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Intro 
�  In this section, we will relate macroscopic properties of  

gases (like Pressure, Temperature) to the behavior of  the 
microscopic components (atoms, molecules) 

�  This will also serve as an introduction to the topic of  
Statistical Mechanics 
�  We apply Newton’s laws of  motion to a very large collection of  

objects, e.g., 1,000 grams of  H2 gas ~ 6e26 molecules 
�  Newton’s laws apply, for instance, to a collision of  a single 

atom / molecule with the walls of  the gas container, or to each 
other, and from that we will derive expressions for the 
Pressure / Temperature of  a volume of  gas, specific heat, etc. 

�  We will deal with (ideal) gases, i.e., those where the 
interactions between atoms/molecules are very weak 

�  The model of  an ideal gas is what is known as the kinetic 
theory of  gases. We will treat an ideal gas as follows ==> 
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Model 
�  Gas: composed of  point-like atoms/molecules 

�  In a cube of  dimension d, there is a very large number of  atoms/
molecules, and separation between them is much larger than their size 

�  The atoms/molecules will obey Newton’s laws. 

�  Each atom/molecule can move in any direction at any speed => isotropic 

�  Atoms/molecules interact via short-range forces during elastic collisions 
with the walls or with each other 

�  I am talking about atomic (or molecular) gases 
�  For atomic gases, the atoms only have translational motions (or degrees of  

freedom) 
�  Molecular gases also have rotational and/or vibrational degrees of  freedom 

v 

A molecule 
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Math 
�  Since the collision is elastic |vi| = |vf| and vf

x = -vi
x and    

vf
y = vi

y 

�  To make the rest of  the discussion simpler, I’m going to drop 
the suffixes i and f  and instead label v of  an atom / molecule 
as vk, where k means the kth element 

�  In this collision, vk
y remains unchanged, but vk

x is reversed 

�  Recall p, i.e., momentum = mv 

�  => Δpk
x = -m0 vk

x – (m0 vk
x) = -2 m0 vk

x 

�  Also, recall that F = dp/dt [ = d(mv)/dt = m dv/dt = ma ] 

�  If  the collision lasts for time Δtc, then Fk (on element) * Δtc 
= Δpk

x = -2 m0 vk
x 

�  Average force that wall exerts on the kth element 

 

vi
x 

vi
y 

vf
x 

vf
y 

vi
 

vf
 

wall 

“element” 

all of  the 
elements have the 
same mass, m0 
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Force 

�  If  the element collides with one wall and then the other wall 
and then back at the 1st, then it has travelled a distance 2d 
�  Δt (between collisions) = 2d / vk

x 

�  We want to get the average force over many collisions, i.e., as 
the element goes back and forth 

�  The momentum change only happens during collisions with 
the wall, and so we are able to write 
�  Fk Δt = Fk (2d/vk

x) = -2m0vk
x 

�  Fk = -2m0vk
x^2/(2d) = -m0vk

x^2/d 

�  Therefore, by Newton’s 3rd Law, the kth element exerts an 
average force of  +m0vk

x^2/d on the container wall 

�  Total average force F = Σ m0vk
x^2/d = m0/d Σ vk

x^2 exerted 
by all of  the elements upon the container wall 

d 

k=1 

N 
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Pressure 
�  If  vk

x is the speed of  the kth element along the x-
direction, then the (RMS) speed averaged over all of  
the elements is  
�  vx^2 = Σ vk

x^2 / N => Σ vk
x^2 = N * vx^2 

�  F = (m0/d) N vx^2 

�  In reality, each element is free to move in any 
direction, with any speed, thus 
�  vk^2 = vk

x^2 + vk
y^2 + vk

z^2 and 
�  v^2 = vx^2 +vy^2 + vx^2 
�  Since the motion of  the element is isotropic, vx^2 = 

vy^2 = vz^2 or v^2 = 3*vx^2 

�  Our equation then becomes F = (1/3)(m0/d)Nv2 

�  Now Pressure = (F/A) = (F/d2) = (1/3)(m0/d3)Nv2 = 
(1/3)(N/V)m0v2 = (2/3)(N/V)(1/2)m0v2 

k=1 

N 

k=1 

N 

Volume 
of  box = 
V = d3 

vk = vk
x i + vk

y j + vk
z k 

=> |vk|2 = mag. of  vector 
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Homework 
 

