in the context of position only. There can be
many other kinds of displacement variables. The
voltage across a capacitor, changing with time
in an a.c. circuit, is also a displacement
variable. In the same way, pressure variations
in time in the propagation of sound wave, the
changing electric and magnetic fields in a light
wave are examples of displacement in different
contexts. The displacement variable may take
both positive and negative values. In
experiments on oscillations, the displacement
is measured for different times.

The displacement can be represented by a
mathematical function of time. In case of periodic
motion, this function is periodic in time. One of
the simplest periodic functions is given by

    f (t) = A cos ωt                           (14.3a)

If the argument of this function, ωt, is
increased by an integral multiple of 2π radians,
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OSCILLATIONS 339

the value of the function remains the same. The
function f (t ) is then periodic and its period, T,
is given by

    ω
π2

=  T     (14.3b)

Thus, the function f (t) is periodic with period T,

f (t) = f (t+T )

The same result is obviously correct if we
consider a sine function, f (t ) = A sin ωt. Further,
a linear combination of sine and cosine functions
like,

       f (t)  =  A sin ωt + B cos ωt                 (14.3c)
is also a periodic function with the same period
T. Taking,

A = D cos φ  and  B = D sin φ
Eq. (14.3c) can be written as,

f (t) = D sin (ωt + φ ) ,                        (14.3d)

Here D and φ are constant given by

2 2 1and tan
B–D = A + B    
A

           

The great importance of periodic sine and
cosine functions is due to a remarkable result
proved by the French mathematician, Jean
Baptiste Joseph Fourier (1768-1830): Any
periodic function can be expressed as a
superposition of sine and cosine functions
of different time periods with suitable
coefficients.

X Example 14.2   Which of the following
functions of time represent (a) periodic and
(b) non-periodic motion? Give the period for
each case of periodic motion [ω is any
positive constant].
(i) sin ωt + cos ωt
(ii) sin ωt + cos 2 ωt + sin 4 ωt
(iii) e–ωt

(iv) log (ωt)

Answer

(i) sin ωt + cos ωt is a periodic function, it can

also be written as 2  sin (ωt + π/4).

Now 2  sin (ωt + π/4)= 2  sin (ωt + π/4+2π)

       = 2  sin [ω (t + 2π/ω) + π/4]

The periodic time of the function is 2π/ω.

(ii) This is an example of a periodic motion. It
can be noted that each term represents a
periodic function with a different angular
frequency. Since period is the least interval
of time after which a function repeats its
value, sin ωt has a period T

0
= 2π/ω ; cos 2 ωt

has a period π/ω =T
0
/2; and sin 4 ωt has a

period 2π/4ω = T
0
/4. The period of the first

term is a multiple of the periods of the last
two terms. Therefore, the smallest interval
of time after which the sum of the three
terms repeats is T

0
, and thus the sum is a

periodic function with a period 2π/ω.

(iii) The function e–ωt is not periodic, it
decreases monotonically with increasing
time and tends to zero as t → ∞ and thus,
never repeats its value.

(iv) The function log(ωt) increases mono-
tonically with time t. It, therefore, never
repeats its value and is a non-periodic
function. It may be noted that as t → ∞,
 log(ωt) diverges to ∞. It, therefore, cannot
represent any kind of physical
displacement.               W

14.3 SIMPLE HARMONIC MOTION

Consider a particle oscillating back and forth
about the origin of an x-axis between the limits
+A and –A as shown in Fig. 14.3. This oscillatory
motion is said to be simple harmonic if the

Fig. 14.3 A particle vibrating back and forth about
the origin of x-axis, between the limits +A
and –A.

displacement x of the particle from the origin
varies with time as :

x (t) = A cos (ω t + φ) (14.4)
where A, ω and φ are constants.

Thus, simple harmonic motion (SHM) is not
any periodic motion but one in which
displacement is a sinusoidal function of time.
Fig. 14.4 shows what the positions of a particle
executing SHM are at discrete value of time, each
interval of time being T/4 where T is the period
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PHYSICS340

of motion. Fig. 14.5 plots the graph of x versus t,
which gives the values of displacement as a
continuous function of time. The quantities A,
ω and φ which characterize a given SHM have
standard names, as summarised in Fig. 14.6.
Let us understand these quantities.

The amplitutde A of SHM is the magnitude
of maximum displacement of the particle.
[Note, A can be taken to be positive without
any loss of generality]. As the cosine function
of time varies from +1 to –1, the displacement
varies between the extremes A and – A. Two
simple harmonic motions may have same ω
and φ but different amplitudes A and B, as
shown in Fig. 14.7 (a).

Fig. 14.4 The location of the particle in SHM at the
discrete values t = 0, T/4, T/2, 3T/4, T,
5T/4. The time after which motion repeats
itself is T. T will remain fixed, no matter
what location you choose as the initial (t =
0) location. The speed is maximum for zero
displacement (at x = 0) and zero at the
extremes of motion.

Fig. 14.5 Displacement as a continuous function of
time for simple harmonic motion.

Fig. 14.7 (b) A plot obtained from Eq. (14.4). The
curves 3 and 4 are for φ = 0 and -π/4
respectively. The amplitude A is same for
both the plots.

Fig. 14.7 (a) A plot of displacement as a function of
time as obtained from Eq. (14.4) with
φ = 0. The curves 1 and 2 are for two
different amplitudes A and B.

x (t) : displacement x as a function of time t
A : amplitude
ω : angular frequency
ωt + φ : phase (time-dependent)
φ : phase constant

Fig. 14.6  The meaning of standard symbols
in Eq. (14.4)

While the amplitude A is fixed for a given
SHM, the state of motion (position and velocity)
of the particle at any time t is determined by the
argument (ωt + φ) in the cosine function. This
time-dependent quantity, (ωt + φ) is called the
phase of the motion. The value of plase at t = 0
is φ and is called the phase constant (or phase
angle). If the amplitude is known, φ can be
determined from the displacement at t = 0. Two
simple harmonic motions may have the same A
and ω but different phase angle φ, as shown in
Fig. 14.7 (b).
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OSCILLATIONS 341

Finally, the quantity ω can be seen to be
related to the period of motion T. Taking, for
simplicity, φ = 0 in Eq. (14.4), we have

x(t ) = A cos ωt   (14.5)

Since the motion has a period T, x (t) is equal to
x (t + T ). That is,

A cos ωt = A cos ω (t + T )      (14.6)

Now the cosine function is periodic with period
2π, i.e., it first repeats itself when the argument
changes by 2π. Therefore,

ω(t + T ) = ωt + 2π

that is ω = 2π/ T (14.7)

ω is called the angular frequency of SHM. Its
S.I. unit is radians per second. Since the
frequency of oscillations is simply 1/T, ω is 2π
times the frequency of oscillation. Two simple
harmonic motions may have the same A and φ,
but different ω, as seen in Fig. 14.8. In this plot
the curve (b) has half the period and twice the
frequency of the curve (a).

