NCERT SOLUTIONS CLASS-XI CHEMISTRY CHAPTER-7
 EQUILIBRIUM

Q.1. At a fixed temperature a liquid is in equilibrium with its vapour in a closed vessel. Suddenly, the volume of the vessel got increased.
I)What will be the final vapour pressure and what will happen when equilibrium is restored finally?
II)Write down, how initially the rates of evaporation and condensation got changed?
III)Write down the effect observed when there was a change in vapour pressure.

Ans.
(I)Finally, equilibrium will be restored when the rates of the forward and backward processes become equal. However, the vapour pressure will remain unchanged because it depends upon the temperature and not upon the volume of the container
(II)On increasing the volume of the container, the rates of evaporation will increase initially because now more space is available. Since the amount of the vapours per unit volume decrease on increasing the volume, therefore, the rate of condensation will decrease initially.
(III)On increasing the volume of the container, the vapour pressure will Initially decrease because the same amount of vapours are now distributed over a large space

Q.2.Find out K_{c} for the given reaction in equilibrium state

$:\left[\mathrm{SO}_{2}\right]=0.6 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.9 \mathrm{M}$?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
Ans.
As per the question,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ (Given)
$K_{c}=\frac{\left[\left.\mathrm{SO}_{3}\right|^{2}\right.}{\left.\left[\mathrm{SO}_{2}\right]^{2} \mid O_{2}\right]}$ (approximately)
$=\frac{(1.9)^{2} M^{2}}{(0.6)^{2}(0.82) M^{3}}$
$=12.229 \mathrm{M}^{-1}$
Hence, K for the equilibrium is $12.229 \mathrm{M}^{-1}$
Q.3. At a definite temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of I atoms
$I_{2}(g) \leftrightarrow 2 I(g)$
Find K_{p} for the equilibrium.
Ans.
Partial pressure of lodine atoms (I)
$p_{I}=\frac{40}{100} \times p_{\text {total }}$
$=\frac{40}{100} \times 10^{5}$
$=4 \times 10^{4} \mathrm{~Pa}$
Partial pressure of l_{2} molecules,
$p_{I}=\frac{60}{100} \times p_{\text {total }}$
$=\frac{60}{100} \times 10^{5}$
$=6 \times 10^{4} \mathrm{~Pa}$
Now, for the given reaction,
$K_{p}=\frac{\left(p_{I}\right)^{2}}{p_{I_{2}}}=\frac{\left(4 \times 10^{4}\right)^{2} P^{2}}{6 \times 10^{4} P a}$
$=2.67 \times 10^{4} \mathrm{~Pa}$
Q.4. For the given reaction, find expression for the equilibrium constant
(i) $2 \mathrm{NOCl}(g) \leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$
(iv) $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)$
(v) $I_{2}(s)+5 F_{2} \leftrightarrow 2 I F_{5}$

Ans.
$K_{C}=\frac{\left[\mathrm{NO}_{g}\right]^{2}\left[\mathrm{Cl}_{(q)}\right]}{\left[\operatorname{NOCL}_{(G)}\right]^{2}}$
(ii) $K_{C}=\frac{\left[\mathrm{CuO}_{(s)}\right]^{2}\left[\mathrm{NO}_{(G)}\right]^{4}\left\langle\mathrm{O}_{(G)}\right]}{\left[\mathrm{Cu}_{u}\left(\mathrm{NO}_{3}\right)_{(G)}\right]^{2}}$

$$
=\left[N O_{2(g)}\right]^{4}\left[O_{2(g)}\right]
$$

(iii) $K_{C}=\frac{\left.\mathrm{CH}_{3} \mathrm{COOH}_{(a)}\right)}{\left[\mathrm{CH}_{3} \mathrm{COO}_{2} \mathrm{H}_{5} \mathrm{OH}_{\left.(a)^{2}\right)}\right]}$
$=\frac{\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a q)}\right]}$
(iv) $K_{C}=\frac{\mathrm{Fe}(\mathrm{OH})_{3(s)}}{\left[\mathrm{Fe}_{(a q)}^{3+}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]^{3}}$

$$
=\frac{1}{\left[F e_{(a q)}^{3+}\right]\left[O H_{(a q)}^{-}\right]^{3}}
$$

(v) $K_{C}=\frac{\left[I F_{5}\right]^{2}}{\left.\left[I_{2(t)}\right] F_{2}\right]^{5}}$

$$
=\frac{\left[I F_{5}\right]^{2}}{\left[F_{2}\right]^{5}}
$$

Q.5.Find the value of , K_{c} for each of the following equilibria from the given value of K_{p} :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; K_{p}=1.8 \times 10^{-2}$ at 500 K
(ii) $\mathrm{CaCO}_{3}(s) \leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) ; K_{p}=167$ at 1073 K

Ans.
The relation between K_{p} and K_{c} is given as:
$K_{p}=K_{c}(R T)^{\Delta n}$
(a) Given,
$\mathrm{R}=0.0831$ barLmol $^{-1} \mathrm{~K}^{-1}$
$\Delta n=3-2=1$
$\mathrm{T}=500 \mathrm{~K}$
$\mathrm{K}_{\mathrm{p}}=1.8 \times 10^{-2}$
Now,
$K_{p}=K_{c}(R T)^{\Delta n}$
$\Rightarrow 1.8 \times 10^{-2}=K_{c}(0.0831 \times 500)^{1}$
$\Rightarrow K_{c}=\frac{1.8 \times 10^{-2}}{0.0831 \times 500}$
$=4.33 \times 10^{-4}$ (approximately $)$
(b) Here,
$\Delta n=2-1=1$
$\mathrm{R}=0.0831$ barLmol $^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=1073 \mathrm{~K}$
$K_{p}=167$
Now,
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$\Rightarrow 167=K_{c}(0.0831 \times 1073)^{\Delta n}$
$\Rightarrow K_{c}=\frac{167}{0.0831 \times 1073}$
$=1.87$ (approximately)

Both the reverse and forward reactions in the equilibrium are elementary bimolecular reactions. Calculate K_{c}, for the reverse reaction?

Ans.
For the reverse reaction, $K_{c}=\frac{1}{K_{c}}$

$$
\begin{aligned}
& =\frac{1}{6.3 \times 10^{14}} \\
& =1.59 \times 10^{-15}
\end{aligned}
$$

Q.7. Explain why solids and pure liquids can be ignored while writing the equilibrium constant expression?

Ans.
This is because molar concentration of a pure solid or liquid is independent of the amount present.
$\begin{aligned} \text { Mole concentration }= & \frac{\text { Number of moles }}{\text { Volume }} \\ & \frac{\text { Mass/molecular mass }}{\text { Volume }} \\ & =\frac{\text { Mass }}{\text { Volume } \times \text { Molecular mass }} \\ & =\frac{\text { Density }}{\text { Molecular mass }}\end{aligned}$
Though density of solid and pure liquid is fixed and molar mass is also fixed
\therefore Molar concentration are constatnt.
Q.8. When oxygen and nitrogen react with each other, then the following reaction takes place:
$2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
If a solution of 0.933 mol of oxygen and 0.482 mol of nitrogen is placed in a 10 L reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{-37}$, determine the composition of equilibrium solution.

Ans.
Let the concentration of $\mathrm{N}_{2} \mathrm{O}$ at equilibrium be x .
The given reaction is:

$2 \mathrm{~N}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$
Initial conc. 0.482 mol	0.933 mol
At equilibrium $(0.482-\mathrm{x}) \mathrm{mol}$	(g)
$\left[N_{2}\right]=\frac{0.482-x}{10} \cdot\left[O_{2}\right]=\frac{0.933-\frac{x}{2}}{10},\left[N_{2} O\right]=\frac{x}{10}$	0

The value of equilibrium constant is extremely small. This means that only small amounts. Then,
$\left[N_{2}\right]=\frac{0.482}{10}=0.0482 \mathrm{molL}^{-1}$ and $\left[O_{2}\right]=\frac{0.933}{10}=0.0933 \mathrm{molL}^{-1}$
Now,

$$
\begin{array}{ll}
K_{c}=\frac{\left[N_{2} O_{(g)}\right]^{2}}{\left[N_{2(g)}\right]\left[O_{2(g)}\right]} & {\left[N_{2} O\right]=\frac{x}{10}=\frac{6.6 \times 10^{-20}}{10}} \\
\Rightarrow 2.0 \times 10^{-37}=\frac{\left(\frac{x}{10}\right)^{2}}{(0.0482)^{2}(0.0933)} & =6.6 \times 10^{-21} \\
\Rightarrow \frac{x^{2}}{100}=2.0 \times 10^{-37} \times(0.0482)^{2} \times(0.0933) & \\
\Rightarrow x^{2}=43.35 \times 10^{-40} & \\
\Rightarrow x=6.6 \times 10^{-20} &
\end{array}
$$

Q.9. Nitric oxide reacts with bromine and gives nitrosyl bromide as per reaction is given below:

$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \Rightarrow \mathbf{2 N O B r}(\mathrm{g})$
When 0.087 mol of NO and 0.0437 mol of Br_{2} are mixed in a closed container at a constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br_{2}.

Ans.
The given reaction is:

Now, 2 mol of NOBr are formed from 2 mol of NO . Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO.

Again, 2 mol of NOBr are formed from 1 mol of Br .
Therefore, 0.0518 mol of NOBr are formed from $\frac{0.0518}{2} \mathrm{~mol}$ or Br , or 0.0259 mol of NO .
The amount of NO and Br present initially is as follows:
$[\mathrm{NO}]=0.087 \mathrm{~mol}[\mathrm{Br} 2]=0.0437 \mathrm{~mol}$
Therefore, the amount of NO present at equilibrium is:
$[\mathrm{NO}]=0.087-0.0518=0.0352 \mathrm{~mol}$
And, the amount of Br present at equilibrium is:
$[\mathrm{Br} 2]=0.0437-0.0259=0.0178 \mathrm{~mol}$
Q.10. At $450 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

What is K_{c} at this temperature?

Ans.)

