\#457420

Topic: Solutions
Define the term solution. How many types of solutions are formed? Write briefly about each type with an example

Solution
Solutions are homogeneous mixtures of two or more than two components.
There are three types of solutions.
(i) Gaseous solution:

The solvent is a gas and solute may be liquid, solid or gas.
Example includes a mixture of oxygen and nitrogen gases.
(ii) Liquid solution:

The solvent is a liquid and the solute may be gas, liquid or solid.
Example includes a solution of ethanol in water.
(iii) Solid solution:

The solvent is a solid. The solute may be gas, liquid or solid.
Example includes a solution of copper in gold

\#457421

Topic: Solutions
Give an example of a solid solution in which the solute is a gas.

Solution

An example of a solid solution in which the solute is a gas is a solution of hydrogen gas in palladium. It is an interstitial solid solution.
The solvent is a solid

\#457422

Topic: Expressing concentration of solutions
Define the following terms:
(i) Mole fraction (ii) Molality (iii) Molarity (iv) Mass percentage.

Solution

(i) Mole fraction

It is the ratio of the number of moles of a particular component to the total number of moles of all the components in the mixture. It is denoted by symbol χ.
(ii) Molality

It is the number of moles of the solute per kilogram of the solvent. It is the ratio of the number of moles of solute to mass of solvent in kg.
(iii) Molarity

It is the number of moles of solute per litre of the solution. It is the ratio of the number of moles of solute to volume of solution in litre.
(iv) Mass percentage

It is the mass of the solute (in grams) present in 100 g of the solution.

\#457423
 Topic: Expressing concentration of solutions

 solution is $1.504 \mathrm{~g} \mathrm{~mL}^{-1}$?

Solution

The molar mass of nitric acid is $63 \mathrm{~g} / \mathrm{mol}$.
It is given that the nitric acid used in laboratory is 68% by mass in aqueous solution.
100 g of solution contains 68 g of nitric acid or $\frac{68}{63}=1.079$ moles of nitric acid.
Density of solution is $1.504 \mathrm{~g} / \mathrm{mL}$.
100 g of solution corresponds to $\frac{100}{1.504}=66.5^{\mathrm{mL}}$ or 0.0665 L
Molarity of the solution is the number of moles of nitric acid present in 1 L of solution.
It is $\frac{1.079}{0.0665}=16.22 \mathrm{M}$
Hence, the molarity should be $16.22 \mathrm{~g} / \mathrm{mL}$

\#457425

Topic: Expressing concentration of solutions

then what shall be the molarity of the solution?

Solution

$10 \% \mathrm{w} / \mathrm{w}$ glucose solution corresponds to 10 g glucose present in 100 g of solution which contains 90 g of water.
(i) Molality is the number of moles of glucose present in 1 kg of water. Number of moles of glucose is the ratio of mass (10 g) of glucose to its molar mass (180 $\mathrm{g} / \mathrm{mol}$).

Molality $=\frac{10}{180 \times 0.090}=0.618 \mathrm{~m}$
Note: 90 g corresponds to 0.090 lg .
(ii) Molarity is the ratio of number of moles of glucose to volume of solution (in L).

Since, denstiy of solution is $1.20 \mathrm{~g} / \mathrm{mL}$, the volume of solution is $\frac{100}{1.20} \mathrm{~mL}$ or $\frac{100}{1.20 \times 1000} \mathrm{~L}$.
Molarity $=\frac{10}{180 \times \frac{100}{1.20 \times 1000}}=0.667 \mathrm{M}$
(iii) Number of moles of glucose $=\frac{10}{180}=0.0556$

Number of moles of water $=\frac{90}{18}=5.0$
Mole fraction of glucose $=\frac{0.0556}{0.0556+5.0}=0.011$
Mole fraction of water $=1-0.011=0.989$
\#457427
Topic: Expressing concentration of solutions
How many mL of 0.1 MHC are required to react completely with 1 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO containing equimolar amounts of both?

