
Chapter 15

Oscillations and Waves



MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 2

Oscillations and Waves

• Simple Harmonic Motion

• Energy in SHM

• Some Oscillating Systems

• Damped Oscillations

• Driven Oscillations

• Resonance
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Simple Harmonic Motion

Simple harmonic motion (SHM) 

occurs when the restoring force 

(the force directed toward a stable 

equilibrium point) is proportional 

to the displacement from 

equilibrium.
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Characteristics of SHM

• Repetitive motion through a central equilibrium point.

• Symmetry of maximum displacement.

• Period of each cycle is constant.

• Force causing the motion is directed toward the 

equilibrium point (minus sign).

• F directly proportional to the displacement from 

equilibrium.

Acceleration = - ω2  x Displacement
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A Simple Harmonic Oscillator (SHO)

Frictionless surface

The restoring force is F = −kx.
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Frictionless surface

Two Springs with Different Amplitudes
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SHO Period is Independent of the Amplitude
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The period of oscillation is .
2

ω

π
=T

where ω is the angular frequency of 

the oscillations, k is the spring 

constant and m is the mass of the 

block.

m

k
=ω

The Period and the Angular Frequency
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At the equilibrium point x = 0 so,  a = 0 also.  

When the stretch is a maximum, a will be a maximum too.

The velocity at the end points will be zero, and 

it is a maximum at the equilibrium point.

Simple Harmonic Motion
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Representing Simple Harmonic Motion 
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Representing Simple Harmonic Motion 
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Representing Simple Harmonic Motion 

Position - xmax = A

Velocity - vmax = ωA

Acceleration - amax = ω2A 
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A simple harmonic oscillator can be described 

mathematically by:

( )

( )

( ) 2

x t = Acosωt

dx
v t = = -Aωsinωt

dt

dv
a t = = -Aω cosωt

dt

Or by:

( )

( )

( ) 2

x t = Asinωt

dx
v t = = Aωcosωt

dt

dv
a t = = -Aω sinωt

dt

where A is the amplitude of 

the motion, the maximum 

displacement from 

equilibrium, Aω = vmax, and 

Aω2  = amax.
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Linear Motion - Circular Functions 
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Projection of Circular Motion 
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Circular Motion is the superposition of two linear SHO that are 

900 out of phase with each other

sin( )y A tω=

cos( )x A tω=
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sin
x = A t -φ

cos
ω

 
    

 

{ } ϕ 
  

sin t
x = A 2π -

cos T

( )
( )

π

2

π π

2 2

x = Asin t -

x = A sinωt cos - sin cosωt

x = A sinωt (0) - (1)cosωt

x = -Acosωt

ω  

The minus sign means that the 

phase is shifted to the right. 

A plus sign indicated the phase 

is shifted to the left

Shifting Trig Functions
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Shifting Trig Functions

π
ωt - = 0

2

π
ωt =

2

π 1 1 T
t =  ;        =

2ω ω 2π

π T T
t = =

2 2π 4

π
sin t - = 0

2
ω
 
 
 

Shifted Trig Functions

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

Time

sin(ωt)

sin(ωt-δ)
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Energy
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Assuming the table is frictionless:

( ) ( ) ( )

∑ xx

2

x

F = - kx = ma

k
a t = - x t = - ω x t

m

Also, ( ) ( ) ( ) ( )2 21 1

2 2
= + = +E K t U t mv t kx t

Equation of Motion & Energy

Classic form for SHM
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Spring Potential Energy
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Spring Total Energy
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Approximating Simple Harmonic Motion
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Approximating Simple Harmonic Motion
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Potential and Kinetic Energy
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The period of oscillation of an object in an ideal mass-spring 

system is 0.50 sec and the amplitude is 5.0 cm.  

What is the speed at the equilibrium point?

At equilibrium x = 0:

222

2

1

2

1

2

1
mvkxmvUKE =+=+=

Since E = constant, at equilibrium (x = 0) the 

KE must be a maximum.  Here v = vmax = Aω.
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( )( ) cm/sec 862rads/sec 612cm 05  and

rads/sec 612
s 500

22

...Aωv

.
.T

===

===
ππ

ω

The amplitude A is given, but ω is not.