For the given reaction,
$\Delta n=2-3=-1$
$\mathrm{T}=450 \mathrm{~K}$
$\mathrm{R}=0.0831$ bar $\mathrm{L}^{\text {bar }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{K}_{\mathrm{p}}=2.0 \times 10^{10} b a r^{-1}$
We know that,
$K_{p}=K_{c}(R T) \Delta n$
$\Rightarrow 2.0 \times 10^{10} \mathrm{bar}^{-1}=K_{c}\left(0.0831 L \text { bar K }{ }^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1}$
$\Rightarrow K_{c}=\frac{2.0 \times 10^{10} \mathrm{bar}^{-1}}{\left(0.0831 \mathrm{Lbar} \mathrm{K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1}}$
$=\left(2.0 \times 10^{10} \mathrm{bar}^{-1}\right)\left(0.0831 \mathrm{~L}\right.$ bar K$\left.{ }^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)$
$=74.79 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1}$
$=7.48 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1}$
$=7.48 \times 10^{11} M^{-1}$
Q.11. A sample of $\mathrm{HI}_{(\mathrm{g})}$ is placed in flask at a pressure of 0.2 atm . At equilibrium the partial pressure of $\mathrm{HI}_{(\mathrm{g})}$ is 0.04 atm . What is K_{p} for the given equilibrium?
$2 \mathrm{HI}(\mathrm{g}) \Rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
Ans.
The initial concentration of HI is 0.2 atm . At equilibrium, it has a partial pressure of 0.04 atm .
Therefore, a decrease in the pressure of HI is $0.2-0.04=0.16$. The given reaction is:

$2 \mathrm{HI}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$
Initial conc.	0.2 atm		
At equilibrium	0.4 atm	0	0
2	2		0.16

Therefore,
$K_{p=} \frac{p_{H_{2}} \times p_{I_{2}}}{p_{H I}^{2}}$
$=\frac{0.08 \times 0.08}{(0.04)^{2}}$
$=\frac{0.0064}{0.0016}$
$=4.0$
Hence, the value of K_{p} for the given equilibrium is 4.0.
Q.12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, K_{c} for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is 1.7×10^{2}
Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?
Ans.
The given reaction is:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The given concentration of various species is
$\left[\mathrm{N}_{2}\right]=\frac{1.57}{20} \mathrm{~mol} L^{-1}$
$\left[\mathrm{H}_{2}\right]=\frac{1.92}{20} \mathrm{~mol} \mathrm{~L} L^{-1}$
$\left[\mathrm{NH}_{3}\right]=\frac{8.31}{20} \mathrm{~mol} L^{-1}$
Now, reaction quotient Q_{C} is:
$Q=\frac{\left[N H_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}$
$=\frac{\left(\frac{(8.13)}{20}\right)^{2}}{\left(\frac{1.57}{20}\right)\left(\frac{1.29}{20}\right)^{3}}$
$=2.4 \times 10^{3}$
Since, $Q_{c} \neq K_{c}$, the reaction mixture is not at equilibrium.
Again, $Q_{c}>K_{c}$. Hence, the reaction will proceed in the reverse direction.
Q.13. The equilibrium constant expression for a gas reaction is,
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{\left[\mathrm{NO}^{4}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balanced chemical equation corresponding to this expression.

Ans.

The balanced chemical equation corresponding to the given expression can be written as:
$4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Rightarrow 4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}$
Q.14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . At equilibrium 60% of water (by mass) reacts with CO according to the equation,

```
H2O(g)}+\textrm{CO}(\textrm{g})=>\mp@subsup{\textrm{H}}{2}{}(\textrm{g})+\mp@subsup{\textrm{CO}}{2}{}(\textrm{g}
```


Calculate the equilibrium constant for the reaction.

Ans.

The given reaction is:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Initial conc.	1	M	1	M	0	0

| At equilibrium | $1-0.6 \mathrm{M}$ | $1-0.6 \mathrm{M}$ | 0.6 M |
| :--- | :--- | :--- | :--- | 0.6 M

10	10	10	10
$=0.04 \mathrm{M}$	$=0.04 \mathrm{M}$	$=0.06 \mathrm{M}$	$=0.06 \mathrm{M}$

Therefore, the equilibrium constant for the reaction,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}= & K_{c}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]} \\
& =\frac{0.06 \times 0.06}{0.04 \times 0.04} \\
& =\frac{0.0036}{0.0016} \\
& =2.25(\text { approximately })
\end{aligned}
$$

$\mathrm{H}_{2(\mathrm{~g})}{ }^{+\mathrm{I}_{2(\mathrm{~g})}} \Rightarrow 2 \mathrm{H}_{(\mathrm{g})}$
is 54.8. If $0.5 \mathrm{molL}^{-1}$ of $\mathrm{HI}_{(\mathrm{g})}$ is present at equilibrium at 700 K , what are the concentration of $\mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{I}_{2(\mathrm{~g})}$ assuming that we initially started with $\mathrm{HI}_{(\mathrm{g})}$ and allowed it to reach equilibrium at 700 K ?

Ans.
It is given that equilibrium constant K_{c} for the reaction
$\mathrm{H}_{2(\mathrm{~g})}{ }^{+}{ }_{2(\mathrm{~g})} \quad 2 \mathrm{HI}_{(\mathrm{g})}$ is 54.8.
Therefore, at equilibrium, the equilibrium constant K_{c} for the reaction
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \quad 2 \mathrm{HI}_{(\mathrm{g})}$
$[\mathrm{HI}]=0.5 \mathrm{molL}^{-1}$ will be $1 / 54.8$.
Let the concentrations of hydrogen and iodine at equilibrium be $\times \mathrm{molL}^{-1}$
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{L}_{2}\right]=\mathrm{x} \mathrm{mol} \mathrm{L}{ }^{-1}$
Therefore, $\frac{\left[H_{2}\right]\left[I_{2}\right]}{[H I]^{2}}=K_{c}$

$$
\begin{aligned}
& \Rightarrow \frac{x \times x}{(0.5)^{2}}=\frac{1}{54.8} \\
& \Rightarrow x^{2}=\frac{0.25}{54.8} \\
& \Rightarrow x=0.06754 \\
& x=0.068 \mathrm{molL}^{-1} \text { (approximately) }
\end{aligned}
$$

Hence, at equilibrium, $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.068 \mathrm{~mol} \mathrm{~L}^{-1}$.
Q.16. What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICI was 0.78 M ?
$2 \mathrm{ICl}_{(\mathrm{g})} \Rightarrow \mathrm{I}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} ; \mathrm{K}_{\mathrm{c}}=0.14$

Ans.
The given reaction is:

$2^{2 l C l}$				
$(\mathrm{~g})$		$\mathrm{I}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$		
Initial conc.	0.78 M		0	0
At equilibrium	$(0.78-2 \mathrm{x}) \mathrm{M}$		$\times \mathrm{M}$	$\times \mathrm{M}$

Now, we can write, $\frac{\left[I_{2}\right]\left[C l_{2}\right]}{[I C]^{2}}=K_{c}$

$$
\begin{aligned}
& \Rightarrow \frac{x \times x}{(0.78-2 x)^{2}}=0.14 \\
& \Rightarrow \frac{x^{2}}{(0.78-2 x)^{2}}=0.14 \\
& \Rightarrow \frac{x}{0.78-2 x}=0.374 \\
& \Rightarrow x=0.292-0.748 x \\
& \Rightarrow 1.748 x=0.292 \\
& \Rightarrow x=0.167
\end{aligned}
$$

Hence, at equilibrium,
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{l}_{2}\right]=0.167 \mathrm{M}$
$[\mathrm{HI}]=(0.78-2 \times 0.167) M$

$$
=0.446 M
$$

Q.17. $\mathrm{K}_{\mathrm{p}}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Ans.

Let p be the pressure exerted by ethene and hydrogen gas (each) at equilibrium. Now, according to the reaction,
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

We can write,
$\frac{p_{c_{2} H_{4}} \times p_{H_{2}}}{p_{c_{2} H_{6}}}=K_{P}$
$\Rightarrow \frac{p \times p}{40-p}=0.04$
$\Rightarrow p^{2}=0.16-0.04 p$
$\Rightarrow p^{2}+0.04 p-0.16=0$
Now,
$p=\frac{-0.04 \pm \sqrt{(0.04)^{2}-4 \times 1 \times(-0.16)}}{2 \times 1}$
$=\frac{-0.04 \pm 0.80}{2}$
$=\frac{0.76}{2} \quad$ (Taking positive value)
$=0.38$
Hence, at equilibrium,
$\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]-4-\mathrm{p}=4-0.38$
$=3.62 \mathrm{~atm}$
Q.18. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{c}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \Rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(i)Write the concentration ratio (reaction quotient), \mathbf{Q}_{C}, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii)At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii)Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached?

Ans.
(i)Reaction quotient,
$Q_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$
(ii) Let the volume of the reaction mixture be V . Also, here we will consider that water is a solvent and is present in excess.

The given reaction is:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$
Initial conc.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

At equilibrium
$=\quad=$
Therefore, equilibrium constant for the given reaction is:
$K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$
$=\frac{\frac{0.171}{V} \times \frac{0.171}{V}}{\frac{0.829}{V} \times \frac{0.09}{V}}=3.919$
$=3.92$ (approximately)
(iii)Let the volume of the reaction mixture be V .
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Initial conc.
0
0
At equilibrium
$=\quad=$
Therefore, the reaction quotient is,
$K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$
$=\frac{\frac{0.214}{V} \times \frac{0.214}{V}}{\frac{0.786}{V} \times \frac{0.286}{V}}=0.2037$

$=0.204$ (approximately)

Since $Q_{C}<K_{C}$, equilibrium has not been reached.
Q.19. A sample of pure PCl_{5} was introduced into an evacuated vessel at 473 K . After equilibrium was attained, concentration of PCl_{5} was found to be $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. If value of K_{c} is 8.3×10^{-3}, what are the concentrations of PCl_{3} and Cl_{2} at equilibrium?
$\mathrm{PCl}_{5}(\mathrm{~g}) \Rightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

Ans.

Consider the conc. Of both PCl_{3} and Cl_{2} at equilibrium be \times molL${ }^{-1}$. The given reaction is
$\mathrm{PCl}_{5}(\mathrm{~g}) \Rightarrow \mathrm{PCl}_{3(\mathrm{~g}} \quad+\mathrm{Cl}_{2(\mathrm{~g})}$
At equilibrium $0.5 \times 10^{-10} \mathrm{molL}^{-1} \quad \times \mathrm{mol} \mathrm{L}^{-1} \quad \times \mathrm{mol} \mathrm{L}^{-1}$
It is given that the value of equilibrium constant, K_{c} is $8.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-3}$

Now we can write the expression for equilibrium as

$$
\begin{aligned}
& \frac{\left[\mathrm{PCl}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{3}\right]}=K_{c} \\
& \Rightarrow \frac{x \times x}{0.5 \times 10^{-10}}=8.3 \times 10^{-3} \\
& \Rightarrow x^{2}=4.15 \times 10^{-4} \\
& \Rightarrow x=2.04 \times 10^{-2} \\
& =0.0204 \\
& =0.02(\text { approximately })
\end{aligned}
$$

Therefore, at equilibrium,
$\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.02 \mathrm{~mol} \mathrm{~L}^{-1}$
Q.20. One of the reactions that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and CO_{2}.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO} 2(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=0.265$ at 1050 K.
What are the equilibrium partial pressures of CO and CO_{2} at 1050 K if the initial partial pressures are: $\mathrm{p}_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}}=0.80 \mathrm{~atm}$?