 

 

TURN IT IN RIGHT NOW 
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Temperature 
�  We get P = (2/3)(N/V)(1/2)m0v2. Some comments: 

�  Keeping N and v2 fixed => P α 1/V (alpha is “prop. to”) 

�  Keeping V and v2 fixed => P α N 
�  Keeping V and N fixed => P α v2 (average bar omitted) 

�  In the chapter on temperature, we had said that the 
equation governing an ideal gas was 
�  P V = n R T = ( N / NA ) R T = N kB T 

�  Above equation has PV = (2/3)N(1/2)m0v2 = NkBT or 
T = (2/(3kB))(1/2)m0v2 or (1/2)m0v2 = (3/2)kBT 

�  If  that is the average translational KE per element, 
then KEtot = (3/2)NkBT = (3/2)nRT (a BIG RESULT) 

average translational KE of  gas 

n is #moles 
NA is Avogadro’s #, R const. 
kB is Boltzmann’s constant = 
1.38e-23 J/K 
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Freedom 
�  Since an element (atom/molecule) can move in 3-d 

=> average translational KE, per degree of  freedom = 
(1/2)kBT 

�  As it turns out, one can show we get the same result, 
whether we are talking about translational, rotational, 
or vibrational degrees of  freedom 

�  We can re-write this and say that each degree of  
freedom contributes (1/2)kBT to energy of system 

�  EQUIPARTITION of  energy -> a very important result. 
�  We will re-visit this later on in the course 

translational 
motion 
(together) translation 
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Example 
�  A tank of  He has volume = 0.3 m^3 and contains 

2.0 moles of  gas at 20°C (assume that helium is a 
mono-atomic ideal gas). 
�  (a.) What is the total KEtrans? 
�  (b.) What is the average KE per atom? 

�  (c.) What is the RMS (root-mean-squared) velocity 
(magnitude)? Try putting in units you know (like mph) 
Surprised?? 

�  You will need to remember how many protons and 
neutrons there are in He (2 and 2), and approximate 
mass of  1 nucleon (p or n) by itself  (1.67e-27 kg) 
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Mean Free Path 
�  Just want to point out that the gas atoms also 

encounter other atoms as they are zipping around 
the container 

�  These collisions cause the original atom’s direction 
to change 

�  There is a concept called Mean Free Path, which 
estimates the average distance between collisions 
�  We will come back to this later as needed 
�  This will also be in your text reading assignment 

�  As number of  atoms increases or the volume of  a 
container decreases (or P increases) then the MFP 
will decrease 
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Distribution of  Speeds of  
Atoms/Molecules of  an Ideal Gas 

�  In the previous discussion, we simply said that atoms/
molecules can have any speed in any direction. From the 
previous example, it is clear that the average speed 
depends on T, V, # of  moles. 
�  How are individual speeds distributed around this value? 

�  nV(E) = noe-E/(kBT) is # density (Boltzmann Distribution) 
�  nV(E)dE is the number of  atoms/molecules per unit volume 

with energies in between E and E + dE 

�  n0dE is the number between E = 0 and dE 

�  Maxwell-Boltzmann’s speed distribution function is Nv= 
4 π N ( m0 / (2πkBT) ) 3/2 v2 e –m0v^2/(2kBT) 

�  Nvdv is # of  atoms/mols. with speeds between v and v+dv 12 



Example 
�  Consider a system where atoms can occupy 2 

different energy levels E1 and E2, which are 
separated by 1.5 eV, that is, 1.5 * 1.602e-19 J. The 
gas is a at a temperature of  2,500 Kelvin. 
�  (a.) Determine the ratio of  the # of  atoms in the 

higher to the lower energy states. 

�  (b.) With respect to every 1,000 atoms in the lower 
energy state, approximately how many atoms are in 
the higher energy state, at 2500 K? 