This function represents a simple harmonic
motion having a period T = 2π/ω and a
phase angle (–π/4) or (7π/4)

(b) sin2 ωt
= ½ – ½ cos 2 ωt

The function is periodic having a period
T = π/ω. It also represents a harmonic
motion with the point of equilibrium
occurring at ½ instead of zero.                      W

14.4  SIMPLE HARMONIC MOTION AND
UNIFORM CIRCULAR MOTION

In this section we show that the projection of
uniform circular motion on a diameter of the
circle follows simple harmonic motion. A
simple experiment (Fig. 14.9) helps us visualize
this connection. Tie a ball to the end of a string
and make it move in a horizontal plane about
a fixed point with a constant angular speed.
The ball would then perform a uniform circular
motion in the horizontal plane. Observe the
ball sideways or from the front, fixing your
attention in the plane of motion. The ball will
appear to execute to and fro motion along a
horizontal line with the point of rotation as
the midpoint. You could alternatively observe
the shadow of the ball on a wall which is
perpendicular to the plane of the circle. In this
process what we are observing is the motion
of the ball on a diameter of the circle normal

Fig. 14.9 Circular motion of a ball in a plane viewed
edge-on is SHM.

Fig. 14.8   Plots of Eq. (14.4) for φ  = 0 for two different
periods.

X Example 14.3  Which of the following
functions of time represent (a) simple
harmonic motion and (b) periodic but not
simple harmonic? Give the period for each
case.
(1) sin ωt – cos ωt
(2) sin2 ωt

Answer
(a) sin ωt – cos ωt

= sin ωt – sin (π/2 – ωt)
= 2 cos (π/4)  sin (ωt – π/4)

                   = √2 sin (ωt – π/4)

to the direction of viewing.
Fig. 14.10 describes the same situation

mathematically. Suppose a particle P is moving
uniformly on a circle of radius A with angular
speed ω. The sense of rotation is anticlockwise.
The initial position vector of the particle, i.e.,
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PHYSICS342

the vector OP  at t = 0 makes an angle of φ with

the positive direction of x-axis. In time t, it will
cover a further angle ωt and its position vector
will make an angle of ωt + φ with the +ve x-
axis. Next consider the projection of the
position vector OP on the x-axis. This will be
OP′. The position of P′ on the x-axis, as the
particle P moves on the circle, is given by

x(t ) =  A cos (ωt + φ )

which is the defining equation of SHM. This
shows that if P moves uniformly on a circle,
its projection P′ on a diameter of the circle
executes SHM. The particle P and the circle
on which it moves arc sometimes referred to
as the reference particle and the reference circle
respectively.

We can take projection of the motion of P on
any diameter, say the y-axis. In that case, the
displacement y(t) of P′ on the y-axis is given by

y = A sin (ωt + φ )

which is also an SHM of the same amplitude
as that of the projection on x-axis, but differing
by a phase of π/2.

In spite of this connection between circular
motion and SHM, the force acting on a particle
in linear simple harmonic motion is very

different from the centripetal force needed to
keep a particle in uniform circular motion.
X Example 14.4   Fig. 14.10 depicts two

circular motions. The radius of the circle,
the period of revolution, the initial position
and the sense of revolution are indicated
on the figures. Obtain the simple harmonic
motions of the x-projection of the radius
vector of the rotating particle P in each
case.

Answer

(a) At t = 0, OP makes an angle of 45o = π/4 rad
with the (positive direction of ) x-axis. After

time t, it covers an angle t
T
π2  in the

anticlockwise sense, and makes an angle

of 
 4

 + 2 ππ
t

T
  with the x-axis.

The projection of OP on the x-axis at time t
is given by,

x (t) = A cos ( 2
 + 

4
t

T

   )

For T = 4 s,

x(t) = A cos  2
 + 

4 4
t

    
    

which is a SHM of amplitude A, period 4 s,

and an initial phase* = 
4
 

 
.

(b) In this case at t = 0, OP makes an angle of

90o = 
2
  with the x-axis. After a time t, it

* The natural unit of angle is radian, defined through the ratio of arc to radius. Angle is a dimensionless
quantity. Therefore it is not always necessary to mention the unit ‘radian’ when we use π, its multiples
or submultiples. The conversion between radian and degree is not similar to that between metre and
centimetre or mile. If the argument of a trigonometric function is stated without units, it is understood
that the unit is radian. On the other hand, if degree is to be used as the unit of angle, then it must be
shown explicitly. For example, sin(150) means sine of 15 degree, but sin(15) means sine of 15 radians.
Hereafter, we will often drop ‘rad’ as the unit, and it should be understood that whenever angle is
mentioned as a numerical value, without units, it is to be taken as radians.

Fig. 14.10
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OSCILLATIONS 343

covers an angle of 2
t

T

  in the clockwise

sense and makes an angle of  2
 – 

2
t

T

    
    

with the x-axis. The projection of OP on the
x-axis at time t is given by

x(t) = B cos 2
 – 

2
t

T

    
    

= B sin ( 2
t

T

 )

For T = 30 s,

           x(t) = B sin 
15

t
   

    

Writing this as x (t ) = B cos  – 
15 2

t
    

    , and

comparing with Eq. (14.4).  We find that this
represents a SHM of amplitude B, period 30 s,

and an initial phase of 
2
  .   W

14.5 VELOCITY AND ACCELERATION IN
SIMPLE HARMONIC MOTION

The speed of a particle v in uniform circular
motion is its angular speed ω times the radius
of the circle A.

v = ω A      (14.8)

The direction of velocity v  at a time t is along

the tangent to the circle at the point where the
particle is located at that instant. From the
geometry of Fig. 14.11, it is clear that the velocity
of the projection particle P′ at time t is

v(t ) = –ωA sin (ωt + φ )              (14.9)

where the negative sign shows that v (t) has a
direction opposite to the positive direction of
x-axis. Eq. (14.9) gives the instantaneous
velocity of a particle executing SHM, where
displacement is given by Eq. (14.4). We can, of
course, obtain this equation without using
geometrical argument, directly by differentiating
(Eq. 14.4) with respect of t:

d
( )

d
v(t) = x t

t
(14.10)

The method of reference circle can be similarly
used for obtaining instantaneous acceleration
of a particle undergoing SHM. We know that the
centripetal acceleration of a particle P in uniform
circular motion has a magnitude v2/A or ω2A,
and it is directed towards the centre i.e., the
direction is along PO. The instantaneous
acceleration of the projection particle P′ is then
(See Fig. 14.12)

a (t)  = –ω2A cos (ωt + φ)

               = –ω2x (t) (14.11)

Fig. 14.11 The velocity, v (t), of the particle P′ is the

projection of the velocity v  of the
reference particle, P.

Fig. 14.12 The acceleration, a(t), of the particle P′ is
the projection of the acceleration a of the
reference particle P.