Ans.
For the given reaction,

$\mathrm{FeO}_{(\mathrm{g})}$
nitialy
$\mathrm{CO}_{(\mathrm{g})}$
atm

$\mathrm{Fe}_{(\mathrm{s})} \quad+\quad \mathrm{CO}_{2(\mathrm{~g})}$

Initialy, $\quad 1.4 \mathrm{~atm}$
0.80 atm
$\mathrm{Q}_{\mathrm{p}}=\frac{p_{\mathrm{CO}}^{2}}{p_{C O}}$

$$
\begin{aligned}
& =\frac{0.80}{1.4} \\
& =0.571
\end{aligned}
$$

Since $Q_{p}>K_{p}$, the reaction will proceed in the backward direction
Therefore, we can say that the pressure of CO will increase while the pressure of CO_{2} will decrease

Now, let the increase in pressure of $\mathrm{CO}=$ decrease in pressure of CO_{2} be p . Then, we can write,
$K_{p}=\frac{p_{O_{2}}}{p_{C O}}$
$\Rightarrow 0.265=\frac{0.80-p}{1.4+p}$
$\Rightarrow 0.371+0.265 p=0.80-p$
$\Rightarrow 1.265 p=0.429$
$\Rightarrow p=0.339 \mathrm{~atm}$
Therefore, equilibrium partial of $\mathrm{CO}_{2}, \mathrm{p}_{\mathrm{CO}}=0.80-0.339=0.461 \mathrm{~atm}$
And, equilibrium partial pressure of $\mathrm{CO}, \mathrm{p}_{\mathrm{CO}}=1.4+0.339=1.739 \mathrm{~atm}$

Q.21. A reaction is given:

For the above equation, Equilibrium constant $=0.061$ at 500 K
At a specific time, from the analysis we can conclude that composition of the reaction mixture is, 2.0 mol $\mathrm{L}^{-1} \mathrm{H}_{2}, 3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~N}_{2}$ and $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$. Find out whether the reaction is at equilibrium or not? Find in which direction the reaction proceeds to reach equilibrium.

Ans.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad 2 \mathrm{NH}_{3}$
At a particular time: $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \quad 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \quad 0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
So,
$\mathrm{Q}_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

$$
=\frac{(0.5)^{2}}{(3.0)(2.0)^{3}}
$$

$$
=0.0104
$$

It is given that $\mathrm{K}_{\mathrm{c}}=0.061$
$\because Q c \neq K_{c}$, the reaction is not at equilibrium.
$\because Q c<K_{c}$, the reaction preceeds in the forward direction to reach at equilibrium.
Q.22.Bromine monochloride (BrCl) decays into bromine and chlorine and reaches the equilibrium:
$2 \mathrm{BrCl}(\mathrm{g}) \Rightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
For which $\mathrm{K}_{\mathrm{c}}=42$ at 600 K .
If initially pure BrCl is present at a concentration of $5.5 \times 10^{-5} \mathrm{molL}^{-1}$, what is its molar concentration in the mixture at equilibrium?

Ans.)
Let the amount of bromine and chlorine formed at equilibrium be x . The given reaction is:

$2 \mathrm{BrCl}(\mathrm{g})$	$\mathrm{Br}_{2}(\mathrm{~g})$	+	$\mathrm{Cl}_{2}(\mathrm{~g})$
Initial conc. 5.5×10^{-5}	0	0	
At equilibrium $5.5 \times 10^{-5}-2 x$	x		x

Now, we can write,
$\frac{\left[B_{2}\right]\left[C l_{2}\right]}{[B r C l]^{2}}=K_{c}$
$\Rightarrow \frac{x \times x}{\left(5.5 \times 10^{-5}-2 x\right)^{2}}=42$
$\Rightarrow \frac{x}{5.5 \times 10^{-5}-2 x}=6.48$
$\Rightarrow x=35.64 \times 10^{-5}-12.96 x$
$\Rightarrow 13.96 x=35.64 \times 10^{-5}$
$\Rightarrow x=\frac{35.64}{13.96} \times 10^{-5}=2.55 \times 10^{-5}$
So,at equilibrium

$$
\begin{aligned}
& {[\mathrm{BrCl}]=5.5 \times 10^{-5}-\left(2 \times 2.55 \times 10^{-5}\right)} \\
& =5.5 \times 10^{-5}-5.1 \times 10^{-5} \\
& =0.4 \times 10^{-5} \\
& =4.0 \times 10^{-6} \mathrm{~mol}^{-1}
\end{aligned}
$$

Q.23. Find out K_{c} for the given reaction at temperature 1127 K where the pressure is 1 atm . A solution of CO and CO_{2} is in equilibrium with carbon(solid). It has $93.55 \% \mathrm{CO}$ by mass.

$\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{CO}(\mathrm{g})$

Ans.)
Let us assume that the solution is of 100 g in total.
Given, mass of $\mathrm{CO}=93.55 \mathrm{~g}$
Now, the mass of $\mathrm{CO}_{2}=(100-93.55)=6.45 \mathrm{~g}$
Now, number of moles of $\mathrm{CO}, n_{C O}=\frac{93.5}{28}=3.34 \mathrm{~mol}$

Number ot moles of $\mathrm{CU}_{2}, n_{\mathrm{CO}_{2}}=\frac{v . \pi \mathrm{u}}{44}=\mathbf{U} .140 \mathrm{~mol}$
Partial pressure of CO ,
$\mathrm{P}_{\mathrm{CO}}=\frac{n_{\mathrm{CO}}}{n_{\mathrm{CO}}+n_{\mathrm{CO}_{2}}} \times p_{\text {total }}=\frac{3.34}{3.34+0.146} \times 1=0.958 \mathrm{~atm}$
Partial pressure of $\mathrm{CO}_{2}, P_{\mathrm{CO}_{2}}=\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{Co}}+n_{\mathrm{CO}_{2}}} \times p_{\text {total }}=\frac{0.146}{3.34+0.146} \times 1=\mathrm{atm}$
Therefore, $\mathrm{K}_{\mathrm{p}}=\frac{[\mathrm{CO}]^{2}}{\left[\mathrm{CO}_{2}\right]}$

$$
\begin{aligned}
& =\frac{(0.938)^{2}}{0.062} \\
& =14.19
\end{aligned}
$$

For the given reaction,
$\Delta n=2-1=1$
We know that,
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT}) \Delta n$
$\Rightarrow 14.19=K_{c}(0.082 \times 1127)^{1}$
$\Rightarrow K_{c}=\frac{14.19}{0.082 \times 1127}$
$=0.154$ (approximately)

Q.24.Find out

(I) The equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K and
(II) ΔG°
$\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(g)$

Where;

$\Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} \mathrm{G}^{\circ}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} G^{\circ}\left(\mathrm{O}_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$

Ans.)

(I)We know that,
$\Delta G^{\circ}=R T \log K_{c}$
$\Delta G^{\circ}=2.303 R T \log K_{c}$
$K_{c}=\frac{-35.0 \times 10^{-3}}{-2.303 \times 8.314 \times 298}$
$=6.134$
$\therefore K_{c}=\operatorname{antilog}(6.134)$
$=1.36 \times 10^{6}$
Therefore, the equilibrium constant for the given reaction K_{c} is 1.36×10^{6}
Q.25. When each of the following equilibria is subjected to a decrease in pressure by increasing the volume, does the number of moles of reaction products increase, decrease or remain same?
(I) $\mathrm{PCl}_{5}(\mathrm{~g}) \Rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ (g)
(II) Cao (s) $+\mathrm{CO}_{2}$ (g) $\Rightarrow \mathrm{CaCO}_{3}$ (s)
(III) 3 Fe (s) $+4 \mathrm{H}_{2} \mathrm{O}$ (g) $\Rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$ (s) $+4 \mathrm{H}_{2}$ (g)

Ans.
(I) The number of moles of reaction products will increase. According to Le Chatelier's principle, if pressure is decreased, then the equilibrium shifts in the direction in which the number of moles of gases is more. In the given reaction, the number of moles of gaseous products is more than that of gaseous reactants. Thus, the reaction will proceed in the forward direction. As a result, the number of moles of reaction products will increase.
(II) The number of moles of reaction products will decrease.
(III) The number of moles of reaction products remains the same.
Q.26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether chance will cause the reaction to ao into forward or backward direction.

```
(I)}\mp@subsup{\textrm{COCl}}{2}{(g)}=>\textrm{CO}(\textrm{g})+\mp@subsup{\textrm{Cl}}{2}{(g)
(II)}\mp@subsup{\textrm{CH}}{4}{}(\textrm{g})+2\mp@subsup{\textrm{S}}{2}{}(\textrm{g})=>\mp@subsup{\textrm{CS}}{2}{(g)}+2\mp@subsup{\textrm{H}}{2}{}\textrm{S}(\textrm{g}
(III)}\mp@subsup{\textrm{CO}}{2}{(g)+C
(IV)2H2
(V)CaCO
(VI)4NH3 (g) +5O2 (g) = 4NO(g) +6H2O(g)
```


Ans.)

When pressure is increased:

The reactions given in (i), (iii), (iv), (v), and (vi) will get affected.
Since, the number of moles of gaseous reactants is more than that of gaseous products; the reaction given in (iv) will proceed in the forward direction

Since, the number of moles of gaseous reactants is less than that of gaseous products, the reactions given in (i), (iii), (v), and (vi) will shift in the backward direction

Q.27. The equilibrium constant for the following reaction is 1.6×10^{5} at 1024 K .

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{HBr}(\mathrm{g})$
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K.

Ans.

Given, K_{p} for the reaction i.e., $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{HBr}(\mathrm{g})$ is 1.6×10^{5}.
Therefore, for the reaction $2 \mathrm{HBr}(\mathrm{g}) \Rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$ the equilibrium constant will be,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}}^{\prime}= & \frac{1}{K_{p}} \\
& =\frac{1}{1.6 \times 10^{5}} \\
& =6.25 \times 10^{-6}
\end{aligned}
$$

Now, let p be the pressure of both H_{2} and Br_{2} at equilibrium.

$2 \mathrm{HBr}(\mathrm{g})$		$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$	
Initial conc.	10		0
At equilibrium	$10-2 \mathrm{p}$		p

Now, we can write,

$$
\begin{aligned}
& \frac{p_{H B r} \times p_{2}}{p_{H B r}^{2}}=K_{p}^{\cdot} \\
& \frac{p \times p}{(10-2 p)^{2}}=6.25 \times 10^{-6} \\
& \frac{p}{10-2 p}=2.5 \times 10^{-3} \\
& p=2.5 \times 10^{-2}-\left(5.0 \times 10^{-3}\right) p \\
& p+\left(5.0 \times 10^{-3}\right) p=2.5 \times 10^{-2} \\
& \left(1005 \times 10^{-3}\right)=2.5 \times 10^{-2} \\
& p=2.49 \times 10^{-2} \text { bar }=2.5 \times 10^{-2} \text { bar }(\text { approximately })
\end{aligned}
$$

Therefore, at equilibrium,
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{Br}_{2}\right]=2.49 \times 10^{-2}$ bar
$[\mathrm{HBr}]=10-2 \times\left(2.49 \times 10^{-2}\right) b a r$ $=9.95 b a r=10 b a r($ approximately $)$
Q.28.Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

(ii)Increasing the temperature

(iii)Using a catalyst?

Ans.)
(I)For the given reaction,
$\mathrm{K}_{\mathrm{p}}=\frac{p_{\mathrm{CO}} \times p_{\mathrm{H}_{2}}^{3}}{p_{\mathrm{CH}_{4}} \times p_{\mathrm{H}_{2} \mathrm{O}}}$
(II) (i) According to Le Chatelier's principle, the equilibrium will shift in the backward direction.
(ii) According to Le Chatelier's principle, as the reaction is endothermic, the equilibrium will shift in the forward direction
(iii) The equilibrium of the reaction is not affected by the presence of a catalyst. A catalyst only increases the rate of a reaction. Thus, equilibrium will be attained quickly.