Example continued:
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The diaphragm of a speaker has a mass of 50.0 g and responds to a 

signal of 2.0 kHz by moving back and forth with an amplitude of 

1.8×10−4 m at that frequency.

(a) What is the maximum force acting on the 

diaphragm?

( ) ( ) 2222

maxmax 42 mAffmAAmmaFF ππω =====∑

The value is Fmax=1400 N.
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(b) What is the mechanical energy of the diaphragm?

Since mechanical energy is conserved, E = Kmax = Umax.

2

maxmax

2

max

2

1

2

1

mvK

kAU

=

=
The value of k is unknown so use Kmax.

( ) ( )2222

maxmax 2
2

1

2

1

2

1
fmAAmmvK πω ===

The value is Kmax= 0.13 J.

Example continued:
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Example: The displacement of an object in SHM is given by:

( ) ( ) ( )[ ]tty  rads/sec 57.1sincm 00.8=

What is the frequency of the oscillations?

Comparing to y(t) = A sinωt gives A = 8.00 cm 

and ω = 1.57 rads/sec.  The frequency is: 

Hz 250.0
2

rads/sec 57.1

2
===

ππ

ω
f
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( )( )

( )( ) 222

max

max

max

cm/sec 719rads/sec 571cm 008

cm/sec 612rads/sec 571cm 008

cm008

...Aa

...Av

 .Ax

===

===

==

ω

ω

Other quantities can also be determined:

The period of the motion is sec 00.4
rads/sec 57.1

22
===

π

ω

π
T

Example continued:
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What About Gravity? 

When a mass-spring system is oriented vertically, 

it will exhibit SHM with the same period and 

frequency as a horizontally placed system. 

The effect of gravity is canceled out.
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Why We Ignore Gravity with Vertical Springs
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The Simple Pendulum

A simple pendulum is constructed by attaching a 

mass to a thin rod or a light string.  We will also 

assume that the amplitude of the oscillations is 

small.
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The pendulum is best 

described using polar 

coordinates. 

The origin is at the pivot 

point. The coordinates are 

(r, φ). The r-coordinate 

points from the origin 

along the rod. The φ-

coordinate is perpendicular 

to the rod and is positive in 

the counter clockwise 

direction.

The Simple Pendulum
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Apply Newton’s 2nd 

Law to the pendulum 

bob.

2

sin

cos
r

F mg ma

v
F T mg m

r

φφ φ

φ

= − =

= − =

∑

∑

If we assume that φ <<1 rad, then sin φ ≈ φ and cos φ ≈1, the angular 

frequency of oscillations is then: 

L

g
=ω

The period of oscillations is
g

L
T π

ω

π
2

2
==

sin

sin

( / )sin

( / )

F mg ma mL

mg mL

g L

g L

φφ φ α

φ α

α φ

α φ

= − = =

− =

= −

= −

∑
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Example: A clock has a pendulum that performs one full swing 

every 1.0 sec.  The object at the end of the  string weighs 10.0 N.  

What is the length of the pendulum?

( )( )
m 250

4

s 01m/s 89

4
L

2

2

22

2

2

.
..gT

g

L
T

===

=

ππ

π

Solving for L:
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The gravitational potential energy of a pendulum is 

U = mgy.  

Taking y = 0 at the lowest point of the swing, show that y = L(1-cosθ).

θ

L

y=0

L

Lcosθ

)cos1( θ−= Ly
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A physical pendulum is any rigid object that is free to 

oscillate about some fixed axis.  The period of 

oscillation of a physical pendulum is not necessarily the 

same as that of a simple pendulum.  

The Physical Pendulum
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The Physical Pendulum

I
T = 2π

MgD

I is the moment of inertia about 

the given axis. The Icm from the 

table will need to be modified 

using the parallel axis theorem.
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Compound Pendulum

I = Irod + Idisk

M = mrod + Mdisk

D = distance from the axis to 

the center of mass of the rod 

and disk.

