Kinetic Theory of Gases




Intro

® |n this section, we will relate macroscopic properties of
gases (like Pressure, Temperature) to the behavior of the
microscopic components (atoms, molecules)

® This will also serve as an introduction to the topic of
Statistical Mechanics

® We apply Newton’s laws of motion to a very large collection of
objects, e.g., 1,000 grams of H, gas ~ 6e26 molecules

e Newton’s laws apply, for instance, to a collision of a single
atom / molecule with the walls of the gas container, or to each
other, and from that we will derive expressions for the
Pressure / Temperature of a volume of gas, specific heat, etc.

* We will deal with (ideal) gases, i.e., those where the
Interactions between atoms/molecules are very weak

The model of an ideal gas is what is known as the kineti
ases. We will treat an ideal '




Model

Gas: composed of point-like atoms/molecules

In a cube of dimension d, there is a very large number of atoms/
molecules, and separation between them is much larger than their size

The atoms/molecules will obey Newton’s laws.
Each atom/molecule can move in any direction at any speed => isotropic

Atoms/molecules interact via short-range forces during elastic collisions
with the walls or with each other

| am talking about atomic (or molecular) gases

® For atomic gases, the atoms only have translational motions (or degrees of
freedom)

® Molecular gases also have rotational and/or vibrational degrees of freedom

A molecule
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Since the collision is elastic |ﬂ = [V;| and v = -v* and
ny = Viy

® To make the rest of the discussion simpler, I'm going to drop

the suffixes i and f and instead label Voof an ?tom / molecu/le
as Vv, where k means the kth element “olerhent”

In this collision, vY remains unchanged, but v, * is reversed

s >
Recall p; I.e., momentum = mv all of the

) ) . ) elements have the
=> Apk = -mo Vk — (mo Vk ) = -2 mO Vk Same mass, my

Also, recall that F = dp7dt [ = d(mv)/dt = m dv7dt = ma’]

If the collision lasts for time At,, thenﬁ (on element) * At
» X = '2 mo ka




Force

< >
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If the element collides with one wall and then the other wall
and then back at the 1st, then it has travelled a distance 2d

® At (between collisions) = 2d / v, X

We want to get the average force over many collisions, i.e., as
the element goes back and forth

The momentum change only happens during collisions with
the wall, and so we are able to write

o §At =F, (2d/v,) = -2mgv,*
® Fk = '2mOVkXA2/(2d) = 'mOVkXAZ/d

Therefore, by Newton’s 3 Law, the kth element exerts an
average force of +mgyv,*"2/d on the container wall

tal average force F= ﬁl MoV, " 2/d = mp/d Z v, X" 2
elements upon the c |



Pressure

® |f v.Xis the speed of the k" element along the x-

f

direction, then the (RMS) speed averaged over all of
the elements is

o v 2=3v"2/N=>3vx*2=N*y"2
® F=(my/d)Nv, "2

® |n reality, each element is free to move in any

direction, with any speed, thus

® v"2 =V "2+ V"2 + V"2 and zzl\\%;t\éﬁyaj ' kaz . t
© V2=V, "2 4,2 + V2 > [T = TS 8
® Since the motion of the element is isotropic, v,”2 =

V,"2 =Vv,72 orv*2 = 3*y, "2
Our equation then becomes F = (1/3)(my/d)Nv2

® Now Pressure = (F/A) = (F/d?) = (1/3)(my/d3)

N/V)mgvZ = (2/3)(N/V




Homework

TURN IT IN RIGHT NOW




Temperature

average translational KE of gas

* We get P = (2/3)(N/V)(1/2)m07. Some comments:
e Keeping N and v2 fixed => P a 1/V (alpha is “prop. to”)
® Keeping V and v2 fixed => P a N
e Keeping V and N fixed => P a v2 (average bar omitted)

®* |n the chapter on temperature, we had said that the
equation governing an ideal gas was nis #moles

N, is Avogadro’s #, R const.

® PV=nRT=(N/Ny)RT=NKkgT liségengtZJr}wznnsconstant—

® Above equation has PV = (2/3)N(1/2)myv? = NkgT or
T =(2/(3kg))(1/2)myv? or (1/2)myv? = (3/2)kgT

\ If that is the average translational KE per element,
then KE,; = (3/2)NkgT = (3/2)nRT (a BIG RES




Freedom

® Since an element (atom/molecule) can move in 3-d
=> average translational KE, per degree of freedom =

(1/2)ksT

® As it turns out, one can show we get the same result,
whether we are talking about translatlonal rotatlonal,
or vibrational degrees of freedom

translational ~ ihrational motion
(together) ﬁ;’_ -

translation

monatomic diatomic |

® We can re-write this and say that each degree of
freedom contributes (1/2)kgT to energy of system

~* EQUIPARTITION of energy -> a very |mportant res
Il re-visit this later on in the co "




Example

®* A tank of He has volume = 0.3 m”~3 and contains
2.0 moles of gas at 20°C (assume that helium is a
mono-atomic ideal gas).