Q.29. Describe the effect of:

Removal of CO

II) Addition of H_{2}
III) Removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction:
IV) Addition of $\mathrm{CH}_{3} \mathrm{OH}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Ans.)
(I) On removing CO , the equilibrium will shift in the backward direction
(II) According to Le Chatelier's principle, on addition of H 2 , the equilibrium of the given reaction will shift in the orward direction
(III) On removing CH 3 OH , the equilibrium will shift in the forward direction.
(IV) On addition of CH 3 OH , the equilibrium will shift in the backward direction.
Q.30. At 473 K , equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl_{5} is
8.3×10^{-3}. If decomposition is depicted as,
$\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=124.0 \mathrm{kJmol}^{-1}$
a) Write an expression for Kc for the reaction.
b) What is the value of Kc for the reverse reaction at the same temperature?
c) What would be the effect on Kc if
(i) more PCl 5 is added
(ii) pressure is increased?
(iii) The temperature is increased?

Ans.)
(a) $K_{c}=\frac{\left.\left[\mathrm{PCl}_{3}(g)\right] \mid \mathrm{Cl}_{2}(g)\right]}{\left[\mathrm{PCl}_{3}(g)\right]}$
(b)Value of K_{c} for the reverse reaction at the same temperature is
$K_{c}=\frac{1}{K_{c}}$
$=\frac{1}{8.3 \times 10^{-3}}=1.2048 \times 10^{2}$
$=120.48$
(c)(i)Kc would remain the same because in this case, the temperature remains the same
(ii) Kc is constant at constant temperature. Thus, in this case, Kc would not change. (iii)In an endothermic reaction, the value of Kc increases with an increase in temperature. Since the given reaction in an endothermic reaction, the value of Kc will increase if the temperature is increased
Q.31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and H 2 . In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $\mathrm{P}_{\mathrm{co}}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ $=4.0$ bar, what will be the partial pressure of H 2 at equilibrium? $\mathrm{K}_{\mathrm{p}}=10.1$ at $400^{\circ} \mathrm{C}$

Ans.)
Let the partial pressure of both carbon dioxide and hydrogen gas be p. The given reaction is:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Initial conc.	4.0 bar	4.0 bar	0	0
At equilibrium	$4.0-\mathrm{p}$	$4.0-\mathrm{p}$	p	p

Given $\mathrm{K}_{\mathrm{p}}=10.1$
$\frac{P_{\mathrm{CO}_{2} \times P_{\mathrm{H}_{2}}}}{P_{\mathrm{CO}} \times P_{\mathrm{H}_{2} \mathrm{O}}}=K_{P}$
$\Rightarrow \frac{p \times p}{(4.0-p)(4.0-p)}=10.1$
$\Rightarrow \frac{p}{4.0-p}=3.178$
$\Rightarrow p=12.712-3.178 p$
$4.178 p=12.712$
$p=\frac{12.712}{4.178}$
$p=3.04$
So, partial pressure of H_{2} is 3.04 bar at equilibrium.
Q.32. Predict which of the following reaction will have appreciable concentration of reactants and products:
(a) $\mathrm{Cl}_{2}(g) \leftrightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \mathrm{K}_{c}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \leftrightarrow 2 \mathrm{NOCl}(g) ; K_{c}=3.7 \times 10^{8}$
(c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) ; \mathrm{K}_{c}=1.8$

Ans.)
If the value of K_{c} lies between 10^{-3} and 10^{3}, a reaction has appreciable concentration of reactants and products. Thus, the reaction given in (c) will have appreciable concentration of reactants and products.
Q.33. The value of Kc for the reaction $3 \mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

Ans.)
Given,
$3 \mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
Then, $\mathrm{K}_{\mathrm{C}}=\frac{\left[O_{3}(g)\right]^{2}}{\left[O_{2}(g)\right]^{3}}$
Given that $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{-50}$ and $\left[\mathrm{O}_{2}(\mathrm{~g})\right]=1.6 \times 10^{-2}$
Then,

$$
\begin{aligned}
& 2.0 \times 10^{-50}=\frac{\left[O_{3}(g)\right]^{2}}{\left[1.6 \times 10^{-2}\right]^{3}} \\
& \Rightarrow\left[O_{3}(g)\right]^{2}=2.0 \times 10^{-50} \times\left(1.6 \times 10^{-2}\right)^{3} \\
& \Rightarrow\left[O_{3}(g)\right]^{2}=8.192 \times 10^{-56} \\
& \Rightarrow\left[O_{3}(g)\right]^{2}=2.86 \times 10^{-28} \mathrm{M} \\
& \text { So, the conc. of } \mathrm{O}_{3} \text { is } 2.86 \times 10^{-28} \mathrm{M} .
\end{aligned}
$$

Q.34. The reaction, $\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(g)} \rightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ at 1300 K is at equilibrium in a 1L container. It has 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and y amount of CH_{4} in the container. Find the concentration of CH_{4} in the mixture.

The equilibrium constant, K_{c} is 3.90 at the given temp.
Ans.)

Let the concentration of CH_{4} at equilibrium be y.

At equilibrium,
For $\mathrm{CO}-\frac{0.3}{1}=0.3 M$
For $H_{2}-\frac{0.1}{1}=0.1 M$
For $\mathrm{H}_{2} \mathrm{O}-\frac{0.02}{1}=0.02 \mathrm{M}$
$K_{c}=3.90$

Therefore,
$\frac{\left[C H_{4(g)}\right]\left[H_{2} O_{(g)}\right]}{\left[C O_{(g)}\right]\left[H_{2(g)}\right]^{3}}=K_{c} \frac{y \times 0.02}{0.3 \times(0.1)^{3}}=3.9 y=\frac{3.9 \times 0.3 \times(0.1)^{3}}{0.02} y=\frac{0.00117}{0.02} y=0.0585 \mathrm{M}$ $y=5.85 \times 10^{-2} M$

Therefore, the concentration of CH_{4} at equilibrium is $5.85 \times 10^{-2} \mathrm{M}$
Q.35. What is conjugate acid-base pair? Find the conjugate acid/base of the given species:
(i) HNO_{2}
(ii) CN^{-}
(iii) HClO_{4}
(iv) F^{-}
(v) OH^{-}
(vi) CO_{3}^{2-}
(vii) S^{-}

Ans.)
A conjugate acid-base pair is a pair that has a difference of only one proton.
The conjugate acid-base pair of the following are as follows:
(i) $\mathrm{HNO}_{2}-\mathrm{NO}_{2}^{-}$(Base)
(ii) $\mathrm{CN}^{-}-\mathrm{HCN}$ (Acid)
(iii) $\mathrm{HClO}_{4}-\mathrm{ClO}_{4}^{-}$(Base)
(iv) $F^{-}-\mathrm{HF}$ (Acid)
(v) $\mathrm{OH}^{-}-\mathrm{H}_{2} \mathrm{O}$ (Acid)/ O^{2-} (Base)
(vi) $\mathrm{CO}_{3}^{2-}-\mathrm{HCO}_{3}^{-}$(Acid)
(vii) $S^{-}-H S^{-}$(Acid)

Q.36. From the compounds given below which are Lewis acids?

(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) $B F_{3}$
(iii) H^{+}
(iv) NH_{4}^{+}

Ans.)
Lewis acids are the acids which can accept a pair of electrons.
(i) $\mathrm{H}_{2} \mathrm{O}$ - Not Lewis acid
(ii) $B F_{3}$ - Lewis acid
(iii) $H^{+}-$Lewis acid
(iv) NH_{4}^{+}- Lewis acid
Q.37. From the compounds given below which will be the conjugate base for the Bronsted acids?
(i) HF
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) HCO_{3}

Ans.)

The following shows the conjugate bases for the Bronsted acids:
(i) $\mathrm{HF}-F^{-}$
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HSO}_{4}^{-}$
(iii) $\mathrm{HCO}_{3}-\mathrm{CO}_{3}^{2-}$

Q.38. For the Brönsted bases given below find their conjugate acids.

1. NH_{3}
2. HCOO^{-}
3. NH_{2}^{-}

Ans.)

	Brönsted base	Conjugate acid	
1	NH_{3}	NH_{4}^{+}	
2	HCOO^{-}	HCOOH	
3	NH_{2}^{-}	NH_{3}	

Q.39. The species given below can act as both Brönsted bases as well as Brönsted acids. For each of them give their conjugate acid and base.

1. HCO_{3}^{-}
2. HSO_{4}^{-}
3. NH_{3}
4. $\mathrm{H}_{2} \mathrm{O}$

Ans.)

	Species	Conjugate base	Conjugate acid
1	HCO_{3}^{-}	CO_{3}^{2-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$
2	HSO_{4}^{-}	SO_{4}^{2-}	$\mathrm{H}_{2} \mathrm{SO}_{4}$
3	NH_{3}	NH_{2}^{-}	NH_{4}^{+}
4	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	$\mathrm{H}_{3} \mathrm{O}^{+}$

Q.40. Classify the species given below into bases and acids and also show that these species act as base/acid:

1. BCl_{3}
2. H^{+}
3. OH^{-}
4. F^{-}

Ans.)

1. BCl_{3} :

It is a Lewis acid as it has tendency to accept a pair of electrons
2. H^{+}

It is a Lewis acid as it has tendency to accept a pair of electrons.
3. OH^{-}
4. F^{-}

It is a Lewis base as it has tendency to lose its lone pair of electrons.
Q.41.A sample soft drink is taken, whose hydrogen ion concentration is $2.5 \times 10^{-4} \mathrm{M}$. Find out pH .

Ans.)
$p H=-\log \left[H^{+}\right]$
$=-\log \left(2.5 \times 10^{-4}\right)$
$=-\log 2.5-\log 10^{-4}$
$=-\log 2.5+4$
$=-0.398+4$
$=3.602$
Q.42.A sample of white vinegar is taken, whose pH is 2.36 . Find out the hydrogen ion concentration in the sample.

Ans.)
$p H=-\log \left[H^{+}\right]$
$\Rightarrow \log \left[H^{+}\right]=-p H$
$\Rightarrow\left[H^{+}\right]=\operatorname{antilog}(-p H)$
$=$ antilog (-2.36)
$=0.004365$
$=4.37 \times 10^{-3}$
$\therefore 4.37 \times 10^{-3}$ is the concentration of white vinegar sample.

Q.43. Ionization constant for the following acids are given:

$\mathrm{HF}=5.7 \times 10^{-5}$ at 298 K
$\mathrm{HCOOH}=1.7 \times 10^{-3}$ at 298 K
$\mathrm{HCN}=3.7 \times 10^{-8}$ at 298 K
Find out the conjugate bases for the above acids.
Ans.)
For $\mathrm{F}^{-}, K_{b}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{\left(5.7 \times 10^{-5}\right)}=1.75 \times 10^{-9}$
For $\mathrm{HCOO}^{-}, K_{b}=\frac{10^{-14}}{\left(1.7 \times 10^{-3}\right)}=5.88 \times 10^{-11}$
For $\mathrm{CN}^{-}=K_{b}=\frac{10^{-14}}{\left(3.7 \times 10^{-8}\right)}=\times 10^{-11}=2.70 \times 10^{-6}$
Q.44.Phenol has ionization constant of 1.0×10^{-8}. In a 0.06 M of phenol solution calculate the presence of phenolate ion. Find out the degree of ionization if 0.02 M of sodium phenolate is given.