�  (We shall discuss these issues in greater detail) 

E2 

E1 
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Various 
Speeds 

�  Using the expression from                                 
slide 11 we’ll get vavg, vrms, and vmp 

�  All three give you an idea about this distribution (MB). 

�  vmp is where dNv/dv = 0. It is 1.41 √ [ (kBT) / m0 ] 

�  vavg = ∫ (v Nv dv) / N = 1.60 √ [ (kBT) / m0 ] 

�  vrms = √v2 = √[∫(v2 Nv dv) / N] = 1.73 √ [ (kBT) / m0 ] 

�  Example: in a cup of  how water, water molecules 
will have a spread of  speeds 
�  The higher ones can escape from the surface, thereby 

lowering the mean value of  the distribution => lower 
T or cooling (although liquid not perfectly Maxwellian) 

v 

Nv 

0 

∞ 0 

∞ 
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Specific Heat of  an Ideal Gas 
�  Things get a bit more complicated compared to 

solid and liquids in this case at least, because we 
can transfer heat to a gas in many different ways 
�  P changes but Volume is constant 
�  P is constant but Volume changes 

�  Both Pressure and Volume can change 

�  Since ΔT is same in all three cases => ΔEint is same 
�  Recall discussion from last chapter 

�  From 1st Law of  Thermo: ΔEint = Q + W, W = - ∫ P dV 

�  Depending on which path we take, W will differ 
�  However, since ΔEint same then the Q will be different, 

depending on the path which we take (W is on gas) 
15 

(An isothermal 
P vs. V diagram 
example curve: 
on whiteboard) 



Molar Specific Heats 
�  We define QV = nCVΔT and QP = nCPΔT. Let’s derive CV 

�  Specific heats at const. volume and const. pressure 
�  It turns out that QP > QV 

�  At constant volume W = - ∫ P dV = 0, while at constant 
pressure W = - ∫ P dV = -P ∫ dV = -P (Vf – Vi) = P (Vi – Vf) 
�  So, to keep ΔEint the same, Q is larger for latter case 

�  CV: molar specific heat @ constant volume 
�  If  we transfer heat into this system, its internal E will 

increase => temperature will increase 
�  For a mono-atomic gas => KE_translational will increase 

(which is equal to (3/2)NkBT = (3/2)nRT ) 

�  Eint = (3/2)NkBT = (3/2)nRT. As W=0 here, Q = ΔEint 

�  Q = (3/2)NkBΔT = (3/2)nRΔT => CV = (1/n)(QV/ΔT) = (1/
n)(ΔEint/ΔT) = (1/n)(3/2)nR = (3/2)R = 12.5 J/(mol*K) 16 



CP, the Molar Specific 
Heat at Constant Pressure 
�  ΔEint = Q + W = nCPΔT + (-PΔV) 

�  ΔEint depends only on temperature, so ΔEint = nCVΔT (from 
previous slide). 

�  In both cases, T -> T + ΔT, so ΔEint is the same. 

�  nCVΔT = nCPΔT – PΔV 
�  For an ideal gas, PV = nRT => PΔV = nRΔT 

�  nCVΔT = nCPΔT – nRΔT 
�  Or CP – CV = R => CP = CV + R 
�  CP = 12.5 + 8.1 ~ 20.6 J / ( mol - K ) 

�  It would seem that both CP and CV are constant, 
regardless of  the gas with which we deal. 
�  This works for mono-atomic gases such as He, Ar, or Ne 
�  But for di-atomic/tri-atomic H2, N2, CO2, SO2 the values of  

CP & CV are different, yet CP – CV ~ R still! 
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CV and CP 
continued 

�  What’s going on with diatomic/triatomic? 
�  We alluded to this: a mono-atomic gas will only have 

translational degrees of  freedom 
�  However, di-atomic and tri-atomic gases will also have 

rotational and vibrational d.o.f. (Deg. of  Freedom) 

�  Consider a di-atomic gas, 
�  It can rotate along 3 axes and so KE_rot = (1/2) Ι ω2 

(I = moment of  inertia). 