® (a.) What is the total KE,,,..?
® (b.) What is the average KE per atom?

® (c.) What is the RMS (root-mean-squared) velocity
(magnitude)? Try putting in units you know (like mph)
Surprised??

® You will need to remember how many protons and
neutrons there are in He (2 and 2), and approximate
mass of 1 nucleon (p or n) by itself (1.67e-27 k




Mean Free Path

Just want to point out that the gas atoms also
encounter other atoms as they are zipping around
the container

These collisions cause the original atom’s direction
to change

There is a concept called Mean Free Path, which
estimates the average distance between collisions

e \We will come back to this later as needed
® This will also be in your text reading assignment

As number of atoms increases or the volume of a
container decreases (or P increases) then the MFP
Il decrease



Distribution of Speeds of

Atoms/Molecules of an Ideal Gas

® |n the previous discussion, we simply said that atoms/
molecules can have any speed in any direction. From the
previous example, it is clear that the average speed

depends on T, V,

# of moles.

® How are individual speeds distributed around this value?

* |In(E) = n et/ kDj

Is # density (Boltzmann Distribution)

® n,(E)dE is the number of atoms/molecules per unit volume
with energies in between E and E + dE

® nydE is the number between E =0 and dE

* Maxwell-Boltzmann’s speed distribution function is N,=

4 N ( mo G 2alcal e ioicae

—mv”~2/(2k,T)

# of atoms/mols. wit




2 Example

® Consider a system where atoms can occupy 2
different energy levels E£; and E,, which are
separated by 1.5 eV, that is, 1.5 * 1.602e-19 J. The

gas is a at a temperature of 2,500 Kelvin.

® (a.) Determine the ratio of the # of atoms in the
higher to the lower energy states.

® (b.) With respect to every 1,000 atoms in the lower
energy state, approximately how many atoms are in
the higher energy state, at 2500 K?

® (We shall discuss these issues in greater detail)
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® Using the expression from =0 —om o
slide 11 we'll get v g, Vs, @nd v, sama v

e All three give you an idea about this distribution (MB).
® v, is where dN,/dv = 0. Itis 1.41 V[ (kgT) / mq]
o vavg:(z(v N, d\i) / N=1.60+[(kgT)/ mg]
o v . =W2= v[g)(vz N, dv) / N]=1.73 V[ (kgT) / my ]

e Example: in a cup of how water, water molecules
will have a spread of speeds

® The higher ones can escape from the surface, thereby
lowering the mean value of the distribution => low

cooling (although liquid not per

Probability density (s/m)




Specific Heat of an |ldeal Gas

® Things get a bit more complicated compared to
solid and liquids in this case at least, because we
can transfer heat to a gas in many different ways

® P changes but Volume Is constant (An isothermal

e P is constant but Volume changes P, V ClEEm
example curve:

® Both Pressure and Volume can change on whiteboard)

® Since AT is same in all three cases => AE, . is same
® Recall discussion from last chapter

® From 1st Law of Thermo: AE,, =Q+ W, W=-]PdV

® Depending on which path we take, W will differ

B ® However since AE,, same then the Q will be differer
e ing on the path which we take (V or




Molar Specific Heats

* We define Q, = nC,AT and Qp = nCpAT. Let’s derive C,
e Specific heats at const. volume and const. pressure

® |t turns out that Qp > Q,

* At constant volume W = - [ P dV = 0, while at constant
pressure W=-[PdV=-P[dV=-P(V,=V)=P (V.- V)
® 5o, to keep AE,; the same, Q is larger for latter case

® C,: molar specific heat @ constant volume

® |f we transfer heat into this system, its internal E will
Increase => temperature will increase

® For a mono-atomic gas => KE_translational will increase
(which is equal to (3/2)NkgT = (3/2)nRT )

- * B = (372)NkgT = (3/2)nRT. As W=0 here, Q = AE;;
_* Q= (3/2)NKgAT = (3/2)nRAT => Cy = (1/n)(Q,/AT

1/n)(3/2)nR = |




Cp, the Molar Specific
Heat at Constant Pressure

® AE_ . =Q+ W =nCuAT + (-PAV)

® AE, . depends only on temperature, so AE, ;, = nC AT (from
for an previous slide).

ideal gas. e |n both cases, T-> T + AT, so AE, ; IS the same.

® nC,AT = nCpAT — PAV
® fFor an ideal gas, PV = nRT => PAV = nRAT

® nCyAT = nCpAT — NRAT
® OI’CP—CV:R:>CP:CV+R
® C.=125+81~20.6J/(mol-K)

® |t would seem that both C; and C,, are constant,
regardless of the gas with which we deal.