Ans.)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}^{+}
$$

Initial
0.06 M

After dissociation $0.06-x \quad x \quad x$
$\therefore K_{a}=\frac{x \times x}{0.06-x}=1.0 \times 10^{-8}$
$\Rightarrow \frac{x^{2}}{0.06}=1.0 \times 10^{-8}$
$\Rightarrow x^{2}=6 \times 10^{-10}$
$\Rightarrow x=2.4 \times 10^{5} \mathrm{M}$
In presence of 0.02 sodium phenolate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Na}\right)$, suppose y is the amount of phenol dissociated, then at equilibrium
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]=0.06-\mathrm{y} \simeq 0.06$,
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=0.02+\mathrm{y} \simeq 0.01 \mathrm{M}$,
$\left[\mathrm{H}^{+}\right]=\mathrm{y} M$
(ก) Mo)(a)
$\therefore K_{a}=\frac{(u .02)(y)}{0.06}=1.0 \times 10^{-0}$
$\Rightarrow y=\frac{1.0 \times 0.06}{(0.02)} \times 10^{-8}$
$\Rightarrow y=6 \times 10^{-8}$
\therefore degree of ionization $=\alpha=\frac{y}{c}=\frac{6 \times 10^{-8}}{6 \times 10^{-2}}\left(\right.$ Herec $\left.=0.06=6 \times 10^{-2}\right)=10^{-6}$
So, $\alpha=10^{-6}$
Q. 45 Given, 9.1×10^{-8} is the initial(first) ionization constant of the gas $\mathrm{H}_{2} \mathrm{~S}$. Find out concentration of the ion HS^{-}in 0.1 M solution of $\mathrm{H}_{2} \mathrm{~S}$. Find the changes in concentration if the concentration is 0.1 M in HCl . Find the concentration of S^{2-} under both conditions, if 1.2×10^{-13} is the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$.

Ans.)
To calculate $\left[\mathrm{HS}^{-}\right.$]

$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}^{+}+\mathrm{HS}^{-}$
Intial	0.1 M

After dissociation $0.1-\mathrm{x} \quad \mathrm{x}$

$$
\begin{gathered}
\simeq 0.1 K_{a}=\frac{x \times x}{0.1}=9.1 \times 10^{-8} \\
\Rightarrow x^{2}=9.1 \times 10^{-9} \\
\Rightarrow x=9.54 \times 10^{-5}
\end{gathered}
$$

In the presence of 0.1 M HCl , suppose $\mathrm{H}_{2} \mathrm{~S}$ dissociated is y . Then at equilibrium, $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1-\mathrm{y} \simeq 0.1$,
$\left[\mathrm{H}^{+}\right]=0.1+\mathrm{y} \simeq 0.1$,
$\left[\mathrm{HS}^{-}\right]=y \mathrm{M}$
$K_{a}=\frac{0.1 \times y}{0.1}=9.1 \times 10^{-8}$
$y=\frac{9.1 \times 0.1}{0.1} \times 10^{-8}$
$y=9.1 \times 10^{-8}$
$\mathrm{K}_{\mathrm{a} 2}$
$K_{a 1}$

To calculate $\left[\mathrm{S}^{2-}\right.$]
$\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{H}^{+}+\mathrm{HS}^{-}, \mathrm{HS}^{-}$ $\mathrm{H}^{+}+\mathrm{S}^{2-}$

For the overall reaction,
$\mathrm{H}_{2} \mathrm{~S} \quad 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$
$K_{a}=K_{a_{1}} \times K_{a_{2}}=9.1 \times 10^{-8} \times 1.2 \times 10^{-13}=1.092 \times 10^{-20} K_{a}=\frac{\left[H^{+}\right]^{2}\left[S^{2-}\right]}{\left[H_{2} S\right]}$
In the absence of 0.1 M HCl ,
$\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{-}\right]$
Hence, if $\left[\mathrm{S}^{2-}\right]=x,\left[\mathrm{H}^{+}\right]=2 x$
$\therefore \frac{(2 x)^{2}}{0.1}=1.092 \times 10^{-20}$
$\Rightarrow 4 x^{3}=1.092 \times 10^{-21}$
$\Rightarrow x^{3}=\frac{1.092}{4} \times 10^{-21}=273 \times 10^{-24}$
$\Rightarrow \log x^{3}=\log 273-\log 10^{-24}=2.4362-24$
$\Rightarrow 3 \log x=2.4362-24$
$\Rightarrow \log x=\frac{2.4362}{3}-\frac{24}{3}$
$\Rightarrow x=0.8127-8=-7.1873$
$\Rightarrow x=$ Antilog $-7.1873=6.497 \times 10^{-8}=6.5 \times 10^{-8}$

In presence of 0.1 M HCI ,

Suppose $\left[\mathrm{S}^{2-}\right]=\mathrm{y}$, then
$\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1-\mathrm{y} \simeq 0.1 \mathrm{M}$,
$\left[\mathrm{H}^{+}\right]=0.1+\mathrm{y} \simeq 0.1 \mathrm{M}$
$K_{a}=\frac{(0.1)^{2} \times y}{0.1}=1.09 \times 10^{-20}$
$y=1.09 \times 10^{-19} M$
Q.46.Given,the ionization constant of acetic acid is 1.74×10^{-5}. Find the degree of dissociation of acetic acid in its 0.05 M solution. Find the concentration of acetate ion in the solution and its pH .

Ans.)
$\mathrm{CH}_{3} \mathrm{COOH} \Rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\Rightarrow\left[H^{+}\right]=\sqrt{K_{a}\left[C H_{3} \mathrm{COOH}\right]}=\sqrt{\left(1.74 \times 10^{-5}\right)\left(5 \times 10^{-2}\right)}=9.33 \times 10^{-4} M$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]=9.33 \times 10^{-4} \mathrm{M}$
$p H=-\log \left(9.33 \times 1.0^{-4}\right)=4-0.9699=4-0.97=3.03$
Q.47. It has been found that the pH of a 0.01 M solution of an organic acid is 4.15 . Calculate the concentration of the anion, the ionization constant of the acid and its pK_{a}.

Ans.)
HA

$$
\mathrm{H}^{+}+\mathrm{A}^{-}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\log \left[\mathrm{H}^{+}\right]=-4.15$
$\left[\mathrm{H}^{+}\right]=7.08 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}^{+}\right]=7.08 \times 10^{-5} \mathrm{M}$
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{\left(7.08 \times 10^{-5}\right)\left(7.08 \times 10^{-5}\right)}{10^{-2}}=5.0 \times 10^{-7}$
$p_{K_{a}}=-\log K_{a}=-\log \left(5.0 \times 10^{-7}\right)=7-0.699=6.301$

Q.48.Consider complete dissociation, find out the pH of the following :

(I) 0.004 M HCl

(II) 0.003 M NaOH
(III) 0.002 M HBr
(IV) 0.002 M KOH

Ans.)
(I) $\mathrm{HCl}+$ aq $\mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\therefore\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=4 \times 10^{-3} \mathrm{M}$
$p H=-\log \left(4 \times 10^{-3}\right)=2.398$
(II) $\mathrm{NaOH}+\mathrm{aq} \quad \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\therefore\left[\mathrm{OH}^{-}\right]=3 \times 10^{-3} \mathrm{M}$
$\left[H^{+}\right]=\frac{10^{-14}}{\left(3 \times 10^{-3}\right)}=3 \times 10^{-12} \mathrm{M}$
$p H=-\log \left(3 \times 10^{-12}\right)=11.52$
(III) $\mathrm{HBr}+\mathrm{aq} \quad \mathrm{H}^{+}+\mathrm{Br}^{-}$
$\therefore\left[H^{+}\right]=2 \times 10^{-3} \mathrm{M}$
$p H=-\log \left(2 \times 10^{-3} M\right)=2.70$
(IV)KOH + aq $\quad \mathrm{K}^{+}+\mathrm{OH}^{-}$
$\therefore\left[\mathrm{OH}^{+}\right]=2 \times 10^{-3} \mathrm{M}$
$\left[H^{+}\right]=\frac{10^{-14}}{\left(2 \times 10^{-3}\right)}=5 \times 10^{-12}$
$p H=-\log \left(5 \times 10^{-12}\right)=11.30$

Q.49.Find out the pH of the following solution:

(I) 2 g of TIOH dissolved in water to give 2 litre of the solution
(II) 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to given 500 mL of the solution

(III) 0.3 g of NaOH dissolved in water to give 200 mL of the solution

(IV) 1 mL of 13.6 M HCl is diluted with water to given 1 litre of the solution

Ans.)
(I)Molar conc. Of $\mathrm{TIOH}=\frac{2 g}{(204+16+1) g \mathrm{~mol}^{-1}} \times \frac{1}{2 L}=4.52 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
& {\left[O H_{-}\right]=[\mathrm{TlOH}]=4.52 \times 10^{-3} M} \\
& {\left[H^{+}\right]=\frac{10^{-14}}{\left(4.52 \times 10^{-3}\right)}=2.21 \times 10^{-12} M} \\
& \therefore p H=-\log \left(2.21 \times 10^{-12}\right)=12-(0.3424)=11.66
\end{aligned}
$$

(II)Molar conc. Of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{0.3 \mathrm{~g}}{(40+34) \mathrm{g} \mathrm{mol}^{-1}} \times \frac{1}{0.5 \mathrm{~L}}=8.11 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
& {\left[O H_{-}\right]=2\left[\mathrm{Ca}(O H)_{2}\right]=2 \times\left(8.11 \times 10^{-3}\right) M=16.22 \times 10^{-3} M} \\
& p O H=-\log \left(16.22 \times 10^{-3}\right)=3-1.2101=1.79 \\
& p H=14-1.79=12.21
\end{aligned}
$$

(III)Molar conc. of $\mathrm{NaOH}=\frac{0.3 \mathrm{~g}}{(40+34) \mathrm{g} \mathrm{mol}^{-1}} \times \frac{1}{0.2 \mathrm{~L}}=3.75 \times 10^{-2} \mathrm{M}$

$$
\begin{aligned}
& {\left[O H_{-}\right]=3.75 \times 10^{-2} M} \\
& p O H=-\log \left(3.75 \times 10^{-2}\right)=2-0.0574=1.43 \\
& p H=14-1.43=12.57
\end{aligned}
$$

(IV) $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\therefore 13.6 M \times \times 1 m L=M_{2} \times 1000 m L$
$\therefore M_{2}=1.36 \times 10^{-2} M$
$\left[H^{+}\right]=[H C l]=1.36 \times 10^{-2} M$
$p H=-\log \left(1.36 \times 10^{-2}\right)=2-0.1335 \simeq 1.87$
Q.50. The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 . Calculate the pH of the solution and the p_{Ka} of bromoacetic acid.