Eq. (14.11) gives the acceleration of a particle
in SHM. The same equation can again be
obtained directly by differentiating velocity v(t)
given by Eq. (14.9) with respect to time:

d
( ) ( )

d
a t  = v t

t
(14.12)

We note from Eq. (14.11) the important
property that acceleration of a particle in SHM
is proportional to displacement. For x(t) > 0, a(t)
< 0 and for  x(t) < 0, a(t) > 0. Thus, whatever the
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value of x between –A and A, the acceleration
a(t) is always directed towards the centre.
For simplicity, let us put φ = 0 and write the
expression for x (t), v (t) and a(t)
x(t) = A cos ωt, v(t) = – ω Asin ωt, a(t)=–ω2 A cos ωt
The corresponding plots are shown in Fig. 14.13.
All quantitites vary sinusoidally with time; only
their maxima differ and the different plots differ
in phase. x varies between –A to A; v(t) varies
from –ωA to ωA and a(t) from –ω2A to ω2A. With
respect to displacement plot, velocity plot has a
phase difference of π/2 and acceleration plot
has a phase difference of π.

(b) Using Eq. (14.9), the speed of the body
= – (5.0 m)(2π s–1) sin [(2π s–1) 1.5 s
+ π/4]
= – (5.0 m)(2π s–1) sin [(3π + π/4)]

       = 10π  0.707 m s–1

       = 22 m s–1

(c) Using Eq.(14.10), the acceleration of the
body

= –(2π s–1)2  displacement
           = – (2π s–1)2  (–3.535 m)
           = 140 m s–2 W

14.6 FORCE LAW FOR SIMPLE HARMONIC
MOTION

Using Newton’s second law of motion, and the
expression for acceleration of a particle
undergoing SHM (Eq. 14.11), the force acting
on a particle of mass m in SHM is

F (t )  = ma

    = –mω2 x (t )

i.e., F (t )  = –k x (t ) (14.13)

where  k = mω2 (14.14a)

or ω =  
k

m
(14.14b)

Like acceleration, force is always directed
towards the mean position - hence it is sometimes
called the restoring force in SHM. To summarize
the discussion so far, simple harmonic motion
can be defined in two equivalent ways, either by
Eq. (14.4) for displacement or by Eq. (14.13) that
gives its force law. Going from Eq. (14.4) to Eq.
(14.13) required us to differentiate two times.
Likewise by integrating the force law Eq. (14.13)
two times, we can get back Eq. (14.4).

Note that the force in Eq. (14.13) is linearly
proportional to x(t). A particle oscillating under
such a force is, therefore, calling a linear
harmonic oscillator. In the real world, the force
may contain small additional terms proportional
to x2, x3, etc. These then are called non-linear
oscillators.

X Example 14.6 Two identical springs of
spring constant k are attached to a block
of mass m and to fixed supports as shown
in Fig. 14.14. Show that when the mass is
displaced from its equilibrium position on
either side, it executes a simple harmonic
motion. Find the period of oscillations.

Fig. 14.13 Displacement, velocity and acceleration of
a particle in simple harmonic motion have
the same period T, but they differ in phase

X Example 14.5  A body oscillates with SHM
according to the equation (in SI units),

     x = 5 cos [2π t + π/4].

At t = 1.5 s, calculate the (a) displacement,
(b) speed and (c) acceleration of the body.

Answer The angular frequency ω of the body
= 2π s–1 and its time period T = 1 s.
At t = 1.5 s
(a) displacement = (5.0 m) cos [(2π s–1) 

1.5 s + π/4]
= (5.0 m) cos [(3π + π/4)]
= –5.0  0.707 m
= –3.535 m
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Fig. 14.14

Answer Let the mass be displaced by a small
distance x to the right side of the equilibrium
position, as shown in Fig. 14.15. Under this
situation the spring on the left side gets

Fig. 14.15

elongated by a length equal to x and that on
the right side gets compressed by the same
length. The forces acting on the mass are
then,

F
1
   = –k x (force exerted by the spring on

the left side, trying to pull the
mass towards the mean
position)

F
2 
  =

  
–k x (force exerted by the spring on

the right side, trying to push the
mass towards the mean
position)

The net force, F, acting on the mass is then
given by,

F   = –2kx

Hence the force acting on the mass is
proportional to the displacement and is directed
towards the mean position; therefore, the motion
executed by the mass is simple harmonic. The
time period of oscillations is,

T = 2  
m

2k
π W

14.7 ENERGY IN SIMPLE HARMONIC
MOTION

Both kinetic and potential energies of a particle
in SHM vary between zero and their maximum
values.

In section14.5 we have seen that the velocity
of a particle executing SHM, is a periodic
function of time. It is zero at the extreme positions
of displacement. Therefore, the kinetic energy (K)
of such a particle, which is defined as

2

2
1

mv =  K

2 2 21
sin ( + )

2
= m A  t  ω ω φ

2
 

1
sin ( + )

2
2=  k A t ω φ     (14.15)

is also a periodic function of time, being zero
when the displacement is maximum and
maximum when the particle is at the mean
position. Note, since the sign of v is immaterial
in K, the period of K is T/2.

What is the potential energy (U) of a particle
executing simple harmonic motion? In
Chapter 6, we have seen that the concept of
potential energy is possible only for conservative
forces. The spring force F = –kx is a conservative
force, with associated potential energy

21
2

U = k x (14.16)

Hence the potential energy of a particle
executing simple harmonic motion is,

U(x)  =   2

2
1

x k 

         
2 2

 
1

cos ( + )
2

= k A t ω φ  (14.17)

Thus, the potential energy of a particle
executing simple harmonic motion is also
periodic, with period T/2, being zero at the mean
position and maximum at the extreme
displacements.
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It follows from Eqs. (14.15) and (14.17) that
the total energy, E, of the system is,

E  = U + K

2 2 2 2
  

1 1
cos ( + ) + sin ( + )

2 2
=  k A t  k A t ω φ ω φ

2 2 21
cos ( + ) + sin ( + )

2
=  k A t t ω φ ω φ⎡ ⎤⎣ ⎦

Using the familiar trigonometric identity, the
value of the expression in the brackets is unity.
Thus,

21
2

E =  k A (14.18)

The total mechanical energy of a harmonic
oscillator is thus independent of time as expected
for motion under any conservative force. The
time and displacement dependence of the
potential and kinetic energies of a linear simple
harmonic oscillator are shown in
Fig. 14.16.

Observe that both kinetic energy and
potential energy in SHM are seen to be always
positive in Fig. 14.16. Kinetic energy can, of
course, be never negative, since it is
proportional to the square of speed. Potential
energy is positive by choice of the undermined
constant in potential energy. Both kinetic
energy and potential energy peak twice during
each period of SHM. For x = 0, the energy is
kinetic; at the extremes x = ±A, it is all potential
energy. In the course of motion between these
limits, kinetic energy increases at the expense
of potential energy or vice-versa.

X Example 14.7  A block whose mass is 1 kg
is fastened to a spring. The spring has a
spring constant of 50 N m–1. The block is
pulled to a distance x = 10 cm from its
equilibrium position at x = 0 on a frictionless
surface from rest at t = 0. Calculate the
kinetic, potential and total energies of the
block when it is 5 cm away from the mean
position.