I
T = 2π

MgD
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Damped Oscillations

When dissipative forces such as friction are not 

negligible, the amplitude of oscillations will decrease 

with time.  The oscillations are damped.
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Damped Oscillations Equations
2

02

d x dx
m + b + mω x = 0

dt dt

ω
τ

 
  

'

0

-t
x(t) = A exp cos( t +δ)

2

 
 
 

2

'

0

0

b
ω = ω 1 -

2mω
0

k
ω =

m
c 0

m
τ = ;  b = 2mω

b

For b > bc the system is overdamped. For b = bc the system is 

critically damped. The object doesn’t oscillate and returns to its 

equilibrium posion very rapidly.
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Damped Oscillations
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Graphical representations of damped oscillations:
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•Overdamped: The system returns to equilibrium without 

oscillating. Larger values of the damping the return to 

equilibrium slower.

•Critically damped : The system returns to equilibrium as 

quickly as possible without oscillating. This is often 

desired for the damping of systems such as doors.

•Underdamped : The system oscillates (with a slightly 

different frequency than the undamped case) with the 

amplitude gradually decreasing to zero.

Source: Damping @ Wikipedia

Damped Oscillations
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Damped Oscillations

The larger the damping the more difficult it is to assign 

a frequency to the oscillation.
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Damped Oscillations

2
E α A
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Forced Oscillations
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Forced Oscillations and Resonance

A force can be applied periodically to a damped oscillator 

(a forced oscillation).    

When the force is applied at the natural frequency of the 

system, the amplitude of the oscillations will be a 

maximum.  This condition is called resonance.
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Forced Oscillations Equations
2

0 02

d x dx
m + b + mω x = F cosωt

dt dt

ω δx = Acos( t - )

0

2 2 2 2 2 2

0

F
A =

m (ω - ω ) + b ω
2 2

0

bω
tanδ =

m(ω - ω )

ma friction spring applied force
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 
  

2 2

0

-t
Energy  α  A = A exp

τ

x

dx
v = = -ωAsin(ωt - δ)

dt

π
ω ωxv = -ωAsin(ωt - ) = + Acos t

2

At resonance v and Fo are in phase

 
  

2 21
02

2 21
0 02

-t
E = mω A = E exp

τ

E = mω A ;   τ = m b

0

0

ω m
Q = ω τ =

b

Energy and Resonance
2

0 02

d x dx
m + b + mω x = F cosωt

dt dt
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Power Transfer

ω

ω∆
0Q =

The dissipation in the system, represented by “b” keeps the 

amplitude from going to infinity.
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Tacoma Narrows Bridge

Nov. 7, 1940
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Tacoma Narrows Bridge

Nov. 7, 1940



MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 56

The first Tacoma Narrows Bridge opened to traffic on July 1, 1940. It 

collapsed four months later on November 7, 1940, at 11:00 AM (Pacific 

time) due to a physical phenomenon known as aeroelastic flutter caused 

by a 67 kilometres per hour (42 mph) wind. 

The bridge collapse had lasting effects on science and engineering. In 

many undergraduate physics texts the event is presented as an example of 

elementary forced resonance with the wind providing an external periodic 

frequency that matched the natural structural frequency (even though the 

real cause of the bridge's failure was aeroelastic flutter[1]). 

Its failure also boosted research in the field of bridge aerodynamics/ 

aeroelastics which have themselves influenced the designs of all the 

world's great long-span bridges built since 1940. - Wikipedia

http://www.youtube.com/watch?v=3mclp9QmCGs

Tacoma Narrows Bridge
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Normal Mode Vibrations
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End of Chapter Problems
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Chap 14 - #92
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Extra Slides
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∂ ∂

∂ ∂

2 2

2 2 2

y 1 y
- = 0

x v t

y(t) = Asin(kx -ωt)

2π 2π
k = ;   ω= 2πf =

λ T

  
    

x t
y(t) = Asin 2π -

λ T

x t
- = Constant
λ T

dx dt
- = 0

λ T

dx
 = f = v

dt T

λ
λ=

The Full Wave Equation

Traveling with the wave the phase is constant

Wave velocity