Ans.)
$\mathrm{CH}_{2}(\mathrm{Br}) \mathrm{COOH}$
Initial conc.
Conc. at eqm.

- -Ca
$K_{a}=\frac{C \alpha-C \alpha}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha} \simeq C \alpha^{2}=0.1 \times(0.132)^{2}=1.74 \times 10^{-3}$
$p_{K_{a}}=-\log \left(1.74 \times 10^{-3}\right)=3-0.2405=2.76$
$\left[H^{+}\right]=C \alpha=0.1 \times 0.132=1.32 \times 10^{-2} M$
$p H=-\log \left(1.32 \times 10^{-2}\right)=2-0.1206=1.88$
Q.51. The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 . Calculate the pH of the solution and the p_{Ka} of bromoacetic acid.

Ans.)

Initial conc.
Conc. at eqm.
$C-C a$
$K_{a}=\frac{C \alpha \cdot C \alpha}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha} \simeq C \alpha^{2}=0.1 \times(0.132)^{2}=1.74 \times 10^{-3}$
$p_{K_{a}}=-\log \left(1.74 \times 10^{-3}\right)=3-0.2405=2.76$
$\left[H^{+}\right]=C \alpha=0.1 \times 0.132=1.32 \times 10^{-2} M$
$p H=-\log \left(1.32 \times 10^{-2}\right)=2-0.1206=1.88$
Q.52. What is the pH of 0.001 M aniline solution? The ionization constant of aniline can be taken from Table 7.7. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Ans.)

$\mathrm{K}_{\mathrm{b}}=4.27 \times 10^{-10}$
$c=0.001 \mathrm{M}$
$\mathrm{pH}=$?
$a=$?

```
\(K_{b}=c \alpha^{2}\)
\(4.27 \times 10^{-10}=0.001 \times \alpha^{2}\)
\(4270 \times 10^{-10}=\alpha^{2}\)
\(65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}\)
\(p H=7.813\)
Now,
Then, \([\) anion \(]=c \alpha=0.001 \times 65.34 \times 10^{-5}=0.065 \times 10^{-5} K_{a} \times K_{b}=K_{w}\)
\[
K_{a}=\frac{10^{-14}}{4.27 \times 10^{-10}}
\]
\[
=2.34 \times 10^{-5}
\]
```

$\therefore 2.34 \times 10^{-5}$ is the ionization constant.
Q.53. Calculate the degree of ionization of 0.05 M acetic acid if its p_{Ka} value is 4.74 . How is the degree of dissociation affected when its solution also contains
(I) 0.01 M
(II) 0.1 M in HCl ?

Ans.)
$\mathrm{c}=0.05 \mathrm{M}$
$\mathrm{p}_{\mathrm{Ka}}=4.74$
$\rho_{\mathrm{Ka}}=-\log \left(\mathrm{K}_{\mathrm{a}}\right)$
$K_{a}=1.82 \times 10^{-5}$
$K_{a}=c \alpha^{2}$
$\alpha=\sqrt{\frac{K_{a}}{c}}$
$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$
When HCl is added to the solution, the concentration of $\mathrm{H}+$ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case 1: When 0.01 M HCl is taken.

Let x be the amount of acetic acid dissociated after the addition of HCl

$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$		
Initial conc.	0.05 M	0	0
After dissociation	$0.05-\mathrm{x}$	$0.01+\mathrm{x}$	x

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-\mathrm{x}$ and $0.01+\mathrm{x}$ can be taken as 0.05 and 0.01 respectively.
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\therefore=\frac{(0.01) x}{0.05}$
$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$

$x=1.82 \times 10^{-3} \times 0.05 M$

Now,
$\alpha=\frac{\text { Amoun of acid dissociation }}{\text { Amount of acid taken }}$
$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$
$=1.82 \times 10^{-3}$
Case 2: When 0.1 M HCl is taken.
Let the amount of acetic acid dissociated in this case be X. As we have done in the first case, the concentrations of various species involved in the reaction are:
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.05-\mathrm{X} ; 0.05 \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\mathrm{X}$
$\left[\mathrm{H}^{+}\right]=0.1+\mathrm{X} ; 0.1 \mathrm{M}$
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\therefore K_{a}=\frac{(0.1) X}{0.05}$
$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$
$x=1.82 \times 10^{-4} \times 0.05 M$
Now,

$$
\begin{aligned}
& \alpha=\frac{\text { Amoun of acid dissociation }}{\text { Amount of a cid taken }} \\
& =\frac{1.82 \times 10^{-4} \times 0.05}{0.05} \\
& =1.82 \times 10^{-4}
\end{aligned}
$$

Q.54. The ionization constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

Ans.)
$K_{b}=5.4 \times 10^{-4}$
$c=0.02 M$
Then, $\alpha=\sqrt{\frac{K_{b}}{c}}$
$=\sqrt{\frac{5.4 \times 10^{-4}}{0.02}}=0.1643$
Now, if 0.1 M of NaOH is added to the solution, then NaOH (being a strong base) undergoes complete ionization.

$\mathrm{NaOH}_{(a q)}$	$\mathrm{Na}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$	
0.1 M		
And,		
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O}$		
$(0.02-\mathrm{x})$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{OH}$	
$; 0.02 \mathrm{M}$	x	x
		$; 0.1 \mathrm{M}$

Then, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{+}{ }_{2}\right]=\mathrm{x}$
$\left[\mathrm{OH}^{-}\right]=x+0.1 ; 0.1$
$\Rightarrow K_{b}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]}$
$5.4 \times 10^{-4}=\frac{x \times 0.1}{0.02}$
$x=0.0054$
It means that in the presence of $0.1 \mathrm{M} \mathrm{NaOH}, 0.54 \%$ of dimethylamine will get dissociated.

Q.55. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:

(I)Human saliva, 6.4
(II)Human stomach fluid, 1.2
(III)Human muscle-fluid, 6.83

Ans.)
(I)Human saliva, 6.4:
$\mathrm{pH}=6.4$
$6.4=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-7}$
(II)Human stomach fluid, 1.2:
$\mathrm{pH}=1.2$
$1.2=-\log \left[\mathrm{H}^{+}\right]$
$\therefore\left[\mathrm{H}^{+}\right]=0.063$
(III)Human muscle fluid 6.83:
$\mathrm{pH}=6.83$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$6.83=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=1.48 \times 10^{-7} \mathrm{M}$
(IV) Human blood, 7.38 :
$\mathrm{pH}=7.38=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=4.17 \times 10^{-8} M$
Q.56. The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

Ans.)

The hydrogen ion concentration in the given substances can be calculated by using the given relation: $\mathrm{pH}=-\log$ $[\mathrm{H}+$]
(I)pH of milk $=6.8$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$6.8=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-6.8$
$\left[\mathrm{H}^{+}\right]=$anitlog(-6.8)
$=1.5 \times 10^{-7} M$
(II) pH ofblack coffee $=5.0$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$5.0=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-5.0$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-5.0)$
$=10^{-5} \mathrm{M}$
(III) pH of tomato $=4.2$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$4.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-4.2$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-4.2)$
$=6.31 \times 10^{-5} \mathrm{M}$
(IV) pH of lemon juice $=2.2$
Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$2.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-2.2$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-2.2)$
$=6.31 \times 10^{-3} M$
(V)pH of egg white= 7.8

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$7.8=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-7.8$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-7.8)$
$=1.58 \times 10^{-8} \mathrm{M}$
Q.57. If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its pH ?

Ans.)
$\left[\mathrm{KOH}_{\mathrm{aq}}\right]=\frac{0.561}{\frac{1}{5}} \mathrm{~g} / L$

$$
=2.805 \mathrm{~g} / L
$$

$$
=2.805 \times \frac{1}{56.11} M
$$

$$
=0.05 M
$$

$\mathrm{KOH}_{(\mathrm{aq})}$

$$
\mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

$\left[\mathrm{OH}^{-}\right]=0.05 \mathrm{M}=\left[\mathrm{K}^{+}\right]$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{-}\right]=\mathrm{K}_{\mathrm{w}}$
$\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}$
$=\frac{10^{-14}}{0.05}=2 \times 10^{-13} M$
$\therefore p H=12.70$
Q.58. The solubility of $\operatorname{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.

Ans.)
Solubility of $\mathrm{Sr}(\mathrm{OH})_{2}=19.23 \mathrm{~g} / \mathrm{L}$
Then, concentration of $\mathrm{Sr}(\mathrm{OH})_{2}$
$=\frac{19.23}{121.63} M$
$=0.1581 M$
$\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})}$

$$
\mathrm{Sr}^{2+}{ }_{(\mathrm{aq})}+2\left(\mathrm{OH}^{-}\right)_{(\mathrm{aq})}
$$

$\therefore\left[\mathrm{Sr}^{2+}\right]=0.1581 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=2 \times 0.1581 M=0.3126$
Now,
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]$
$\frac{10^{-14}}{0.3126}=\left[H^{+}\right]$
$\Rightarrow\left[H^{+}\right]=3.2 \times 10^{-14}$
$\therefore p H=13.495 ; 13.50$
Q.59. The ionization constant of propanoic acid is 1.32×10^{-15}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization if the solution is 0.01 M in HCl also?

Ans.)
Let the degree of ionization of propanoic acid be a
Then, representing propionic acid as HA, we have:
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$
$(0.05-0.0 a) \approx 0.05 \quad 0.05 a \quad 0.05 \alpha$
$K_{\alpha}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]} \quad \alpha=\sqrt{\frac{K_{\alpha}}{0.05}}=1.63 \times 10^{-2}$
$=\frac{(0.05 \alpha)(0.05 \alpha)}{0.05}=0.05 \alpha^{2}$
Then, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.05 \mathrm{a}=0.05 \times 1.63 \times 10^{-2}=K_{b} \cdot 15 \times 10^{-4} M$

$$
\therefore p H=3.09
$$

In the presence of 0.1 M of HCl , let α^{\prime} be the degree of ionization.

Then, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.01$
$\left[A^{-}\right]=0.05 \alpha^{-}$
$[H A]=0.05$
$K_{\alpha}=\frac{0.01 \times 0.05 \alpha^{\prime}}{0.05}$
$1.32 \times 10^{-5}=0.01 \times \alpha^{\prime}$
$\alpha^{\prime}=1.32 \times 10^{-3}$
Q.60. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionization in the solution.

Ans.)
$\mathrm{c}=0.1 \mathrm{M}$
$\mathrm{pH}=2.34$
$-\log \left[\mathrm{H}^{+}\right]=\mathrm{pH}$
$-\log \left[\mathrm{H}^{+}\right]=2.34$
$\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-3}$
Also,
$\left[\mathrm{H}^{+}\right]=\mathrm{ca}$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=4.5 \times 10^{-3}=0.045$
Then,
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
Q.61. for nitrous acid $\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}$. Calculate degree of hydrolysis and pH for 0.04 M of sodium nitrite.