Answer The block executes SHM, its angular
frequency, as given by Eq. (14.14b), is

ω =  
k

m

 =  
50 N m

–1

1kg

             = 7.07 rad s–1

Its displacement at any time t is then given by,

x(t) = 0.1 cos (7.07t)

Therefore, when the particle is 5 cm away from
the mean position, we have

0.05 = 0.1 cos (7.07t)

Or cos (7.07t) = 0.5 and hence

sin (7.07t)  =
3

2
  

= 0.866

Fig. 14.16 Kinetic energy, potential energy and total
energy as a function of time [shown in (a)]
and displacement [shown in (b)] of a particle
in SHM. The kinetic energy and potential
energy both repeat after a period T/2. The
total energy remains constant at all t or x.
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Then, the velocity of the block at x = 5 cm is

      = 0.1  7.07  0.866 m s–1

          = 0.61 m s–1

Hence the K.E. of the block,

 
2
1

 = 2  vm

           = �[1kg  (0.6123 m s–1 )2 ]

           = 0.19 J

The P.E. of the block,

  
2
1

 = 2x k 

           = �(50 N m–1  0.05 m  0.05 m)
           = 0.0625 J

The total energy of the block at x = 5 cm,

           =  K.E. + P.E.

           =  0.25 J

we also know that at maximum displacement,
K.E. is zero and hence the total energy of the
system is equal to the P.E. Therefore, the total
energy of the system,

          = �(50 N m–1   0.1 m  0.1 m )

          = 0.25 J
which is same as the sum of the two energies at
a displacement of 5 cm. This is in conformity
with the principle of conservation of energy.   W

14.8   SOME SYSTEMS EXECUTING SIMPLE
HARMONIC MOTION

There are no physical examples of absolutely
pure simple harmonic motion. In practice we
come across systems that execute simple
harmonic motion approximately under certain
conditions. In the subsequent part of this
section, we discuss the motion executed by some
such systems.

14.8.1  Oscillations due to a Spring

The simplest observable example of simple
harmonic motion is the small oscillations of a
block of mass m fixed to a spring, which in turn
is fixed to a rigid wall as shown in Fig. 14.17.
The block is placed on a frictionless horizontal
surface. If the block is pulled on one side and is
released, it then executes a to and fro motion
about a mean position. Let x = 0, indicate the
position of the centre of the block when the

spring is in equilibrium. The positions marked
as –A and +A indicate the maximum
displacements to the left and the right of the
mean position. We have already learnt that
springs have special properties, which were first
discovered by the English physicist Robert
Hooke. He had shown that such a system when
deformed, is subject to a restoring force, the
magnitude of which is proportional to the
deformation or the displacement and acts in
opposite direction.  This is known as Hooke’s
law (Chapter 9). It holds good for displacements
small in comparison to the length of the spring.
At any time t, if the displacement of the block
from its mean position is x, the restoring force F
acting on the block is,

F (x)  = –k x     (14.19)

The constant of proportionality, k, is called
the spring constant, its value is governed by the
elastic properties of the spring. A stiff spring has
large k and a soft spring has small k. Equation
(14.19) is same as the force law for SHM and
therefore the system executes a simple harmonic
motion. From Eq. (14.14) we have,

 =  ω
k

m
   (14.20)

and the period, T, of the oscillator is given by,

  = 2  
m

T
k

 (14.21)

Stiff springs have high value of k (spring
constant). A block of small mass m attached to
a stiff spring will have, according to Eq. (14.20),
large oscillation frequency, as expected
physically.

Fig. 14.17 A linear simple harmonic oscillator
consisting of a block of mass m attached
to a spring. The block moves over a
frictionless surface. The box, when pulled
or pushed and released, executes simple
harmonic motion.
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of pendulum. You can also make your own
pendulum by tying a piece of stone to a long
unstretchable thread, approximately 100 cm
long.  Suspend your pendulum from a suitable
support so that it is free to oscillate. Displace
the stone to one side by a small distance and
let it go. The stone executes a to and fro motion,
it is periodic with a period of about two seconds.

We shall show that this periodic motion is
simple harmonic for small displacements from
the mean position. Consider simple pendulum
— a small bob of mass m tied to an inextensible
mass less string of length L. The other end of
the string is fixed to a support in the ceiling.
The bob oscillates in a plane about the vertical
line through the support. Fig. 14.18(a) shows
this system. Fig. 14.18(b) is a kind of ‘free-body’
diagram of the simple pendulum showing the
forces acting on the bob.

X  Example 14.8  A 5 kg collar is attached
to a spring of spring constant 500 N m–1. It
slides without friction over a horizontal rod.
The collar is displaced from its equilibrium
position by 10.0 cm and released. Calculate
(a) the period of oscillation,
(b) the maximum speed and
(c) maximum acceleration of the collar.

Answer  (a) The period of oscillation as given by
Eq. (14.21) is,

 = 2  
m

T
k

  = 2π 1m N 500

kg 0.5
−

           = (2π/10) s
           = 0.63 s
(b) The velocity of the collar executing SHM is

given by,
v(t) = –Aω sin (ωt + φ)

The maximum speed is given by,
v

m
 =  Aω

             = 0.1  
k

m

             = 0.1 
kg 5

1–m N 500

              = 1 m s–1

and it occurs at x = 0
(c) The acceleration of the collar at the

displacement x (t) from the equilibrium is
given by,

a (t) =  –ω2 x(t)

                 = – 
k

m
 x(t) 

Therefore the maximum acceleration is,
                 a

max
 = ω2 A

                = 
500 N m

–1

5 kg
 x 0.1 m 

                 = 10 m s–2

and it occurs at the extremities. W

14.8.2  The Simple Pendulum

It is said that Galileo measured the periods of a
swinging chandelier in a church by his pulse
beats. He observed that the motion of the
chandelier was periodic. The system is a kind

(a)

 (b)

Fig. 14.18 (a) A bob oscillating about its mean
position. (b) The radial force T-mg cosθ
provides centripetal force but no torque
about the support. The tangential force
mgsinθ provides the restoring torque.
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Let θ be the angle made by the string with
the vertical. When the bob is at the mean
position, θ = 0

There are only two forces acting on the bob;
the tension T along the string and the vertical
force due to gravity (=mg). The force mg can be
resolved into the component mg cosθ along the
string and mg sinθ perpendicular to it. Since
the motion of the bob is along a circle of length
L and centre at the support point, the bob has
a radial acceleration (ω2L) and also a tangental
acceleration; the latter arises since motion along
the arc of the circle is not uniform. The radial
acceleration is provided by the net radial force
T –mg cosθ, while the tangential acceleration is
provided by mg sinθ. It is more convenient to
work with torque about the support since the
radial force gives zero torque. Torque τ about
the support is entirely provided by the tangental
component of force

τ =  –L (mg sinθ ) (14.22)

This is a restoring torque that tends to reduce
angular displacement — hence the negative
sign. By Newton’s law of rotational motion,

τ   =  I α (14.23)

where I is the moment of inertia of the system
about the support and α is the angular
acceleration. Thus,

I α = –m g sin θ   L (14.24)

Or,

α  =  sin  
m g L
  

I
   (14.25)

We can simplify Eq. (14.25) if we assume that
the displacement θ is small. We know that sin θ
can be expressed as,

sin  ± ...
3! 5!