�  However, Iy = 0, so we have 2 degrees of  freedom 

�  Ignore vibration for now 
�  So, Eint = 3N(1/2)kBT + 2N(1/2)kBT =          

(5/2)NkBT = (5/2)nRT  instead of  a (3/2) ! 18 

Experimental	Values	(at	some	temp.)	
C_P	 C_V	 C_P	-	C_V	

Mono-atomic	gases	 ~20.8	 ~12.5	 ~8.3	
Di-atomic	gases	 ~30	 ~21.7	 ~8.3	
Tri-atomic	gases	 35-40	 27-31	 ~8.5	



Degrees of  Freedom Revisited 
�  CV = (1/n)dEint/dT = (5/2)R = 20.8 J/(mol*K) 

�  CP = CV + R ~ 28.9 J/(mol*K) 
�  This agrees pretty well with the previous slide 
�  But why, since we have ignored vibrational modes? 

�  So, we should have had Eint = 3N(1/2)kBT + 
2N(1/2)kBT + 2N(1/2)kBT 
�  CV = (7/2)R = 29.1 J/(mol*K) 
�  CP = CV + R = 37.2 J/(mol*K) 

�  This disagrees with the numbers for di-atomic gases 
�  But, this seems to agree well with the tri-atomic ones?? 

�  One can conclude that our model sort of  works, but 
not exactly, which is not very surprising (Why?) 
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Empirical Data 
�  This is unsurprising because we have only relied on 

classical physics, and have also ignored interactions 
between the gas atoms and molecules 
�  We need Quantum Mechanics (QM) in order to do that 
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�  But actually to be more fair, 
as you increase T, more and 
more degrees of  freedom 
come into play 
�  And our simple model 

seems to be holding up! 

�  Life is complicated! 
�  At times we can get by 

with simple models, but 
when they cannot explain 
data, then we need to 
modify the initial model 

�  We will return to this when 
we get into QM HyperPhysics 



Example 
�  A 1.0 liter insulated bottle is full of  hot tea at 90°C. 

You pour out 1 cup of  tea and immediately put the 
stopper back. Estimate the temperature of  the 
remaining liquid, assuming that you replace the one 
cup of  tea with air at room temperature. 
�  Assume that the tea is mostly water (density = 1 g/mL) 
�  1 cup is about 6 oz. or 180 cc or cm^3 Call it ~200 mL 
�  What is room temperature? For simplicity let’s say 20°C 
�  Assume air is an ideal but di-atomic gas (N2 mostly) 

�  Hint on answer: It will not be much of  a change in T 
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Adiabatic Process for Ideal Gas 
�  This is when no heat transferred in/out of  system 

�  That is, Q = 0, and this can happen when you compress a 
volume of  gas very quickly (e.g., in a car engine) 

�  Or, it can happen if  you have a system insulated from its 
surroundings (time assumed not to be a factor here) 

�  In such a process, all (P, V, and T) change (board ex.) 
�  Eint only depends on T, so ΔEint is proportional to ΔT 
�  From previous discussion, ΔEint = nCVΔT and from first 

law ΔEint = W + Q => nCVΔT = -P dV 

�  The equation for an ideal gas is P V = n R T 
�  P dV = V dP = n R dT 
�  P dV + V dP = -n R P dV / ( n CV ) = ( -R / CV ) P dV 
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W=-∫PdV or dW = -PdV; Q=0 



Adiabatic cont. 
�  Writing R = CP – CV and dividing by P times V, 

�  dV / V + dP / P = - [ ( CP – CV ) / CV ] (dV / V) 
�  dV / V + dP / P = ( 1 – γ ) ( dV / V ) 

�  Where gamma = CP / CV, a.k.a. the specific heat ratio 

�  dP / P = - γ ( dV / V ) or dP / P + γ dV / V = 0 

�  Integrating, we get ln P + γ ln V = constant. 
�  Or, ln P + ln ( Vγ ) = constant or ln (PVγ) = constant or 

PVγ = constant 

�  In contrast, for an isothermal process 
�  PV = constant (And you know what constant is) 
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New Assignment 
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