Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Chapter 1

ive online tutorin

Some basic concepts of Chemistry

NCERT Exercise

Question 1:

Calculate the molecular mass of the following:
(i) $\mathrm{H}_{2} \mathrm{O}$ (ii) CO_{2} (iii) CH_{4}

Solution 1:

(i) $\mathrm{H}_{2} \mathrm{O}$

The molecular mass of water, $\mathrm{H}_{2} \mathrm{O}$
$=(2 \times$ Atomic mass of hydrogen $)+(1 \times$ Atomic mass of oxygen $)$
$=[2(1.0084)+1(16.00 u)]$
$=2.016 u+16.00 u$
$=18.016$
$=18.02 \mathrm{u}$
(ii) CO_{2}

The molecular mass of carbon dioxide, CO_{2}
$=(1 \times$ Atomic mass of carbon $)+(2 \times$ Atomic mass of oxygen $)$
$=[1(12.011 \mathrm{u})+2(16.00 \mathrm{u})]$
$=12.011 u+32.00 u$
$=44.01 \mathrm{u}$
(iii) CH_{4}

The molecular mass of methane, CH_{4}
$=(1 \times$ Atomic mass of carbon $)+(4 \times$ Atomic mass of hydrogen $)$
$=[1(12.011 \mathrm{u})+4(1.008 \mathrm{u})]$
$=12.011 u+4.032 u$
$=16.043 \mathrm{u}$

Question 2:

Calculate the mass percent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

Solution 2:

The molecular formula of sodium sulphate is $\mathrm{Na}_{2} \mathrm{SO}_{4}$
Molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}=[(2 \times 23.0)+(32.066)+4(16.00)]$
142.066 g

Mass percent of an element $=\frac{\text { Mass of that element in the compound }}{\text { Molar mass of the compound }} \times 100$
\therefore Mass percent of sodium:

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

IVE ONLINE TUTORIN
$=\frac{46.0 g}{142.066 g} \times 100$
$=32.379$
$=32.4 \%$
Mass percent of sulphur:
$=\frac{32.066 g}{142.066 g} \times 100$
$=22.57$
= 22.6\%
Mass percent of oxygen:
$=\frac{64.0 g}{142.066 g} \times 100$
$=45.049$
$=45.05 \%$

Question 3:

Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.

Solution 3:

$\%$ of iron by mass 69.9% [Given]
\% of oxygen by mass 30.1 \% [Given]
Relative moles of iron in iron oxide:
$=\frac{\% \text { of iron by mass }}{\text { Atomic mass of iron }}$
$=\frac{69.9}{55.85}$
$=1.25$
Relative moles of oxygen in iron oxide:
$=\frac{\% \text { of oxygen by mass }}{\text { Atomic mass or oxygen }}$
$=\frac{30.1}{16.00}$
$=1.88$
Simplest molar ratio of iron to oxygen:
= $1.25: 1.88$
$=1: 1.5$
$\simeq 2: 3$
\therefore The empirical formula of the iron oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Question 4:

Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.

Solution 4:

The balanced reaction of combustion of carbon can be written as:
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{C} \mathrm{O}_{2}$
(i) As per the balanced equation, 1 mole of carbon burns in 1 mole of dioxygen (air) to produce 1 mole of carbon dioxide.
(ii) According to the question, only 16 g dioxygen is available. Hence, it will react with 0.5 mole of carbon to give 22 g of carbon dioxide. Hence, it is a limiting reactant.
(iii) According to the question, only 16 g dioxygen is available. It is a limiting reactant. Thus, 16 g of dioxygen can combine with only 0.5 mole of carbon to give 22 g of carbon dioxide.

Question 5:

Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is $82.0245 \mathrm{~g} \mathrm{~mol}^{-1}$

Solution 5:

0.375 M aqueous solution of sodium acetate
$\equiv 1000 \mathrm{~mL}$ of solution containing 0.375 moles of sodium acetate
\therefore Number of moles of sodium acetate in 500 mL
$=\frac{0.375}{1000} \times 500$
$=0.1875$ mole
Molar mass of sodium acetate $=82.0 .245 \mathrm{~g} \mathrm{~mole}^{-1}($ Given $)$
\therefore Required mass of sodium acetate $=\left(82.0245 \mathrm{~g} \mathrm{~mol}^{-1}\right)(0.1875$ mole $)$
$=15.38 \mathrm{~g}$

Question 6:

Calculate the concentration of nitric acid in moles per litre in a sample which has a density, $1.41 \mathrm{~g} \mathrm{~mL}^{-1}$ and the mass percent of nitric acid in it being 69%.