Ans.)
Sodium nitrite is a salt of NaOH (strong base) and HNO 2 (weak acid).
$\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-} \mathrm{K}_{h}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]} \Rightarrow \frac{K_{w}}{K_{a}}=\frac{10^{-14}}{4.5 \times 10^{-4}}=22 \times 10^{-10}$
Let, y mole of salt has undergone hydrolysis, then the concentration of various species present in the solution will be:
$\left[\mathrm{NO}_{2}^{-}\right]=0.04-y ; 0.04\left[\mathrm{HNO}_{2}\right]=y\left[\mathrm{OH}^{-}\right]=y K_{h}=\frac{y^{2}}{0.04}=0.22 \times 10^{-10} y^{2}=0.0088 \times 10^{-10}$ $y=0.093 \times 10^{-5} \therefore\left[\mathrm{OH}^{-}\right]=0.093 \times 10^{-5} M\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{10^{-10}}{0.093 \times 10^{-5}}=10.75 \times 10^{-9} \mathrm{M}$
Thus, $p H=-\log \left(10.75 \times 10^{-9}\right)$
$=7.96$
Thus, the degree of hydrolysis is
$=\frac{y}{0.04}=\frac{0.093 \times 10^{-5}}{0.04}=2.325 \times 10^{-5}$

Q.62. 0.02 M solution of pyridinium hydrochloride $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{CIN}\right)$ is having $\mathrm{pH}=3.44$. Determine the

 ionization constant of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (pyridine).
Ans.)

$\mathrm{pH}=3.44$
As we know,
$p H=\log \left[H^{+}\right] \therefore\left[H^{+}\right]=3.63 \times 10^{-4}$
Now, $K_{h}=\frac{3.63 \times 10^{-4}}{0.02} ;($ Given that concentration $=0.02 \mathrm{M})$
$\Rightarrow K_{h}=6.6 \times 10^{-6}$
As we know that,

$$
K_{h}=\frac{K_{w}}{K_{a}} K_{a}=\frac{K_{w}}{K_{h}}=\frac{10^{-14}}{6.6 \times 10^{-6}}
$$

$$
=1.51 \times 10^{-9}
$$

Q.63. Few salts are given below;

1. KBr
2. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
3. KF
4. NaNO 2
5. NaCN
6. NaCl

Determine the nature of solution of these salts i.e. Is it acidic or basic or neutral?

Ans.)

1. KBr
$\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{KOH}$ (Strong base) +HBr (Strong acid)
Thus, it is a neutral solution.
2. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4} \mathrm{OH}$ (Weak base) $+\mathrm{HNO}_{2}$ (Strong acid)
Thus, it is an acidic solution.
3. KF
$\mathrm{KF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{KOH}$ (Strong base) +HF (weak acid)
Thus, it is a basic solution.
4. NaNO_{2}
$\mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4} \mathrm{OH}$ (Strong base) $+\mathrm{HNO}_{2}$ (Weak acid)
Thus, it is a basic solution.
5. NaCN
$\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCN}$ (Weak acid) +NaOH (Strong base)
Thus, it is a basic solution.
6. NaCl
Q.64. Find the pH of 0.1 M acid and its 0.1 M NaCl solution. The Ka for chloroacetic acid is 1.35×10^{-3}.

Ans.)
The Ka for chloroacetic acid $\left(\mathrm{ClCH}_{2} \mathrm{COOH}\right)$ is 1.35×10^{-3}.
$\Rightarrow K_{a}=c \alpha^{2} \therefore \alpha=\sqrt{\frac{K_{a}}{c}}$
$=\sqrt{\frac{1.35 \times 10^{-3}}{0.1}} ;$ (given concentration $\left.=0.1 \mathrm{M}\right)$
$\alpha=\sqrt{1.35 \times 10^{-2}}$
$=0.116$
$\therefore\left[H^{+}\right]=c \alpha=0.1 * 0.116=0.0116$
$\mathrm{pH}=-\log \left[H^{+}\right]=1.94$
ClCH 2 COONa is a salt of strong base i.e. NaOH , and weak acid i.e. ClCH 2 COOH
$\mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} K_{h}=\frac{\left[\mathrm{ClCH}_{2} \mathrm{COO}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClHH}_{2} \mathrm{COO}^{-}\right]}$
Now, $K_{h}=\frac{K_{w}}{K_{a}}$
$K_{h}=\frac{10^{-14}}{1.35 \times 10^{-3}}=0.740 \times 10^{-11}$
Also, $K_{h}=\frac{y^{2}}{0.1}$
$\Rightarrow 0.740 \times 10^{-11}=\frac{y^{2}}{0.1} \Rightarrow 0.0740 \times 10^{-11}=y^{2} y=0.86 \times 10^{-6}\left[O H^{-}\right]=0.86 \times 10^{-6}$
$\therefore\left[H^{+}\right]=\frac{K_{w}}{0.86 \times 10^{-6}}=\frac{10^{-14}}{0.86 \times 10^{-6}}\left[H^{+}\right]=1.162 \times 10^{-3}$
$\mathrm{pH}=-\log \left[H^{+}\right]$
$=7.94$
Q.65. Determine the pH of neutral water at 310 K temperature. Ionic product of $\mathrm{H}_{2} \mathrm{O}$ is 2.7×10^{-14}.

Ans.)
Ionic Product,
$K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]$
Assuming, $\left[H^{+}\right]=y$
As, $\left[H^{+}\right]=\left[O H^{-}\right], \mathrm{K}_{\mathrm{w}}=\mathrm{y}^{2}$.
K_{w} at 310 K is 2.7×10^{-14}
$\therefore 2.7 \times 10^{-14}=y^{2}$
$\mathrm{y}=1.64 \times 10^{-7}$
$\left[H^{+}\right]=1.64 \times 10^{-7}$
$\mathrm{pH}=-\log \left[H^{+}\right]$
$=-\log \left[1.64 \times 10^{-7}\right]$
$=6.78$
Thus, the pH of neutral water at 310 K temperature is 6.78 .

Q.66. Find out the pH of resultant mixture;

i) n 10 ml of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{ml}$ of $0.02 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
ii) 10 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{ml}$ of 0.1 M KOH
iii) 10 ml of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{ml}$ of 0.1 M HCl

Ans.)
i) Moles of OH^{-}
$=\frac{2 * 10 * 0.02}{1000}=0.0004 \mathrm{~mol}$
Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$
$=\frac{2 * 10 * 0.02}{1000}=0.0004 \mathrm{~mol}$
ii) Moles of OH^{-}
$=\frac{2 * 10 * 0.1}{1000}=0.002 \mathrm{~mol}$
Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$
$=\frac{2 * 10 * 0.1}{1000}=0.001 \mathrm{~mol}$
Here, the $\mathrm{H}_{3} \mathrm{O}^{+}$is in excess is 0.01 mol
So, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{0.001}{20 \times 10^{-3}}=\frac{10^{-3}}{20 \times 10^{-3}}=0.5$
Thus, $\mathrm{pH}=-\log (0.05)$
$=1.3$
As the solution id neutral $\mathrm{pH}=7$.
iii) Moles of OH^{-}
$=\frac{2 * 10 * 0.2}{1000}=0.004 \mathrm{~mol}$
Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$
$=\frac{25 * 0.1}{1000}=0.0025 \mathrm{~mol}$
Here, the OH^{-}is in excess is 0.0015 mol
So, $\left[\mathrm{OH}^{-}\right]=\frac{0.0015}{35 \times 10^{-3}}=0.0428$
Thus, $\mathrm{pH}=-\log (\mathrm{OH})$
$=1.36$
$\mathrm{pH}=14-1.36=12.63$
As the solution id neutral $\mathrm{pH}=12.63$.

Q.67. Calculate the solubilities of

a) barium chromate

b) ferric hydroxide

c) lead chloride

d) mercurous iodide
e) silver chromate

At 300 K from their solubility product constant. Also calculate the molarities of the individual ions.

Ans.)

a) Barium Chromate
BaCrO_{4} à $\mathrm{Ba}^{2+}+\mathrm{CrO}_{4}^{2-}$
Now, $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
Aumming the solubility of BaCrO_{4} is ' X '.
Thus,
$\left[\mathrm{Ba}^{2+}\right]=\mathrm{x}$ and $\mathrm{CrO}{ }_{4}^{2-}=\mathrm{x}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{x}^{2}$
$1.2 \times 10^{-10}=x^{2}$
$\mathrm{x}=1.09 \times 10^{-10} M$
Molarity of $\mathrm{Ba}^{2+}=$ Molarity of $\mathrm{CrO}_{4}^{2-}=\mathrm{x}=1.09 \times 10^{-10} \mathrm{M}$
b) Ferric Hydroxide
$\mathrm{Fe}(\mathrm{OH})_{3}$ à $\mathrm{Fe}^{3+}+\mathrm{OH}^{-}$
Now, $\mathrm{K}_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
Aumming the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ is ' x '.
Thus,
$\left[\mathrm{Fe}^{3+}\right]=\mathrm{x}$ and $\mathrm{OH}^{-}=3 \mathrm{x}$
$K_{\text {sp }}=x(3 x)^{3}$
$=x^{*} 27 x^{3}$
$K_{\text {sp }}=27 x^{4}$
$1.0 \times 10^{-38}=27 x^{4}$
$\mathrm{x}=0.00037 \times 10^{-36} M$
Molarity of $\mathrm{Fe}^{3+}=\mathrm{x}=1.39 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{OH}^{-}=3 \mathrm{x}=4.17 \times 10^{-10} \mathrm{M}$
c) Lead Chloride
PbCl_{2} à $\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-}$
Now, $\mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]$
Aumming the solubility of PbCl_{2} is ' x '.
Thus,
$\left[\mathrm{Pb}^{2+}\right]=\mathrm{x}$ and $\mathrm{Cl}^{-}=2 \mathrm{x}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{x}(2 \mathrm{x})^{2}$
$=x^{*} 4 x^{2}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{x}^{3}$
$1.6 \times 10^{-5}=4 x^{3}$
$\mathrm{x}=1.58 \times 10^{-2} M$
Molarity of $\mathrm{Pb}^{2+}=\mathrm{x}=1.58 \times 10^{-2} \mathrm{M}$
Molarity of $\mathrm{Cl}^{-}=2 \mathrm{x}=3.16 \times 10^{-2} \mathrm{M}$
d) Mercurous iodide
$\mathrm{Hg}_{2} \mathrm{I}_{2}$ à $\mathrm{Hg}^{2+}+2 \mathrm{I}^{-}$
Now, $\mathrm{K}_{\text {sp }}=\left[\mathrm{Hg}^{2+}\right]^{2}\left[I^{-}\right]^{2}$
Aumming the solubility of $\mathrm{Hg}_{2} \mathrm{l}_{2}$ is ' x '.
Thus,
$\left[\mathrm{Hg}^{2+}\right]=\mathrm{x}$ and $\mathrm{I}^{-}=2 \mathrm{x}$
$K_{\text {sp }}=x(2 x)^{2}$
$=x^{*} 4 x^{2}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{x}^{3}$
$4.5 \times 10^{-29}=4 x^{3}$
$\mathrm{x}=2.24 \times 10^{-10} M$
Molarity of $\mathrm{Hg}^{2+}=\mathrm{x}=2.24 \times 10^{-10} \mathrm{M}$
Molarity of $I^{-}=2 \mathrm{x}=4.48 \times 10^{-10} \mathrm{M}$
e) Silver Chromate
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ à $2 \mathrm{Ag}^{2+}+\mathrm{CrO}_{4}^{2-}$
Now, $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{2+}\right]^{2}\left[\mathrm{CrO} \mathrm{C}_{4}^{2-}\right]$
Aumming the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is ' x '.
Thus,
$\left[\mathrm{Ag}^{2+}\right]=2 \mathrm{x}$ and $\mathrm{CrO}_{4}^{2-}=\mathrm{x}$
$\mathrm{K}_{\mathrm{sp}}=(2 \mathrm{x})^{2 *} \mathrm{x}$
$1.1 \times 10^{-12}=4 x^{3}$
$\mathrm{x}=0.65 \times 10^{-4} \mathrm{M}$
Molarity of $\mathrm{Ag}^{2+}=2 \mathrm{x}=1.3 \times 10^{-4} \mathrm{M}$
Molarity of $\mathrm{CrO}_{4}^{2-}=\mathrm{x}=0.65 \times 10^{-4} \mathrm{M}$

Q-68. Determine the ratio of molarities to their saturated solutions for the following:

$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr

The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively.

