Chapter 15

Oscillations and Waves



Oscillations and Waves

* Simple Harmonic Motion
* Energy in SHM

* Some Oscillating Systems
* Damped Oscillations

* Driven Oscillations

* Resonance

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012



Simple Harmonic Motion

Copprighl & The Metesw-HIE Compankes, Ine. Permisaion raquired for rapeoduction or dhplay.

Simple harmonic motion (SHM) K@/

occurs when the restoring force T

(the force directed toward a stable Stable
equilibrium point) is proportional AFCEREREE
to the displacement from
equilibrium.

(a)

Unstable
equilibrium
point

(b)
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Characteristics of SHM

* Repetitive motion through a central equilibrium point.
* Symmetry of maximum displacement.
* Period of each cycle 1s constant.

* Force causing the motion 1s directed toward the
equilibrium point (minus sign).

* F directly proportional to the displacement from
equilibrium.

Acceleration = - ®* x Displacement
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A Simple Harmonic Oscillator (SHO)

Equilibrium
1
I
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Frictionless surface

The restoring force 1s F = —kx.
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Two Springs with Different Amplitudes

Equilibrium <

10 cm

Frictionless surface

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 6



SHO Period 1s Independent of the Amplitude

10 Object 2

Object 1
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The Period and the Angular Frequency

27
The period of oscillation 1s I= P
where o 1s the angular frequency of
the oscillations, k 1s the spring W= \/E
constant and m 1s the mass of the "
block.
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Simple Harmonic Motion

At the equilibrium point x = 0 so, a =0 also.

When the stretch 1s a maximum, a will be a maximum too.

1 1 1
E=Unax= EkAz E=Kqax = 5 M0%max E=Umax = EkAQ
v=0 (4 v=0
Hnomnmnﬂuuwmwn\—:-»p | g —
e max max
| | |
x=-A x=0 x=+A

Copyright © 2007 Pearson Prentice Hall, Inc.

The velocity at the end points will be zero, and

it 1s a maximum at the equilibrium point.
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Representing Simple Harmonic Motion

m.

(a) Equilibrium

(b) t =0 Just before release

10

Chap 15Ha-Oscillations-Revised 10/13/2012

MFMcGraw-PHY 2425



Representing Simple Harmonic Motion

/>=><

R ‘ Fy=0

\‘-/ t Jt’=|0 X =.|J;A

(f)i=T

—w2A—_/§

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 11



Representing Simple Harmonic Motion

Position -x_ = A

Velocity - v__ = 0A

Acceleration - a_. = ©’A

)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

One cycle, or one period
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A simple harmonic oscillator can be described
mathematically by:

x(t) = Acoswt

v(t) = dx -Awsinwt
dt
a(t) = v _ -Aw’coswt
dt where A is the amplitude of
the motion, the maximum
Or by: displacement from
_ equilibrium, Awm=v__, and
x(t) = Asinwt max
Ao =a__
dx '
v(t) = — = Awcoswt
dt
a(t) = dv_ -Aw’ sinwt
dt
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[_.1inear Motion - Circular Functions

Y/

Displacement
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1 period
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Projection of Circular Motion
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Circular Motion 1s the superposition of two linear SHO that are

90° out of phase with each other

v
1
y L
I @ @
e | R
w=7v/A
=wA  |psin A g |
A |y =Asi n(awr)
/’/1/5_/\ 0 - &
O X O e _ il X
x = Acos(at)
@) (b)
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Shifting Trig Functions

e A{ sin L[ o - ] The m.inus .sign means t.hat the
cos phase 1s shifted to the right.

‘= A{ sin }_ L (p} A plus sign indicated the phase
cosiL T is shifted to the left

x= Asin [a)t - %]

X = A(Sina)t cos % - Singcosa)t)
X = A(sina)t (0) - (])cosa)t)

x = -Acoswt
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Shifting Trig Functions
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Equation of Motion & Energy

Assuming the table is frictionless:

ZFX:-kx=max
k

Classic form for SHM a, (f) = _Zx(t) = - a)Zx(f)
1 2 |
Also, E=K(t)+U(t)=§mv (r)+§kx ()
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Spring Potential Energy

Y

k
m
| |" |
x=-A T x=+A

I | I

I | I

I | I

| ! |

\ | > E |
\ | N |

()]

I uﬁ I

I I

I I

I I

I |

| |

| |

I I

—-A x=0 +A
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Spring Total Energy

|
U= Ekxz

Etotal — %kAz
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Approximating Simple Harmonic Motion

u Parabola approximating U near
point of stable equilibrium
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Approximating Simple Harmonic Motion

Actual potential
U(x) energy function

Matching
parabola
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Potential and Kinetic Energy

o N BT R ) (e S R T e A

X
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The period of oscillation of an object in an 1deal mass-spring
system 1s 0.50 sec and the amplitude is 5.0 cm.