Solution 6:

Mass percent of nitric acid in the sample $=69 \%$ [Given]
Thus, 100 g of nitric acid contains 69 g of nitric acid by mass.
Molar mass of nitric acid $\left(\mathrm{HNO}_{3}\right)$
ive online tutoring Some basic concepts of Chemistry
$=\{1+14+3(16)\} \mathrm{g} \mathrm{mol}^{-1}$
$=1+14+18$
$=63 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Number of moles in 69 g of HNO_{3}
$=\frac{69 \mathrm{~g}}{63 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=1.095 \mathrm{~mol}$
Volume of 100 g of nitric acid solution
$=\frac{\text { Mass of solution }}{\text { density of solution }}$
$=\frac{100 \mathrm{~g}}{1.41 \mathrm{gmL}^{-1}}$
$=70.92 \mathrm{~mL}=70.92 \times 10^{-3} \mathrm{~L}$
Concentration of nitric acid
$=\frac{1.095 \mathrm{~mole}}{70.92 \times 10^{-3} \mathrm{~L}}$
$=15.44 \mathrm{~mol} / \mathrm{L}$
\therefore Concentration of nitric acid $=15.44 \mathrm{~mol} / \mathrm{L}$

Question 7:

How much copper can be obtained from 100 g of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$?

Solution 7:

1 mole of CuSO_{4} contains 1 mole of copper.
Molar mass of $\mathrm{CuSO}_{4}=(63.5)+(32.00)+4(16.00)$
$=63.5+32.00+64.00$
$=159.5 \mathrm{~g}$
159.5 g of CuSO_{4} contains 63.5 g of copper.
$\Rightarrow 100 \mathrm{~g}$ of CuSO_{4} will contain $\frac{63.5 \times 100 \mathrm{~g}}{159.5}$ of copper.
\therefore Amount of copper that can be obtained from $100 \mathrm{~g} \mathrm{CuSO}_{4}=\frac{63.5 \times 100}{159.5}$
$=39.81 \mathrm{~g}$

Question 8:

Determine the molecular formula of an oxide of iron in which the mass percent of iron and oxygen are 69.9 and 30.1 respectively. Given that the molar mass of the oxide is $159.69 \mathrm{~g} \mathrm{~mol}^{-}$ ${ }^{1}$.

Solution 8:

Mass percent of iron $(\mathrm{Fe})=69.9 \%$ (Given)
Mass percent of oxygen $(\mathrm{O})=30.1 \%$ (Given)
Number of moles of iron present in the oxide $=\frac{69.90}{55.85}$
$=1.25$
Number of moles of oxygen present in the oxide $=\frac{30.1}{16.0}$
$=1.88$
Ratio of iron to oxygen in the oxide,
= $1.25: 1.88$
$=\frac{1.25}{1.25}: \frac{1.88}{1.25}$
$=1: 1.5$
$=2: 3$
\therefore The empirical formula of the oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Empirical formula mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=[2(55.85)+3(16.00)] \mathrm{g}$
Molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=159.69 \mathrm{~g}$

$$
\begin{aligned}
\therefore n=\frac{\text { Molar mass }}{\text { Empirical formula mass }} & =\frac{159.69 \mathrm{~g}}{159.7 \mathrm{~g}} \\
& =0.999 \\
& =1(\text { approx })
\end{aligned}
$$

Molecular formula of a compound is obtained by multiplying the empirical formula with n .
Thus, the empirical formula of the given oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and n is 1 .
Hence, the molecular formula of the oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Question 9:

Calculate the atomic mass (average) of chlorine using the following data:

	\% Natural Abundance	Molar Mass
${ }^{35} \mathrm{CI}$	75.77	34.9689
${ }^{37} \mathrm{CI}$	24.23	36.9659

Solution9:

The average atomic mass of chlorine
$=\left[\binom{\right.$ Fractional abundance }{ of ${ }^{35} \mathrm{CI}}\binom{$ Molar mass }{ of ${ }^{35} \mathrm{CI}}+\binom{$ Fractional abundance }{ of ${ }^{37} \mathrm{CI}}\binom{$ Molar mass }{ of $\left.{ }^{37} \mathrm{CI}}\right]$
$=\left[\left\{\left(\frac{75.77}{100}\right)(34.9689 \mathrm{u})\right\}+\left\{\left(\frac{24.23}{100}\right)(36.9659 \mathrm{u})\right\}\right]$
$=26.4959+8.9568$
$=35.4527 \mathrm{u}$
\therefore The average atomic mass of chlorine $=35.4527 \mathrm{u}$

Question 10:

In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.
(iii)Number of molecules of ethane.