Ans.)
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ à $2 \mathrm{Ag}^{2+}+\mathrm{CrO}{ }_{4}^{-}$
Now, $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{2+}\right]^{2}\left[\mathrm{CrO}-\frac{-}{4}\right]$
Asuming the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is ' x '.
Thus,
$\left[\mathrm{Ag}^{2+}\right]=2 \mathrm{x}$ and $\mathrm{CrO}-\mathrm{x}$
$\mathrm{K}_{\mathrm{sp}}=(2 \mathrm{x})^{2 \pi} \mathrm{x}$
$1.1 \times 10^{-12}=4 x^{3}$
$\mathrm{x}=0.65 \times 10^{-4} \mathrm{M}$
Assuming the solubility of AgBr is y .
$\mathrm{AgBr}_{(\mathrm{s})}$ à $\mathrm{Ag}^{2+}+2 \mathrm{CrO}_{4}^{-}$
$K_{\text {sp }}=(y)^{2}$
$5.0 \times 10^{-13}=y^{2}$
$\mathrm{y}=7.07 \times 10^{-7} \mathrm{M}$
The ratio of molarities to their saturated solution is:
$\frac{x}{y}=\frac{0.65 \times 10^{-4} M}{7.07 \times 10^{-7} M}=91.9$
Q.69. Cupric chlorate and sodium iodate having equal volume of 0.002 M . Will the precipitation of copper iodate will occur or not?

Ans.)
Cupric chlorate and sodium iodate having equal volume are mixed together, then molar concentration of cupric chlorate and sodium iodate will reduce to half.

So, molar concentration of cupric chlorate and sodium iodate in mixture is 0.001 M .
$\mathrm{Na}\left(\mathrm{IO}_{3}\right)_{2}$ à $\mathrm{Na}^{+}+\mathrm{IO}_{3}^{-}$
0.0001 M
0.001 M
$\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2}$ à $\mathrm{Cu} 2++2 \mathrm{CIO}_{3}^{-}$
$0.001 \mathrm{M} \quad 0.001 \mathrm{M}$
The Solubility for $\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2} \Rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{IO}_{3}^{-}(\mathrm{aq})$
Now, the ionic product of the copper iodate is:
$=[\mathrm{Cu} 2+]\left[\mathrm{IO}_{3}^{-}\right]^{2}$
$=(0.001)(0.001)^{2}$
$=1.0 \times 10^{-9} M$
As the value of K_{sp} is more than lonic product.
Thus, the precipitation will not occur.
$2.5 \times 10^{-5} \mathrm{M}$. Give relation between the solubility of silver benzoate in buffer of $\mathrm{pH}=3.19$ and its solubility in water.

Ans.)
Here, $\mathrm{pH}=3.19$
$[\mathrm{H} 3 \mathrm{O}+]=6.46 \times 10^{-5} \mathrm{M}$
$\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}+\mathrm{H} 2 \mathrm{O}$ à $\mathrm{C} 6 \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H} 3 \mathrm{O}$
$K_{a} \frac{\left[C_{6} H_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{C_{6} \mathrm{H}_{5} \mathrm{COOH}} K_{a} \frac{\left[C_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}{C_{6} H_{5} \mathrm{COO}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{K_{a}}=\frac{6.46 \times 10^{-4}}{6.46 \times 10^{-5}}=10$
Assuming the solubility of silver benzoate $(\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOAg})$ is $\mathrm{y} \mathrm{mol} / \mathrm{L}$.
Now, $\left[\mathrm{Ag}^{+}\right]=\mathrm{y}$
$[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}]=\left[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COO}^{-}\right]=\mathrm{y}$
$10\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]+\left[\mathrm{C}^{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\mathrm{y}$
$\left[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COO}^{-}\right]=\mathrm{y} / 11$
$\mathrm{K}_{\text {sp }}\left[\mathrm{Ag}^{+}\right]\left[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COO}^{-}\right]=\mathrm{y}$
$2.5 \times 10^{13}=y \frac{y}{11}$
$y=1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
Hence, solubility of C6H5COOAg in buffer of $\mathrm{pH}=3.19$ is $1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.
For, water:
Assuming the solubility of silver benzoate $(\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOAg})$ is $\mathrm{x} \mathrm{mol} / \mathrm{L}$.
Now, $\left[\mathrm{Ag}^{+}\right]=\mathrm{xM}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{C} 6 \mathrm{H} 5 \mathrm{COO}^{-}\right]$
$K_{\text {sp }}=(y)^{2}$
$\mathrm{y}=\sqrt{K_{s p}}=\sqrt{2.5 \times 10^{-13}}=5 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
$\therefore \frac{y}{x}=\frac{1.66 \times 10^{-6}}{5 \times 10^{-7}}=3.32$
Thus, the solubility of silver benzoate in water is 3.32 times the solubility of silver benzoate in $\mathrm{pH}=3.19$.
Q.71. Calculate the maximum concentration of equimolar solutions of FeSO_{4} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ so that when they are mixed in equal volume than there is no precipitation of FeS ? (K_{sp} for Fes is 6.3×10^{-18})

Ans.)
Assuming the maximum concentration of each solution is $y \mathrm{~mol} / \mathrm{L}$
On mixing the solutions the volume of the concentration of each solution is reduced to half.
After mixing the maximum concentration of each solution is $y / 2 \mathrm{~mol} / \mathrm{L}$.
Thus, $\left[\mathrm{FeSO}_{4}\right]=\left[\mathrm{Na}_{2} \mathrm{~S}\right]=\mathrm{y} / 2 \mathrm{M}$
So, $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{FeSO}_{4}\right]=\mathrm{y} / 2 \mathrm{M}$
$\mathrm{FeS}(\mathrm{s}) \leftrightarrow F e_{(a q)}^{2+}+S_{(a q)}^{2-}$
$K s p=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$6.3 \times 10^{-18}=\left(\frac{y}{2}\right)\left(\frac{y}{2}\right) \frac{y^{2}}{4}=6.3 \times 10^{-18}$
Thus, $y=5.02 \times 10^{-9}$
Thus, if the concentration of FeSO_{4} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are equal to or less than that of $5.02 \times 10^{-9} M$, then there won't be precipitation of FeS .

Q.72. Find the minimum volume of $\mathrm{H}_{2} \mathrm{O}$ required to dissolve 1 gram of CaSO_{4} at 298 K ?

K_{sp} for CaSO_{4} is 9.1×10^{-6}
Ans.)
$\mathrm{CaSO}_{4(s)} \leftrightarrow \mathrm{Ca}_{(a q)}^{2+}+\mathrm{SO}_{4}^{2-}(a q)$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
Assuming the solubility of calcium sulphate is x .
So, $\mathrm{K}_{\mathrm{sp}}=\mathrm{x}^{2}$
$\therefore 9.1 \times 10^{-6}=x^{2} \therefore x=3.02 \times 10^{-3} \mathrm{~mol} / L$
Now, molecular mass os calcium sulphate is $136 \mathrm{~g} / \mathrm{mol}$.
Solubility in calcium sulphate in $\mathrm{g} / \mathrm{mol}$ is
$=3.02 \times 10^{-3} \times 136$
$=0.41 \mathrm{~g} / \mathrm{L}$
i.e. 1 litre $\mathrm{H}_{2} \mathrm{O}$ will be required to dissolve 0.41 g of calcium sulphate.

Thus, minimum volume of $\mathrm{H}_{2} \mathrm{O}$ required to dissolve 1 gram of CaSO_{4} at 298 K is
$=\frac{1}{0.41} L=2.44 L$
Q.73. The concentration of S^{2-} in 0.1 M HCl solution saturated with $\mathrm{H}_{2} \mathrm{~S}$ is $1.0 \times 10^{19} \mathrm{M}$. If 10 mL of this added to 5 mL of 0.04 M solution given below:

1. MnCl_{2}
2. ZnCl_{2}
3. CdCl_{2}
4. FeSO_{4}

In which of the above solution the precipitation takes place?

For $\mathrm{MnS}, \mathrm{K}_{\mathrm{sp}}=2.5 \times 10^{-13}$
For $\mathrm{Zns}, \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-24}$
For CdS, $\mathrm{K}_{\mathrm{sp}}=8.0 \times 10^{-27}$
For $\mathrm{FeS}, \mathrm{K}_{\mathrm{sp}}=6.3 \times 10^{-18}$

Ans.)

If the ionic product exceeds the K_{sp} value, then only precipitation can take place.

Before mixing:

$\left[\mathrm{S}^{2-}\right]=\mathrm{K}_{\mathrm{sp}}=1.0 \times 10^{-19} \mathrm{M}\left[\mathrm{M}^{2+}\right]=0.04 \mathrm{M}$
Volume $=10 \mathrm{~mL} \quad$ Volume $=5 \mathrm{~mL}$
After mixing:

$\left[\mathrm{S}^{2-}\right]=$? and	$\left[\mathrm{M}^{2+}\right]=$?
Total volume $=(10+5)=15 \mathrm{~mL}$	Volume $=15 \mathrm{~mL}$

$$
\begin{aligned}
& {\left[\mathrm{S}^{2-}\right]=\frac{1.0 \times 10^{-19} \times 10}{15}=6.67 \times 10^{-20} M} \\
& {\left[\mathrm{M}^{2+}\right]=\frac{0.04 \times 5}{15}=1.33 \times 10^{-2} M}
\end{aligned}
$$

Now, the ionic product $=\left[\mathrm{M}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$=\left(1.33 \times 10^{-2}\right)\left(6.67 \times 10^{-20}\right)$
$=8.87 \times 10^{-22}$
Here, the ionic product of CdS and ZnS exceeds its corresponding K_{sp} value.
Thus, precipitation will occur in ZnCl_{2} and CdCl_{2} solutions.