  
    

  

       (14.26)

where θ is in radians.
Now if θ  is small, sin θ can be approximated

by θ and Eq. (14.25) can then be written as,

 α θ  =  −  
mgL

I
 (14.27)

In Table 14.1, we have listed the angle θ in
degrees, its equivalent in radians, and the value

SHM - how small should the amplitude be?

When you perform the experiment to
determine the time period of a simple
pendulum, your teacher tells you to keep
the amplitude small. But have you ever
asked how small is small? Should the
amplitude to 50, 20, 10 or 0.50? Or could it
be 100, 200 or 300?

To appreciate this, it would be better to
measure the time period for different
amplitudes, up to large amplitudes. Of
course, for large oscillations, you will have
to take care that the pendulum oscillates
in a vertical plane. Let us denote the time
period for small-amplitude oscillations as
T (0) and write the time period for amplitude
θ

0
 as T(θ

0
) = cT (0), where c is the multiplying

factor. If you plot a graph of c versus θ
0
,

you will get values somewhat like this:

θ
0

: 200 450 500 700 900

c : 1.02 1.04 1.05 1.10 1.18

This means that the error in the time
period is about 2% at an amplitude of 200,
5% at an amplitude of 500, and 10% at an
amplitude of 700 and 18% at an amplitude
of 900.

In the experiment, you will never be able
to measure T (0) because this means there
are no oscillations. Even theoretically,
sin θ  is exactly equal to θ  only for θ  = 0.
There will be some inaccuracy for all other
values of θ . The difference increases with
increasing θ . Therefore we have to decide
how much error we can tolerate. No
measurement is ever perfectly accurate.
You must also consider questions like
these: What is the accuracy of the
stopwatch? What is your own accuracy in
starting and stopping the stopwatch? You
will realise that the accuracy in your
measurements at this level is never better
than 5% or 10%. Since the above table
shows that the time period of the pendulum
increases hardly by 5% at an amplitude of
500 over its low amplitude value, you could
very well keep the amplitude to be 50° in
your experiments.
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of the function sin θ . From this table it can be
seen that for θ as large as 20 degrees, sin θ is
nearly the same as θ expressed in radians.

Table 14.1  sin θθθθθ as a function of angle θθθθθ

Equation (14.27) is mathematically, identical
to Eq. (14.11) except that the variable is angular
displacement. Hence we have proved that for
small θ, the motion of the bob is simple harmonic.
From Eqs. (14.27) and (14.11),

ω  =  
mgL

I
 

and

 
I

T  
mgL

            (14.28)

Now since the string of the simple pendulum
is mass less, the moment of inertia I is simply
mL2. Eq. (14.28) then gives the well-known
formula for time period of a simple pendulum.

L
T  

g
           (14.29)

X Example 14.9 What is the length of a
simple pendulum, which ticks seconds ?

Answer From Eq. (14.29), the time period of a
simple pendulum is given by,

 
L

T  
g

         

From this relation one gets,

2

2  
4
gT

L
 

      

The time period of a simple pendulum, which
ticks seconds, is 2 s. Therefore, for g = 9.8 m s–2

and T  = 2 s, L is

Fig. 14.19 The viscous surrounding medium exerts
a damping force on an oscillating spring,
eventually bringing it to rest.

–2 2

2

9.8(m s ) 4(s )
 

4

  

 

 
     

        = 1 m W

14.9  DAMPED SIMPLE HARMONIC MOTION

We know that the motion of a simple pendulum,
swinging in air, dies out eventually. Why does it
happen ? This is because the air drag and the
friction at the support oppose the motion of the
pendulum and dissipate its energy gradually.
The pendulum is said to execute damped
oscillations. In dampled oscillations, the energy
of the system is dissipated continuously; but,
for small damping, the oscillations remain
approximately periodic. The dissipating forces
are generally the frictional forces. To understand
the effect of such external forces on the motion
of an oscillator, let us consider a system as
shown in Fig. 14.19. Here a block of mass m
connected to an elastic spring of spring constant
k oscillates vertically. If the block is pushed down
a little and released, its angular frequency of

oscillation is   
k

m
, as seen in Eq. (14.20).

However, in practice, the surrounding medium
(air) will exert a damping force on the motion of
the block and the mechanical energy of the
block-spring system will decrease. The energy
loss will appear as heat of the surrounding
medium (and the block also) [Fig. 14.19].
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The damping force depends on the nature of
the surrounding medium. If the block is
immersed in a liquid, the magnitude of damping
will be much greater and the dissipation of
energy much faster. The damping force is
generally proportional to velocity of the bob.
[Remember Stokes’ Law, Eq. (10.19)] and acts
opposite to the direction of velocity. If the
damping force is denoted by Fd, we have

Fd  = –b v     (14.30)

where the positive constant b depends on
characteristics of the medium (viscosity, for
example) and the size and shape of the block,
etc. Eq. (14.30) is usually valid only for small
velocity.

When the mass m is attached to the spring
and released, the spring will elongate a little and
the mass will settle at some height. This position,
shown by O in Fig 14.20, is the equilibrium
position of the mass. If the mass is pulled down
or pushed up a little, the restoring force on the
block due to the spring is F

S
 = –kx, where x is

the displacement* of the mass from its
equilibrium position. Thus, the total force acting
on the mass at any time t, is F = –kx –bv.

If a(t) is the acceleration of mass at time t,
then by Newton’s Law of Motion applied along
the direction of motion, we have

m a(t ) = –k x(t ) – b v(t ) (14.31)
Here we have dropped the vector notation

because we are discussing one-dimensional
motion.

Using the first and second derivatives of x (t)
for v (t) and a (t) respectively, we have

2d d
dd 2

x x
m  b   k x  0

tt
        (14.32)

The solution of Eq. (14.32) describes the
motion of the block under the influence of a
damping force which is proportional to velocity.
The solution is found to be of the form

x(t)  =   A e–b t/2m cos (ω′t + φ ) (14.33)

where a is the amplitude and ω ′ is the angular
frequency of the damped oscillator given by,

  
4m

b

m

k
'

2

2
   −= ω (14.34)

In this function, the cosine function has a
period 2π/ω′ but the function x(t) is not strictly
periodic because of the factor e–b t/2m which
decreases continuously with time. However, if the
decrease is small in one time period T, the motion
represented by Eq. (14.33) is approximately
periodic.

The solution, Eq. (14.33), can be graphically
represented as shown in Fig. 14.20. We can
regard it as a cosine function whose amplitude,
which is Ae–b t/2m, gradually decreases with time.

* Under gravity, the block will be at a certain equilibrium position O on the spring; x  here represents the
displacement from that position.

Fig. 14.20 A damped oscillator is approximately
periodic with decreasing amplitude of
oscillation. With greater damping,
oscillations die out faster.

Now the mechanical energy of the undamped
oscillator is 1/2 kA2. For a damped oscillator,
the amplitude is not constant but depends on
time. For small damping, we may use the same
expression but regard the amplitude as A e–bt/2m.