Solution10:

(i) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 2 moles of carbon atoms.
\therefore Number of moles of carbon atoms in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$.
$=2 \times 3=6$
(ii) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6 moles of hydrogen atoms.
\therefore Number of moles of carbon atoms in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$.
$=3 \times 6=18$
(iii) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6.023×10^{23} molecules of ethane.
\therefore Number of molecules in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$.
$=3 \times 6.023 \times 10^{23}=18.069 \times 10^{23}$

Question 11:

What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in mol L^{-1} if its 20 g are dissolved in enough water to make a final volume up to 2 L ?

Solution 11:

Molarity (M) of a solution is given by,
$=\frac{\text { Number of moles of solute }}{\text { Volume of solution in Litres }}$
$=\frac{\text { Mass of sugar } / \text { molar mass of sugar }}{2 \mathrm{~L}}$
$=\frac{20 g /[(12 \times 12)+(1 \times 22)+(11 \times 16)] g}{2 L}$
$=\frac{20 g / 342 g}{2 L}$
$=\frac{0.0585 \mathrm{~mol}}{2 L}$
$=0.02925 \mathrm{~mol} \mathrm{~L}^{-1}$
\therefore Molar concentration of sugar $=0.02925 \mathrm{~mol} \mathrm{~L}^{-1}$

Question 12:

If the density of methanol is $0.793 \mathrm{~kg} \mathrm{~L}^{-1}$, what is its volume needed for making 2.5 L of its 0.25 M solution?

Solution12:

Molar mass of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)=(1 \times 12)+(4 \times 1)+(1 \times 16)$
$=32 \mathrm{~g} \mathrm{~mol}^{-1}$
$=0.032 \mathrm{~kg} \mathrm{~mol}^{-1}$
Molarity of methanol solution $=\frac{0.793 \mathrm{kgL}^{-1}}{0.032 \mathrm{~kg} \mathrm{~mol}^{-1}}$
$=24.78 \mathrm{~mol} \mathrm{~L}^{-1}$
(Since density is mass per unit volume)
Applying,
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
(Given solution) (Solution to be prepared)
$\left(24.78 \mathrm{~mol} \mathrm{~L}^{-1}\right) \mathrm{V}_{1}=(2.5 \mathrm{~L})\left(0.25 \mathrm{~mol} \mathrm{~L}^{-1}\right)$
$\mathrm{V}_{1}=0.0252 \mathrm{~L}$
$\mathrm{V}_{1}=25.22 \mathrm{~mL}$

Question 13:

Pressure is determined as force per unit area of surface. The SI unit of pressure,
Pascal is as shown below:
$1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2}$
If mass of air at sea level is $1034 \mathrm{~g} \mathrm{~cm}^{-2}$, calculate the pressure in Pascal.

Solution13:

Pressure is defined as force acting per unit area of the surface.
$P=\frac{F}{A}$

$$
=\frac{1034 g \times 9.8 \mathrm{~ms}^{-2}}{\mathrm{~cm}^{2}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{(100)^{2} \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}
$$

$=1.01332 \times 10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
We know,
$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~ms}^{-2}$
Then,
$1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}=1 \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-2}$
$1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
\therefore Pressure $=1.01332 \times 10^{5} \mathrm{~Pa}$

Question 14:

What is the SI unit of mass? How is it defined?

Solution14:

The SI unit of mass is kilogram (kg). 1 Kilogram is defined as the mass equal to the mass of the international prototype of kilogram.

Question 15:

Match the following prefixes with their multiples:

	Prefixes	Multiples
(i)	micro	10^{6}
(ii)	deca	10^{9}
(iii)	mega	10^{-6}
(iv)	giga	10^{-15}
(v)	femto	10

Solution 15:

	Prefixes	Multiples
(i)	micro	10^{-6}
(ii)	deca	10
(iii)	mega	10^{6}
(iv)	giga	10^{9}
(v)	femto	10^{-15}

Question 16:

What do you mean by significant figures?

Solution16:

Significant figures are those meaningful digits that are known with certainty.
They indicate uncertainty in an experiment or calculated value. For example, if 15.6 mL is the result of an experiment, then 15 is certain while 6 is uncertain, and the total number of significant figures are 3 .
Hence, significant figures are defined as the total number of digits in a number including the last digit that represents the uncertainty of the result.