® This works for mono-atomic gases such as He, Ar, or Ne
® But for di-atomic/tri-atomic H,, N,, CO,, SO, t

are different, yet C, —




Experimental Values (at some temp.)

cP

cCV

CP-CV

Mono-atomic gases

~20.8

~12.5

~8.3

Di-atomic gases

~30

~21.7

~8.3

Tri-atomic gases

35-40

27-31

~8.5

Cy and Cp
continued

* What’s going on with diatomic/triatomic?

® We alluded to this: a mono-atomic gas will only have
translational degrees of freedom

® However, di-atomic and tri-atomic gases will also have
rotational and vibrational d.o.f. (Deg. of Freedom)

e

® Consider a di-atomic gas,

® |t can rotate along 3 axes and so KE_rot = (1/2) I w?
(I = moment of inertia).

e However, |, =0, so we have 2 degrees of freedom

50, E;

|nt

~ ® |gnore vibration for now
- = 3N(1/2)kgT + 2N(1/2)kBT =




Degrees of Freedom Revisited
e C,=(1/n)dE, ./dT = (5/2)R = 20.8 J/(mol*K)

® C, =Cy+ R~ 28.9 J/(mol*K)
® This agrees pretty well with the previous slide @ @
® But why, since we have ignored vibrational modes? > there

are two
® So, we should have had E; . = 3N(1/2)kgT +
2N(1/2)kgT + 2N(1/2)ksT
o Cy,=(7/2)R =29.1 J/(mol*K)
® C.=Cy,+R=37.2J/(mol*K)

® This disagrees with the numbers for di-atomic gases
® But, this seems to agree well with the tri-atomic ones??

One can conclude that our model sort of works b
, which is not very surpri




Empirical Data

® This is unsurprising because we have only relied on
classical physics, and have also ignored interactions
between the gas atoms and molecules

® We need Quantum Mechanics (QM) in order to do that

e But actually to be more fair,

Hydrogen Specific Heat as you increase T, more and
—— more degrees of freedom
T tempeaure o 200 come into play
| the rotational degrees ":::'i "r::s o .
C, = L R[] ofeedomarezn twomore degrees of ® And our simple model
hastis ke that ofan vibration s now affecting seems to be holding up!
5 ideal monoatomic gas. / the specific heat.
C,=2R ors L ,
2 1/ / ?;'?m:;;dw;;;mwa;um ey | @ Life is complicated!
_3 / e ar?man'eesov :ne ee:c |
C,=3R Lot el Ll S ® At times we can get by
. equipartition with simple models, but
ﬁ! when they cannot explain
X Lt Lo L
Hy ok 100K 1000K 10,000 dataz then we Ueed to
Temperature (K) modlfy the initial model -

e We will return

HyperPhysics




Example

e A 1.0 liter insulated bottle is full of hot tea at 90°C.
You pour out 1 cup of tea and immediately put the
stopper back. Estimate the temperature of the
remaining liquid, assuming that you replace the one
cup of tea with air at room temperature.

® Assume that the tea is mostly water (density =1 g/mL)
® ] cupisabout 6 0z.or 180 cc orcm”3 Call it ~200 mL
e What is room temperature? For simplicity let’s say 20°C
® Assume air is an ideal but di-atomic gas (N, mostly)

® Hint on answer: It will not be much of a change in T




Adiabatic Process for Ideal Gas

® This is when no heat transferred in/out of system

® Thatis, Q =0, and this can happen when you compress a
volume of gas very quickly (e.g., in a car engine)

® Or, it can happen if you have a system insulated from its
surroundings (time assumed not to be a factor here)

® |n such a process, all (P, V, and T) change (board ex.)
e E . onlydepends on T, so AE ., is proportional to AT

Int
® From previous discussion, AE,, = nC,AT and from first
law AE, . =W + Q => nC AT = -P dV

int

W=-JPdV or dW = -PdV; Q=0
® The equation foranidealgasisPV=nRT
BB — V. dP =n R dl
WtV . dP = -A RP dV /(nC,)=(.R/AC s




Adiabatic cont.

e Writing R = C, - C,, and dividing by P times V,
e dV/V+dP/P=-[(C-=-Cy,)/C,](dV/YV)
o dV/V+dP/P=(1-y)(dV/V)
® Where gamma = C; / C,, a.k.a. the specific heat ratio
e dP/P=-y(dV/V)ordP/P+ydV/V=0

® [ntegrating, we get In P + vy In V = constant.

® Or,InP +In (V) =constant or In (PVY) = constant or
PV’ = constant ADIABATIC

® |n contrast, for an isothermal process
® PV = constant (And you know what constant is)




New Assignment