1
( )

2
2 –b t/mE t    k A  e   = (14.35)

Equation (14.35) shows that the total energy
of the system decreases exponentially with time.
Note that small damping means that the

dimensionless ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

m k

b is much less than 1.
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Of course, an expected, if we put b = 0, all
equations of a damped oscillator in this section
reduce to the corresponding  equations of an
undamped oscillator.

X Example 14.10   For the damped oscillator
shown in Fig. 14.20, the mass m of the block
is 200 g, k = 90 N m–1 and the damping
constant b is 40 g s–1. Calculate (a) the
period of oscillation, (b) time taken for its
amplitude of vibrations to drop to half of
its initial value and (c) the time taken for
its mechanical energy to drop to half its
initial value.

Answer (a) We see that km = 900.2 = 18 kg N

m–1 = kg2 s–2; therefore km = 4.243 kg s–1, and

b = 0.04 kg s–1. Therefore b is much less than

km . Hence the time period T from Eq. (14.34)

is given by

2
m

T  
k

  

   ±1

0.2 
2

90 N m

kg
   

   =  0.3 s

(b) Now, from Eq. (14.33), the time, T
1/2

, for the
amplitude to drop to half of its initial value is
given by,

ln(1/2)

/2
T    =1/2 b m

             
0.6 39

2 200 s
40

    

             = 6.93 s

(c) For calculating the time, t
1/2

, for its
mechanical energy to drop to half its initial value
we make use of Eq. (14.35). From this equation
we have,

E (t
1/2

)/E (0)   =  exp (–bt
1/2

/m)

Or                  �   =  exp (–bt
1/2

/m)

              ln (1/2)  =  –(bt
1/2

/m)

Or  t
1/2

  
–1

0.6 39
200 g

40 g s
    

 
  

              =  3.46 s
This is just half of the decay period for

amplitude. This is not surprising, because,
according to Eqs. (14.33) and (14.35), energy
depends on the square of the  amplitude. Notice
that there is a factor of 2 in the exponents of
the two exponentials. W

14.10 FORCED OSCILLATIONS AND
RESONANCE

When a system (such as a simple pendulum or
a block attached to a spring) is displaced from
its equilibrium position and released, it oscillates
with its natural frequency ω, and the oscillations
are called free oscillations. All free oscillations
eventually die out because of the ever present
damping forces. However, an external agency
can maintain these oscillations. These are called
force or driven oscillations. We consider the
case when the external force is itself periodic,
with a frequency ω

d
 called the driven frequency.

A most important fact of forced periodic
oscillations is that the system oscillates not with
its natural frequency ω, but at the frequency ω

d

of the external agency; the free oscillations die
out due to damping. A most familiar example of
forced oscillation is when a child in a garden
swing periodically presses his feet against the
ground (or someone else periodically gives the
child a push) to maintain the oscillations.

Suppose an external force F(t) of amplitude
F

0
 that varies periodically with time is applied

to a damped oscillator. Such a force can be
represented as,

F(t)  = F
o
 cos ω

d 
t (14.36)

The motion of a particle under the combined
action of a linear restoring force, damping force
and a time dependent driving force represented
by Eq. (14.36) is given by,

m a(t) = –k x(t) – bv(t) + F
o
 cos ω

d 
t    (14.37a)

Substituting d2x/dt2 for acceleration in
Eq. (14.37a) and rearranging it, we get
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2

2

d d
dd

x xm b kx 
tt

    F
o
 cos ω

d 
t (14.37b)

This is the equation of an oscillator of mass
m on which a periodic force of (angular)
frequency ω

d 
is applied. The oscillator initially

oscillates with its natural frequency ω. When
we apply the external periodic force, the
oscillations with the natural frequency die out,
and then the body oscillates with the (angular)
frequency of the external periodic force. Its
displacement, after the natural oscillations die
out, is given by

x(t)  =  A cos (ω
d
t  + φ ) (14.38)

where t is the time measured from the moment
when we apply the periodic force.

The amplitude A is a function of the forced
frequency ω

d
 and the natural frequency ω.

Analysis shows that it is given by

    2

d d

1/2

F
A

m b

 

        

 
  (14.39a)

and tan φ =
–v

xd

ο

οω
(14.39b)

where m is the mass of the particle and v
0
 and

x
0
 are the velocity and the displacement of the

particle at time t = 0, which is the moment when
we apply the periodic force. Equation (14.39)
shows that the amplitude of the forced oscillator
depends on the (angular) frequency of the
driving force. We can see a different behaviour
of the oscillator when ω

d
 is far from ω and when

it is close to ω. We consider these two cases.
(a) Small Damping, Driving Frequency far
from Natural Frequency : In this case, ω

d 
b will

be much smaller than m(ω2
 
–ω2

d
), and we can

neglect that term. Then Eq. (14.39) reduces to

2

d

F
A

m

 

   
 

         
(14.40)

Fig. 14.21 shows the dependence of the
displacement amplitude of an oscillator on the
angular frequency of the driving force for
different amounts of damping present in the
system. It may be noted that in all the cases the
amplitude is greatest when ω

d 
/ω = 1. The curves

in this figure show that smaller the damping,
the taller and narrower is the resonance peak.

If we go on changing the driving frequency,
the amplitude tends to infinity when it equals
the natural frequency. But this is the ideal case
of zero damping, a case which never arises in a
real system as the damping is never perfectly
zero. You must have experienced in a swing that
when the timing of your push exactly matches
with the time period of the swing, your swing
gets the maximum amplitude. This amplitude
is large, but not infinity, because there is always
some damping in your swing. This will become
clear in the (b).
(b) Driving Frequency Close to Natural

Frequency : If ω
d 
 is very close to ω

 
, m (ω2

 
– 2

d )
would be much less than ω

d 
b, for any reasonable

value of b, then Eq. (14.39) reduces to

F
A ο

ω
=

db
(14.41)

This makes it clear that the maximum
possible amplitude for a given driving frequency
is governed by the driving frequency and the
damping, and is never infinity. The phenomenon
of increase in amplitude when the driving force
is close to the natural frequency of the oscillator
is called resonance.

In our daily life we encounter phenomena
which involve resonance.  Your experience with
swings is a good example of resonance. You
might have realised that the skill in swinging to
greater heights lies in the synchronisation of
the rhythm of pushing against the ground with
the natural frequency of the swing.

To illustrate this point further, let us
consider a set of five simple pendulums of

Fig. 14.21 The graphs illustrate Eq. (14.41). The
resonant amplitude (ω = ω

d
.) decreases

with increasing damping.
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frequency of pendulum 1, i.e. the frequency of
the driving force but with different amplitudes.
They oscillate with small amplitudes. The
response of pendulum 4 is in contrast to this
set of pendulums. It oscillates with the same
frequency as that of pendulum 1 and its
amplitude gradually picks up and becomes very
large. A resonance-like response is seen. This
happens because in this the condition for
resonance is satisfied, i.e. the natural frequency
of the system coincides with that of the driving
force.