Question 17:

A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.

Solution 17:

(i) 1 ppm is equivalent to 1 part out of 1 million $\left(10^{6}\right)$ parts.
\therefore Mass percent of 15 ppm chloroform in water
$=\frac{15}{10^{6}} \times 100$
$\simeq 1.5 \times 10^{-3} \%$
(ii) 100 g of the sample contains $1.5 \times 10^{-3} \mathrm{~g}$ of CHCI_{3}.
$\Rightarrow 1000 \mathrm{~g}$ of the sample contains $1.5 \times 10^{-2} \mathrm{~g}$ of CHCI_{3}
\therefore Molality of chloroform in water
$=\frac{1.5 \times 10^{-2} \mathrm{~g}}{\text { Molar mass of } \mathrm{CHCI}_{3}}$
Molar mass of $\mathrm{CHCI}_{3}=12.00+1.00+3(35.5)$
$=119.5 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Molality of chloroform in water $=0.0125 \times 10^{-2} \mathrm{~m}$
$=1.25 \times 10^{-4} \mathrm{~m}$

Question 18:

Express the following in the scientific notation:
(i) 0.0048
(ii) 234,000
(iii) 8008
(iv) 500.0
(v) 6.0012

Solution 18:

(i) $0.0048=4.8 \times 10^{-3}$
(ii) $234,000=2.34 \times 10^{5}$
(iii) $8008=8.008 \times 10^{3}$
(iv) $500.0=5.000 \times 10^{2}$
(v) $6.0012=6.0012 \times 10^{0}$

Question 19:

How many significant figures are present in the following?
(i) 0.0025
(ii) 208 Some basic concepts of Chemistry
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034

Solution 19:

(i) 0.0025

There are 2 significant figures.
(ii) 208

There are 3 significant figures.
(iii) 5005

There are 4 significant figures.
(iv) 126,000

There are 3 significant figures.
(v) 500.0

There are 4 significant figures.
(vi) 2.0034

There are 5 significant figures.

Question 20:

Round up the following upto three significant figures.
(i) 34.216
(ii) 10.4107
(iii) 0.04597
(iv) 2808

Solution 20:

(i) 34.2
(ii) 10.4
(iii) 0.0460
(iv) 2810

Question 21:

The following data are obtained when dinitrogen and dioxygen react together to form different compounds:

	Mass of dinitrogen	Mass of dioxygen
(i)	14 g	16 g
(ii)	14 g	32 g
(iii)	28 g	32 g

(iv) $28 \mathrm{~g} \quad 80 \mathrm{~g}$
(a) Which law of chemical combination is obeyed by the above experimental data? Give its statement.
(b) Fill in the blanks in the following conversions:
(i) $1 \mathrm{~km}=$ \qquad mm pm
(ii) $1 \mathrm{mg}=$ \qquad kg \qquad
(iii) $1 \mathrm{~mL}=$ \qquad L \qquad

Solution 21:

(a) If we fix the mass of dinitrogen at 28 g , then the masses of dioxygen that will combine with the fixed mass of dinitrogenen are $32 \mathrm{~g}, 64 \mathrm{~g}, 32 \mathrm{~g}$, and 80 g .
The masses of dioxygen bear a whole number ratio of 1:2:1:5. Hence, the given experimental data obeys the law of multiple proportions. The law states that if two elements combine to form more than one compound, then the masses of one element that combines with the fixed mass of another element are in the ratio of small whole numbers.
(b)(i) $1 \mathrm{~km}=1 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}$
$\therefore 1 \mathrm{~km}=10^{6} \mathrm{~mm}$
$1 \mathrm{~km}=1 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{pm}}{10^{-12} \mathrm{~m}}$
$\therefore 1 \mathrm{~km}=10^{15} \mathrm{pm}$
Hence, $1 \mathrm{~km}=10^{6} \mathrm{~mm}=10^{15} \mathrm{pm}$
(ii) $1 \mathrm{mg}=1 \mathrm{mg} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}$
$\Rightarrow 1 \mathrm{mg}=10^{6} \mathrm{~kg}$
$\therefore 1 \mathrm{mg}=10^{-6} \mathrm{~kg}=10^{6} \mathrm{ng}$
(iii) $1 \mathrm{~mL}=1 \mathrm{~mL} \times \frac{1 L}{1000 m L}$
$\Rightarrow 1 \mathrm{mg}=10^{-3} \mathrm{~L}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}=1 \mathrm{~cm}^{3} \times \frac{1 \mathrm{dm} \times 1 \mathrm{dm} \times 1 \mathrm{dm}}{10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}}$
$\Rightarrow 1 \mathrm{~mL}=10^{-3} \mathrm{dm}^{3}$
$\therefore 1 \mathrm{~mL}=10^{-3} \mathrm{~L}=10^{-3} \mathrm{dm}^{3}$

Question 22:

If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, calculate the distance covered by light in 2.00 ns .