What 1s the speed at the equilibrium point?

At equilibrium x = 0:

E=K+U =lmvz-|—lkx2 =lmv2
2 2 2

Since E = constant, at equilibrium (x = 0) the
KE must be a maximum. Herev=v__=A®.
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Example continued:

The amplitude A 1s given, but @ 1s not.

2T 2T

= =12.6 rads/sec
T 050s

Q) =

and v=Aw =(5.0cm)(12.6 rads/sec) = 62.8 cm/sec
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The diaphragm of a speaker has a mass of 50.0 g and responds to a
signal of 2.0 kHz by moving back and forth with an amplitude of
1.8%10~* m at that frequency.

(a) What 1s the maximum force acting on the
diaphragm?
Z F=F _ =ma_ = m(A (02): mAQR7af ) = 4 mAf?

The value 1s F__ =1400 N.
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Example continued:
(b) What 1s the mechanical energy of the diaphragm?

Since mechanical energy 1s conserved, E=K _=U__

X.

1, The value of k 1s unknown so use K__ .
U_ =—kA
max 2
1 1 2 1 2 1 2 2
K, =—=mv, K == mvp,, = —m(A0) =—mA*(24f)
max 2 max 2 2 2

The value1s K_ =0.13 J.
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Example: The displacement of an object in SHM 1s given by:

y(r)=(8.00 cm)sin[(l .57 rads/sec) t]

What is the frequency of the oscillations?
Comparing to y(t) = A sinmt gives A = 8.00 cm

and ® = 1.57 rads/sec. The frequency 1is:

@ 1.57 rads/sec
27 2

f= =0.250 Hz
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Example continued:

Other quantities can also be determined:

2T 2T

= =4.00 sec
@ 1.57 rads/sec

The period of the motioni1s 7=

x... =A=800cm
v =Aw= (8.00 cm)(1.57 rads/sec) =12.6 cm/sec

a =A@ = (8.00 cm)(1.57 rads/sec)” =19.7 cm/sec?
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What About Gravity?

When a mass-spring system 1is oriented vertically,
it will exhibit SHM with the same period and

frequency as a horizontally placed system.

The effect of gravity 1s canceled out.
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Why We Ignore Gravity with Vertical Springs

N

—

Position with  Fs
spring
unstretched.

Equilibrium position
with mass m attached.
Spring stretches an
amount y, = mg/k.

Object oscillates
around the equilibrium
position with a dis-
placement y'= i — v,
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The Simple Pendulum

A simple pendulum is constructed by attaching a
mass to a thin rod or a light string. We will also

assume that the amplitude of the oscillations is
small.
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The Simple Pendulum

The pendulum is best
described using polar
coordinates.

The origin is at the pivot
point. The coordinates are
(r, ¢). The r-coordinate
points from the origin
along the rod. The ¢-
coordinate 1s perpendicular
to the rod and is positive in
the counter clockwise
direction.

MFMcGraw-PHY 2425

L

-

oy

"'"--.__I_—b"'""'

| \\iﬂg sin ¢

Chap 15Ha-Oscillations-Revised 10/13/2012

35



Apply Newton's 2 2 Fo =g sin g =mas
Law to the pendulum 2

bob. ZFr:T—mgcos¢:m7

If we assume that ¢ <<1 rad, then sin ¢ = ¢ and cos ¢ =1, the angular
frequency of oscillations 1s then:
ZF¢ =—mg sin @ = may = mLa

—mg sin@ =mlLo

a=—(g/L)sing W= %
o=—(g/L)p
. e 27 L
The period of oscillations is I = — =2z \/:
8
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Example: A clock has a pendulum that performs one full swing
every 1.0 sec. The object at the end of the string weighs 10.0 N.

What 1s the length of the pendulum?

T:27z\/Z
8

_ g _ (98 m/s*)105)

Solving for L: L Az AT’
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The gravitational potential energy of a pendulum is
U = mgy.
Taking y = O at the lowest point of the swing, show that y = L(1-cos0).

[.cosO

V.

y:
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The Physical Pendulum

A physical pendulum is any rigid object that is free to
oscillate about some fixed axis. The period of

oscillation of a physical pendulum 1s not necessarily the
same as that of a simple pendulum.
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The Physical Pendulum

N T — o Il
. MgD

Axis

I 1s the moment of inertia about
the given axis. The I__ from the

table will need to be modified
using the parallel axis theorem.
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Compound Pendulum Ji

T =27
MgD

.W
e ?