We have so far considered oscillating systems
which have just one natural frequency. In
general, a system may have several natural
frequencies. You will see examples of such
systems (vibrating strings, air columns, etc.) in
the next chapter. Any mechanical structure, like
a building, a bridge, or an aircraft may have
several possible natural frequencies. An
external periodic force or disturbance will set
the system in forced oscillation. If, accidentally,
the forced frequency ω

d
 happens to be close to

one of the natural frequencies of the system,
the amplitude of oscillation will shoot up(
resonance), resulting in possible damage. This
is why soldiers go out of step while crossing a
bridge. For the same reason, an earthquake will
not cause uniform damage to all building in an
affected area, even if they are built with the
same strength and materials. The natural
frequencies of a building depend on its height,
and other size parameters, and the nature of
building materials. The one with its natural
frequency close to the frequency of seismic wave
in likely to be damaged more.

SUMMARY

1. The motions which repeat themselves are called periodic motions.

2. The period T is the time required for one complete oscillation, or cycle. It is  related to
the frequency ν by,

ν
1
  T =

assorted lengths suspended from a common rope
as shown in Fig. 14.22. The pendulums 1 and 4
have the same lengths and the others have
different lengths. Now let us set pendulum 1 into
motion. The energy from this pendulum gets
transferred to other pendulums through  the
connecting rope and they start oscillating. The
driving force is provided through the connecting
rope. The frequency of this force is the frequency
with which pendulum 1 oscillates.  If we observe
the response of pendulums 2, 3 and 5, they first
start oscillating with their natural frequencies
of oscillations and different amplitudes, but this
motion is gradually damped and not sustained.
Their frequencies of oscillation gradually
change and ultimately they oscillate with the

Fig. 14.22 Five simple pendulums of different
lengths suspended from a common
support.
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OSCILLATIONS 355

The frequency ν of periodic or oscillatory motion is the number of oscillations per
unit time. In the SI, it is measured in hertz :

                      1 hertz = 1 Hz = 1 oscillation per second = 1s–1

3. In simple harmonic motion (SHM), the displacement x (t) of a particle from its
equilibrium position is given by,

x (t)  = A cos (ωt + φ ) (displacement),

in which A
 
 is the amplitude of the displacement, the quantity  (ωt + φ ) is the phase of

the motion, and φ is the phase constant. The angular frequency ω is related to the
period and frequency of the motion by,

                         
2

2    
T

      (angular frequency).

4. Simple harmonic motion is the projection of uniform circular motion on the diameter
of the circle in which the latter motion occurs.

5. The particle velocity and acceleration during SHM as functions of time are given by,

v (t)  =  –ωA sin (ωt + φ )            (velocity),

                        a (t)  =  –ω2A cos (ωt + φ )

                                = –ω2x (t)                            (acceleration),

Thus we see that both velocity and acceleration of a body executing simple harmonic
motion are periodic functions, having the velocity amplitude v

m
=ω A  and acceleration

amplitude a
m 

=ω 2A, respectively.

6. The force acting simple harmonic motion is proportional to the displacement and
is always directed towards the centre of motion.

7. A particle executing simple harmonic motion has, at any time, kinetic energy
K = � mv2  and potential energy U = � kx2.  If no friction is present the mechanical
energy of the system, E = K + U always remains constant even though K and U change
with time.

8. A particle of mass m oscillating under the influence of a Hooke’s law restoring force
given by F = – k x exhibits simple harmonic motion with

ω 
k

m
= (angular frequency)

2
m

T 
k

  (period)

Such a system is also called a linear oscillator.

9. The motion of a simple pendulum swinging through small angles is approximately
simple harmonic. The period of oscillation is given by,

2
L

T 
g

  

10. The mechanical energy in a real oscillating system decreases during oscillations because
external forces, such as drag, inhibit the oscillations and transfer mechanical energy
to thermal energy. The real oscillator and its motion are then said to be damped. If the
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damping force is given by F
d
 = –bv, where v is the velocity of the oscillator and b is a

damping constant, then the displacement of the oscillator is given by,

                                     x (t) = A
 
e–bt/2m cos (ω′t + φ )

where ω′, the angular frequency of the damped oscillator, is given by

                                   

2

2 
4

bk
   

m m
    

If the damping constant is small then ω′ ≈ ω, where ω is the angular frequency of the
undamped oscillator. The mechanical energy E of the damped oscillator is given by

                                    /1
2

2 bt mE(t) kA e   

11. If an external force with angular frequency ω
d
 acts on an oscillating system with natural

angular frequency ω, the system oscillates with angular frequency ω
d
. The amplitude of

oscillations is the greatest when

                                    ω
d
  =  ω

a condition called resonance.

POINTS TO PONDER

1. The period T is the least time after which motion repeats itself.  Thus, motion repeats
itself after nT where n is an integer.

2. Every periodic motion is not simple harmonic motion. Only that periodic motion
governed by the force law F = – k x is simple harmonic.

3. Circular motion can arise due to an inverse-square law force (as in planetary motion)
as well as due to simple harmonic force in two dimensions equal to: –mω2r.  In the
latter case, the phases of motion, in two perpendicular directions (x and y) must differ
by ω/2. Thus, a particle subject to a force  –mω2r with initial position (o, A) and
velocity (ωA, o) will move uniformly in a circle of radius A.

4. For linear simple harmonic motion with a given ω two arbitrary initial conditions are
necessary and sufficient to determine the motion completely.  The  initial  condition
may be (i) initial position and initial velocity or (ii) amplitude and phase or (iii) energy
and phase.

© N
CERT

no
t to

 be
 re

pu
bli

sh
ed
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5. From point 4 above, given  amplitude or energy, phase of motion is determined by the
initial position or initial velocity.

6. A combination of two simple harmonic motions with arbitrary amplitudes and phases
is not necessarily periodic.  It is periodic only if frequency of one motion is an integral
multiple of the other’s frequency.  However, a periodic motion can always be expressed
as a sum of infinite number of harmonic motions with appropriate amplitudes.

7. The period of SHM does not depend on amplitude or energy or the phase constant.
Contrast this with the periods of planetary orbits under gravitation (Kepler’s third
law).

8. The motion of a simple pendulum is simple harmonic for small angular displacement.

9. For motion of a particle to be simple harmonic, its displacement x must be expressible
in either of the following forms :

x = A cos ωt  +  B sin ωt

x = A cos (ωt + α ), x =  B sin (ωt + β )

The three forms are completely equivalent (any one can be expressed in terms of any
other two forms).

Thus, damped simple harmonic motion [Eq. (14.31)] is not strictly simple harmonic. It
is approximately so only for time intervals much less than 2m/b where b is the damping
constant.

10. In forced oscillations, the steady state motion of the particle (after the force oscillations
die out) is simple harmonic motion whose frequency is the frequency of the driving
frequency ω

d
, not the natural frequency ω of the particle.

11. In the ideal case of zero damping, the amplitude of simple harmonic motion at resonance
is infinite. This is no problem since all real systems have some damping, however,
small.

12. Under forced oscillation, the phase of harmonic motion of the particle differs from the
phase of the driving force.

Exercises

14.1 Which of the following examples represent periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other

and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its centre of mass.
(d) An arrow released from a bow.