Solution 22:

According to the question: Some basic concepts of Chemistry

Time taken to cover the distance $=2.00 \mathrm{~ns}$
$=2.00 \times 10^{-9} \mathrm{~s}$
Speed of light $=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
Distance travelled by light in 2.00 ns
$=$ Speed of light \times Time taken
$=\left(3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)\left(2.00 \times 10^{-9} \mathrm{~s}\right)$
$=6.00 \times 10^{-1} \mathrm{~m}$
$=0.600 \mathrm{~m}$

Question 23:

In a reaction
$\mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{AB}_{2}$
Identify the limiting reagent, if any in the following reaction mixtures.
(i) 300 atoms of $\mathrm{A}+200$ molecules of B
(ii) $2 \mathrm{~mol} \mathrm{~A}+3 \mathrm{~mol} \mathrm{~B}$
(iii) 100 atoms of $\mathrm{A}+100$ molecules of B
(iv) $5 \mathrm{~mol} \mathrm{~A}+2.5 \mathrm{~mol} \mathrm{~B}$
(v) $2.5 \mathrm{~mol} \mathrm{~A}+5 \mathrm{~mol} \mathrm{~B}$

Solution 23:

A limiting reagent determines the extent of a reaction. It is the reactant which is the first to get consumed during a reaction, thereby causing the reaction to stop and limiting the amount of products formed.
(i) According to the given reaction, 1 atom of A reacts with 1 molecule of B. thus, 200 molecules of B will react with 200 atoms of A, thereby leaving 100 atoms of A unused. Hence, B is the limiting reagent.
(ii) According to the reaction, 1 mol of A reacts with 1 mol of B . thus, 2 mol of A will react with only 2 mol of B . As a result, 1 mol of A will not be consumed. Hence, A is the limiting reagent.
(iii)According of the given reaction, 1 atom of A combines with 1 molecule of B . the mixture is stoichiometric where no limiting reagent is present.
(iv) 1 mol of atom A combines with 1 mol of molecule B. Thus, 2.5 mol of B will combine with only 2.5 mol of A . As a result, 2.5 mol of A will be left as such. Hence, B is the limiting reagent.
(v) According to the reaction, 1 mol of atom A combines with 1 mol of molecule B. Thus, 2.5 mol of A will combine with only 2.5 mol of B and the remaining 2.5 mol of B will be left as such. Hence, A is the limiting reagent. Some basic concepts of Chemistry

Question 24:

Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
(i) Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} \mathrm{~g}$ of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii)If yes, which one and what would be its mass?

Solution 24:

(i) Balancing the given chemical equation,
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
From the equation, 1 mole (28 g) of dinitrogen reacts with 3 mole (6 g) of dihydrogen to give 2 mole $(34 \mathrm{~g})$ of ammonia.
$\Rightarrow 2.00 \times 10^{3} \mathrm{~g}$ of dinitrogen will react with $\frac{6 g}{28 g} \times 2.00 \times 10^{3} g$ dihydrogen i.e.,
$2.00 \times 10^{3} \mathrm{~g}$ of dinitrogen will react with 428.6 g of dihydrogen.
Given,
Amount of dihydrogen $=1.00 \times 10^{3} \mathrm{~g}$
Hence, N_{2} is the limiting reagent.
$\therefore 28 \mathrm{~g}$ of N_{2} produces 34 g of NH_{3}.
Hence, mass of ammonia produced by 2000 g of $N_{2}=\frac{34 g}{28 g} \times 2000 \mathrm{~g}$
$=2428.57 \mathrm{~g}$
(ii) N_{2} is the limiting reagent and H_{2} is the excess reagent. Hence, H_{2} will remain unreacted.
(iii) Mass of dihydrogen left unreacted $=1.00 \times 10^{3} \mathrm{~g}-428.6 \mathrm{~g}$
$=571.4 \mathrm{~g}$

Question 25:

How are $0.50 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ different?