=1+ Ly

rod

M=m_,+M,,

rod

-t D = distance from the axis to

the center of mass of the rod
and disk.
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Damped Oscillations

When dissipative forces such as friction are not
negligible, the amplitude of oscillations will decrease
with time. The oscillations are damped.
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Damped Oscillations Equations

d’ d
m f+b—x+ma)0x:0
dt dt
_l‘ ,
x(t) = Ajexp [—}cos(&)t +0)
2T
b)Y k
S e I R e
2maw, m b

For b > b_ the system 1s overdamped. For b = b_ the system 1s

critically damped. The object doesn’t oscillate and returns to its
equilibrium posion very rapidly.
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Damped Oscillations
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Graphical representations of damped oscillations:

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

y
X
(a)
y
X
(b)
y k»
X
(c)

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 45



Damped Oscillations

eOverdamped: The system returns to equilibrium without
oscillating. Larger values of the damping the return to
equilibrium slower.

o(Critically damped : The system returns to equilibrium as
quickly as possible without oscillating. This is often
desired for the damping of systems such as doors.

e Underdamped : The system oscillates (with a slightly
different frequency than the undamped case) with the
amplitude gradually decreasing to zero.

Source: Damping @ Wikipedia
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Damped Oscillations

Critically damped

Overdamped

The larger the damping the more difficult it is to assign
a frequency to the oscillation.
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Damped Oscillations

Eq A’

1.0

0.8 Amplitude

0.6

0.4

0.2
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Forced Oscillations

MFMcGraw-PHY 2425
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Forced Oscillations and Resonance

A force can be applied periodically to a damped oscillator
(a forced oscillation).

When the force 1s applied at the natural frequency of the
system, the amplitude of the oscillations will be a
maximum. This condition 1s called resonance.
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Forced Oscillations Equations
d’x dx

+b—+ mw,x = F,coswt

dt’ dt
| | | |

ma  friction spring  applied force

m

x= Acos(wt -0 )

F, bw

rano =

A= 2 2
\/mZ(a)g -0’ ) +bw’ m(w, - ")

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 51



Energy and Resonance

d’x  dx
+b—+ mw,x = F,coswt

dt’ dt

m

At resonance v and F_ are in phase

y = dx = -wAsin(wt - 0)
dt

. T
V. = -wAsin(wt - 3 )= +wAcoswrt

-1
Energy a A’ = AOZ exp{—}
T

a)Om

b

T

_t} Q=w,1=

E=1mw’A’ = E,exp {—
E, = tmo’A;; ©=m/b

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 52




Power Transfer

Py
i max /‘ wO
A@
\ Weak damping,
/ high Q
.s'kA 0|
% Pmax :‘I‘jjl; ‘.'\
/ Heavy damping,
P max / low Q
1
2 Pmax
W, @

The dissipation in the system, represented by “b” keeps the
amplitude from going to infinity.
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Nov. 7, 1940

Tacoma Narrows Bridge
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Tacoma Narrows Bridge

Nov. 7, 1940
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Tacoma Narrows Bridge

The first Tacoma Narrows Bridge opened to traffic on July 1, 1940. It
collapsed four months later on November 7, 1940, at 11:00 AM (Pacific
time) due to a physical phenomenon known as aeroelastic flutter caused
by a 67 kilometres per hour (42 mph) wind.

The bridge collapse had lasting effects on science and engineering. In
many undergraduate physics texts the event is presented as an example of
elementary forced resonance with the wind providing an external periodic
frequency that matched the natural structural frequency (even though the
real cause of the bridge's failure was aeroelastic flutter[1]).

Its failure also boosted research in the field of bridge aerodynamics/
aeroelastics which have themselves influenced the designs of all the
world's great long-span bridges built since 1940. - Wikipedia

http://www.youtube.com/watch?v=3mclp9QmCGs
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Normal Mode Vibrations
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End of Chapter Problems
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The Full Wave Equation

d°y | J°y _ 0
ox> v’ ot
y(t) = Asin(kx -wt) x 1
o o y(t) = Asin{Zn(— - —ﬂ
k=22 w=2nf == a
A T

Traveling with the wave the phase 1s constant

ﬁ-L:Constcmt @_£=0

AT AT
@:i — ﬂf =y Wave VelOCity
dt T

MFMcGraw-PHY 2425 Chap 15Ha-Oscillations-Revised 10/13/2012 61