14.2 Which of the following examples represent (nearly) simple harmonic motion and
which represent periodic but not simple harmonic motion?
(a) the rotation of earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a

point slightly above the lower most point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.

14.3 Fig. 14.23 depicts four x-t plots for linear motion of a particle. Which of the plots
represent periodic motion? What is the period of motion (in case of periodic motion) ?
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Fig. 14.23

14.4 Which of the following functions of time represent (a) simple harmonic, (b) periodic
but not simple harmonic, and (c) non-periodic motion? Give period for each case of
periodic motion (ω is any positive constant):
(a) sin ωt – cos ωt
(b) sin3 ωt
(c) 3 cos (π/4 – 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp (–ω2t2)
(f) 1 + ωt + ω2t2

14.5 A particle is in linear simple harmonic motion between two points, A and B, 10 cm
apart. Take the direction from A to B as the positive direction and give the signs of
velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and
(f) at 4 cm away from B going towards A.

14.6 Which of the following relationships between the acceleration a and the displacement
x of a particle involve simple harmonic motion?
(a) a = 0.7x
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(b) a = –200x2

(c) a = –10x
(d) a = 100x3

14.7 The motion of a particle executing simple harmonic motion is described by the
displacement function,

                 x(t) = A cos (ωt + φ ).

If the initial (t = 0) position of the particle is 1 cm and its initial velocity is ω cm/s,
what are its amplitude and initial phase angle ? The angular frequency of the
particle is π s–1. If instead of the cosine function, we choose the sine function to
describe the SHM : x = B sin (ωt + α), what are the amplitude and initial phase of the
particle with the above initial conditions.

14.8 A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20
cm. A body suspended from this balance, when displaced and released, oscillates
with a period of 0.6 s. What is the weight of the body ?

14.9 A spring having with a spring constant 1200 N m–1 is mounted on a horizontal
table as shown in Fig. 14.24. A mass of 3 kg is attached to the free end of the
spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Fig. 14.24

Determine (i) the frequency of oscillations, (ii)  maximum acceleration of the mass,
and (iii) the maximum speed of the mass.

14.10 In Exercise 14.9, let us take the position of mass when the spring is unstreched as
x = 0, and the direction from left to right as the positive direction of
x-axis. Give x as a function of time t for the oscillating mass if at the moment we
start the stopwatch (t = 0), the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.
In what way do these functions for SHM differ from each other, in frequency, in
amplitude or the initial phase?

14.11 Figures 14.25 correspond to two circular motions. The radius of the circle, the
period of revolution, the initial position, and the sense of revolution (i.e. clockwise
or anti-clockwise) are indicated on each figure.

Fig. 14.25
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Obtain the corresponding simple harmonic motions of the x-projection of the radius
vector of the revolving particle P, in each case.

14.12 Plot the corresponding reference circle for each of the following simple harmonic
motions. Indicate the initial (t =0) position of the particle, the radius of the circle,
and the angular speed of the rotating particle. For simplicity, the sense of rotation
may be fixed to be anticlockwise in every case: (x is in cm and t is in s).

(a) x = –2 sin (3t + π/3)

(b) x = cos (π/6 – t)

(c) x = 3 sin (2πt + π/4)

(d) x = 2 cos πt

14.13 Figure 14.26 (a) shows a spring of force constant k clamped rigidly at one end and
a mass m attached to its free end. A force F applied at the free end stretches the
spring. Figure 14.26 (b) shows the same spring with both ends free and attached to
a mass m at either end. Each end of the spring in Fig. 14.26(b) is stretched by the
same force F.

Fig. 14.26

(a) What is the maximum extension of the spring in the two cases ?
(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the

period of oscillation in each case ?

14.14 The piston in the cylinder head of a locomotive has a stroke (twice the amplitude)
of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency
of 200 rad/min, what is its maximum speed ?

14.15 The acceleration due to gravity on the surface of moon is 1.7 m s–2. What is the time
period of a simple pendulum on the surface of moon if its time period on the surface
of earth is 3.5 s ? (g on the surface of earth is 9.8 m s–2)

14.16 Answer the following questions :
(a) Time period of a particle in SHM depends on the force constant k and mass m

of the particle:

T
m

k
= 2π . A simple pendulum executes SHM approximately. Why then is

the time period of a pendulum independent of the mass of the pendulum?

(b) The motion of a simple pendulum is approximately simple harmonic for small
angle oscillations. For larger angles of oscillation, a more involved analysis

shows that T is greater than 2π
l

g
.  Think of a qualitative argument to

appreciate this result.

(c) A man with a wristwatch on his hand falls from the top of a tower. Does the
watch give correct time during the free fall ?
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(d) What is the frequency of oscillation of a simple pendulum mounted in a cabin
that is freely falling under gravity ?

14.17 A simple pendulum of length l and having a bob of mass M is suspended in a car.
The car is moving on a circular track of radius R with a uniform speed v. If the
pendulum makes small oscillations in a radial direction about its equilibrium
position, what will be its time period ?

14.18 A cylindrical piece of cork of density of base area A and height h floats in a liquid of
density ρ

l
.
 
The cork is depressed slightly and then released. Show that the cork

oscillates up and down simple harmonically with a period

                                     T
h

g1

= 2π
ρ

ρ

where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).

14.19 One end of a U-tube containing mercury is connected to a suction pump and the
other end to atmosphere. A small pressure difference is maintained between the
two columns. Show that, when the suction pump is removed, the column of mercury
in the U-tube executes simple harmonic motion.

Additional Exercises

14.20 An air chamber of volume V has a neck area of cross section a into which a ball of
mass m just fits and can move up and down without any friction (Fig.14.27). Show
that when the ball is pressed down a little and released , it executes SHM. Obtain
an expression for the time period of oscillations assuming pressure-volume variations
of air to be isothermal [see Fig. 14.27].

14.21 You are riding in an automobile of mass 3000 kg. Assuming that you are examining
the oscillation characteristics of its suspension system. The suspension sags
15 cm when the entire automobile is placed on it. Also, the amplitude of  oscillation
decreases by 50% during one complete oscillation. Estimate the values of (a) the
spring constant k and (b) the damping constant b for the spring and shock absorber
system of one wheel, assuming that each wheel supports 750 kg.

14.22 Show that for a particle in linear SHM the average kinetic energy over a period of
oscillation equals the average potential energy over the same period.

14.23 A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire
is twisted by  rotating the disc and released. The period of torsional oscillations is
found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring
constant of the wire. (Torsional spring constant α is defined by the relation
J = –α θ , where J is the restoring couple and θ the angle of twist).

Fig.14.27
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14.24 A body describes simple harmonic motion with an amplitude of 5 cm and a period of
0.2 s. Find the acceleration and velocity of the body when the displacement is
(a) 5 cm (b) 3 cm (c) 0 cm.

14.25 A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal
plane without friction or damping. It is pulled to a distance x

0
 and pushed towards

the centre with a velocity v
0
 at time t = 0. Determine the amplitude of the resulting

oscillations in terms of the parameters ω, x
0
 and v

0
. [Hint : Start with the equation

x = a cos (ωt+θ) and note that the initial velocity is negative.]
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