Solution 25:

Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 23)+12.00+(3 \times 6)$
$=106 \mathrm{~g} \mathrm{~mol}^{-1}$
Now, 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ means 106 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\therefore 0.5 \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{106 \mathrm{~g}}{1 \text { mole }} \times 0.5 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$=53 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\Rightarrow 0.50 \mathrm{M}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.50 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$
Hence, 0.50 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is present in 1 L of water or $53 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ is present in 1 L of water.

Question 26:

If ten volumes of dihydrogen gas react with five volumes of dioxygen gas, how many volumes of water vapour would be produced?

Solution 26:

Reaction of dihydrogen with dioxygen can be written as:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Now, two volumes of dihydrogen react with one volume of dihydrogen to produce two volumes of water Vapour.
Hence, ten volumes of dihydrogen will react with five volumes of dioxygen to produce ten volumes of water Vapour.

Question 27:

Convert the following into basic units:
(i) 28.7 pm
(ii) 15.15 pm
(iii) 25365 mg

Solution 27:

(i) 28.7 pm :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 28.7 \mathrm{pm}=28.7 \times 10^{-12} \mathrm{~m}$
$=2.87 \times 10^{-11} \mathrm{~m}$
(ii) 15.15 pm :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 15.15 \mathrm{pm}=15.15 \times 10^{-12} \mathrm{~m}$
$=1.515 \times 10^{-12} \mathrm{~m}$
(iii) 25365 mg :
$1 \mathrm{mg}=10^{-3} \mathrm{~g}$
$25365 \mathrm{mg}=2.5365 \times 10^{4} \times 10^{-3} \mathrm{~g}$
Since,
$1 \mathrm{~g}=10^{-3} \mathrm{~kg}$
$2.5365 \times 10^{1} \mathrm{~g}=2.5365 \times 10^{-1} \times 10^{-3} \mathrm{~kg}$
$\therefore 25365 \mathrm{mg}=2.5365 \times 10^{-2} \mathrm{~kg}$

Question 28:

Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of $\mathrm{CI}_{2}(\mathrm{~g})$

Solution 28:

(i) 1 g of $\mathrm{Au}(\mathrm{s})=\frac{1}{197} \mathrm{~mol}$ of $\mathrm{Au}(\mathrm{s})$
$=\frac{6.022 \times 10^{23}}{197}$ atoms of $\mathrm{Au}(\mathrm{s})$
$=3.06 \times 10^{21}$ atoms of $\mathrm{Au}(\mathrm{s})$
(ii) 1 g of $\mathrm{Na}(\mathrm{s})=\frac{1}{23} \mathrm{~mol}$ of $\mathrm{Na}(\mathrm{s})$
$=\frac{6.022 \times 10^{23}}{23}$ atoms of $\mathrm{Na}(\mathrm{s})$
$=0.262 \times 10^{23}$ atoms of $\mathrm{Na}(\mathrm{s})$
$=26.2 \times 10^{21}$ atoms of $\mathrm{Na}(\mathrm{s})$
(iii) 1 g of $\mathrm{Li}(\mathrm{s})=\frac{1}{7} \mathrm{~mol}$ of $\mathrm{Li}(\mathrm{s})$
$=\frac{6.022 \times 10^{23}}{7}$ atoms of $\mathrm{Li}(\mathrm{s})$
$=0.86 \times 10^{23}$ atoms of $\mathrm{Li}(\mathrm{s})$
$=86.0 \times 10^{21}$ atoms of $\mathrm{Li}(\mathrm{s})$
(iv) 1 g of $\mathrm{CI}_{2}(\mathrm{~g})=\frac{1}{71} \mathrm{~mol}$ of $\mathrm{CI}_{2}(\mathrm{~g})$
$\left(\right.$ Molar mass of CI_{2} molecules $\left.=35.5 \times 2=71 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
$=\frac{6.022 \times 10^{23}}{71}$ atoms of $\mathrm{CI}_{2}(\mathrm{~g})$
$=0.0848 \times 10^{23}$ atoms of $\mathrm{CI}_{2}(\mathrm{~g})$
$=8.48 \times 10^{21}$ atoms of $\mathrm{CI}_{2}(\mathrm{~g})$
Hence, 1 g of Li (s) will have the largest number of atoms.

Question 29:

Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).

Solution 29:

Mole fraction of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\frac{\text { Number of moles } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{\text { Number of moles of solution }}$
$0.040=\frac{n_{C_{2} H_{5} \mathrm{OH}}}{n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}+n_{\mathrm{H}_{2} \mathrm{O}}}$.
Number of moles present in 1 L water:
$n_{H_{2} \mathrm{O}}=\frac{1000 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}$
$n_{\mathrm{H}_{2} \mathrm{O}}=55.55 \mathrm{~mol}$
Substituting the value of $n_{\mathrm{H}_{2} \mathrm{O}}$ in equation (1),
$\frac{n_{C_{2} H_{5} \mathrm{OH}}}{n_{C_{2} H_{5} \mathrm{OH}}+55.55}=0.040$
$n_{C_{2} H_{5} \mathrm{OH}}=0.040 n_{C_{2} H_{5} \mathrm{OH}}+(0.040)(55.55)$
$0.96 n_{C_{2} H_{5} O H}=2.222$ mole
$n_{C_{2} \mathrm{H}_{5} \mathrm{OH}}=\frac{2.222}{0.96}$ mole
$n_{C_{2} H_{5} \mathrm{OH}}=2.314$ mole
\therefore Molarity of solution $=\frac{2.314 \mathrm{~mol}}{1 L}$
$=2.314 \mathrm{M}$

Question 30:

What will be the mass of one ${ }^{12} \mathrm{C}$ atom in g ?

Solution 30:

1 mole of carbon atoms $=6.023 \times 10^{23}$ atoms of carbon
$=12 \mathrm{~g}$ of carbon
\therefore Mass of one ${ }^{12} \mathrm{C}$ atom $=\frac{12 g}{6.022 \times 10^{23}}$
$=1.993 \times 10^{-23} \mathrm{~g}$

Question 31:

How many significant figures should be present in the answer of the following calculations?
(i) $=\frac{0.2856 \times 298.15 \times 0.112}{0.5785}$
(ii) 5×5.364

Some basic concepts of Chemistry

(iii) $0.0125+0.7864+0.0215$

Solution 31:

(i) $=\frac{0.2856 \times 298.15 \times 0.112}{0.5785}$

Least precise number of calculation $=0.112$
\therefore Number of significant figures in the answer
$=$ Number of significant figures in the least precise number
$=3$
(ii) 5×5.364

Least precise number of calculation $=5.364$
\therefore Number of significant figures in the answer $=$ Number of significant figures in 5.364
$=4$
(iii) $0.0125+0.7864+0.0215$

Since the least number of decimal places in each term in four, the number of significant figures in the answer is also 4.

Question 32:

Use the data given in the following table to calculate the molar mass of naturally occurring argon isotopes:

Isotope	Isotopic molar mass	Abundance
${ }^{36} \mathrm{Ar}$	$35.96755 \mathrm{gmol}^{-1}$	0.337%
${ }^{38} \mathrm{Ar}$	$37.96272 \mathrm{gmol}^{-1}$	0.063%
${ }^{40} \mathrm{Ar}$	$39.9624 \mathrm{gmol}^{-1}$	99.600%

Solution 32:

Molar mass of argon
$=\left[\left(35.96755 \times \frac{0.337}{100}\right)+\left(37.96272 \times \frac{0.063}{100}\right)+\left(39.9624 \times \frac{90.60}{100}\right)\right] \mathrm{gmol}^{-1}$
$=[0.121+0.024+39.802] \mathrm{gmol}^{-1}$
$=39.947 \mathrm{gmol}^{-1}$

Question 33:

Calculate the number of atoms in each of the following
(i) 52 moles of Ar
(ii) 52 u of He
(iii) 52 g of He . Some basic concepts of Chemistry

Solution 33:

(i) 1 mole of $\mathrm{Ar}=6.022 \times 10^{23}$ atoms of Ar
$\therefore 52$ mole of $\mathrm{Ar}=52 \times 6.022 \times 10^{23}$ atoms of Ar
$=3.131 \times 10^{25}$ atoms of Ar
(ii) 1 atom of $\mathrm{He}=4 \mathrm{u}$ of the

Or,
4 u of $\mathrm{He}=1$ atom of He
1 u of $\mathrm{He}=\frac{1}{4}$ atom of He
52 u of $\mathrm{He}==\frac{52}{4}$ atom of He
$=13$ atoms of He
(iii) 4 g of $\mathrm{He}=6.022 \times 10^{23}$ atoms of He
$\therefore 52 \mathrm{~g}$ of $\mathrm{He}==\frac{6.022 \times 10^{23} \times 52}{4}$ atoms of He
$=7.8286 \times 10^{24}$ atoms of He

Question 34:

A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g water and no other products. A volume of 10.0 L
(measured at STP) of this welding gas is found to weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.

Solution 34:

(i) 1 mole (44 g) of CO_{2} contains 12 g carbon.

$=0.9217 \mathrm{~g}$
18 g of water contains 2 g of hydrogen.
$\therefore 0.690 \mathrm{~g}$ of water will contain hydrogen $=\frac{2 g}{18 g} \times 0.690$
$=0.0767 \mathrm{~g}$
Since carbon and hydrogen are the only constituents of the compound, the total mass of the compound is:
$=0.9217 \mathrm{~g}+0.0767 \mathrm{~g}$
$=0.9984 \mathrm{~g}$
ive online tutoring

Some basic concepts of Chemistry

\therefore Percent of C in the compound $=\frac{0.9217 g}{0.9984 g} \times 100$
$=92.32 \%$
Percent of H in the compound $=\frac{0.0767 g}{0.9984 g} \times 100$
$=7.68 \%$
Moles of carbon in the compound $=\frac{92.32}{12.00}$
$=7.69$
Moles of hydrogen in the compound $==\frac{7.68}{1}$
$=7.68$
\therefore Ration of carbon to hydrogen in the compound $=7.69: 7.68$
$=1.1$
Hence, the empirical formula of the gas is CH .
(ii) Given,

Weight of 10.0 L of the gas (at S.T.P) $=11.6 \mathrm{~g}$
\therefore Weight of 22.4 L of gas at $\mathrm{STP}==\frac{11.6 \mathrm{~g}}{10.0 L} \times 22.4 L$
$=25.984 \mathrm{~g}$
$\approx 26 \mathrm{~g}$
Hence, the molar mass of the gas is 26 g .
(iii) Empirical formula mass of $\mathrm{CH}=12+1=13 \mathrm{~g}$
$n=\frac{\text { Molar mass of gas }}{\text { Empirical Formula mass of gas }}$
$=\frac{26 g}{13 g}$
$\mathrm{n}=2$
\therefore Molecular formula of gas $=(\mathrm{CH})_{\mathrm{n}}$
$=\mathrm{C}_{2} \mathrm{H}_{2}$

Question 35:

Calcium carbonate reacts with aqueous HCl to given CaCl_{2} and CO_{2} according to the reaction,
$\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
What mass of CaCO_{3} is required to react completely with 25 mL of 0.75 M HCl ?

Solution 35:

0.75 M of $\mathrm{HCI} \equiv 0.75 \mathrm{~mol}$ of HCl are present in 1 L of water
$\equiv\left[(0.75 \mathrm{~mol}) \times\left(36.5 \mathrm{gmol}^{-1}\right)\right] \mathrm{HCl}$ is present in 1 L of water
$\equiv 27.375 \mathrm{~g}$ of HCI is present in 1 L of water
Thus, 1000 mL of solution contains 27.375 g of HCl .
\therefore Amount of HCl present in 25 mL of solution
$=\frac{27.375 \mathrm{~g}}{1000 m L} \times 25 \mathrm{~mL}$
$=0.6844 \mathrm{~g}$
From the given chemical equation,
$\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
2 mol of $\mathrm{HCl}(2 \times 36.5=71 \mathrm{~g})$ react with 1 mol of $\mathrm{CaCO}_{3}(100 \mathrm{~g})$.
\therefore Amount of CaCO_{3} that will react with $0.6844 \mathrm{~g}=\frac{100}{71} \times 0.6844 \mathrm{~g}$
$=0.9639 \mathrm{~g}$

Question 36:

Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction
$4 \mathrm{HCl}_{(a q)}+\mathrm{MnO}_{2(l)}+\mathrm{MnCl}_{2(a q)}+\mathrm{Cl}_{2(g)}$
How many grams of HCl react with 5.0 g of manganese dioxide?

Solution 36:

$1 \mathrm{~mol}[55+2 \times 16=87 \mathrm{~g}] \mathrm{MnO}_{2}$ reacts completely with $4 \mathrm{~mol}[4 \times 36.5=146 \mathrm{~g}]$ of HCl .
$\therefore 5.0 \mathrm{~g}$ of MnO_{2} will react with
$=\frac{146 g}{87 g} \times 5.0 g$
$=8.4 \mathrm{~g}$ of HCl
Hence, 8.4 g of HCl will react completely with 5.0 g of manganese dioxide.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