Solution

Let the mixture contains $x \mathrm{~g}$ of sodium carbonate and $1-x \mathrm{~g}$ of sodium bicarbonate.
The molar masses of sodium carbonate and sodium bicarbonate are $106 \mathrm{~g} / \mathrm{mol}$ and $84 \mathrm{~g} / \mathrm{mol}$ respectively
The number of moles of sodium carbonate and sodium bicarbonates are $\frac{x}{106}$ and $\frac{1-x}{84}$ respectively.
Since, it is an equilmolar mixture,
$\frac{x}{106}=\frac{1-x}{84} 84 x=106-106 \times 190 x=106 x=0.5579$
Number of moles of sodium carbonate $=\frac{0.5579}{106}=0.005263$
Number of moles of sodium hydrogen carbonate $=\frac{1-0.5579}{84}=0.005263$
One mole of sodium carbonate will react with 2 moles of HCl and 1 mole of sodium bicarbonate will react with 1 mole of HCl .
Total number of moles of HC / that will completely neutralize the mixture $=2 \times 0.005263+0.005263=0.01578$ moles
Volume of 0.1 MHC required $=\frac{0.01578}{0.1}=0.158 L=158 \mathrm{~mL}$.

\#457430

Topic: Expressing concentration of solutions
https://community.toppr.com/content/questions/print/?show_answer=1\&show_topic=1\&show_solution=1\&page=1\&qid=457485\%2C+457484\%2C+45... 2/16

A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution

Solution

Given that a solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass.
Total mass of solution $=300+400=700 \mathrm{~g}$
Mass of solute $=0.25 \times 300+0.40 \times 400=75+160=235 \mathrm{~g}$
Mass percentage of solution $=\frac{235}{700} \times 100=33.6 \%$
\#457431
Topic: Expressing concentration of solutions

An antifreeze solution is prepared from 222.6 g of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ and 200 g of water. Calculate the molality of the solution. If the density of the solution is $1.072 \mathrm{~g} \mathrm{~mL}^{-1}$, then what shall be the molarity of the solution?

Solution
Since, ethylene glycol is in excess, it is a solvent and water is a solute.
Molar mass of water is $18 \mathrm{~g} / \mathrm{mol}$.
Number of moles of solute $=\frac{200}{18}=11.11$ moles
Molality is the number of moles of solute in 1 kg of solvent
222.6 g of ethylene glycol corresponds to 0.2226 kg .

Molality $=\frac{11.11}{0.2226}=49.9 \mathrm{~m}^{\mathrm{m}}$
Total mass of solution $=222.6+200=422.6 \mathrm{~g}$
Density of solution $=1.072 \mathrm{~g} / \mathrm{mL}$
Volume of solution $=\frac{\text { Mass }}{\text { Density }}=\frac{422.6}{1.072}=394 \mathrm{ml}$ or 0.394 L
Molarity is the number of moles of solute in 1 L of solution.
Molarity $=\frac{11.11}{0.394}=28.2^{M}$
\#457432
Topic: Expressing concentration of solutions
 (i) express this in percent by mass
(ii) determine the molality of chloroform in the water sample.

Solution

15 ppm corresponds to 15 g chloroform in $1000,000 \mathrm{~g}$ of solution.
(i) Percent by mass $=\frac{\text { Mass of chloroform }}{\text { Mass of solution }} \times 100$

Percent by mass $=\frac{15}{1000,000} \times 100=1.5 \times 10^{-3 \%}$
(ii) Molality $=\frac{\text { Mass of chloroform }}{\text { Molar mass of chloroform } \times(\text { Mass of solution }- \text { mass of chloroform })} \times 1000($ all masses in g)

Molality $=\frac{15}{119.5 \times(1000,000-15)} \times 1000=1.255 \times 10^{-4} \mathrm{~m}$.

\#457433

Topic: Ideal and non-ideal solutions
What role does the molecular interaction play in a solution of alcohol and water?

Solution
 follow ideal behavior. In other words, solution becomes non ideal. The vapour pressure increases and the boiling point decreases.

\#457434

Topic: Solutions of solids or gases in liquids
Why do gases always tend to be less soluble in liquids as the temperature is raised?

Solution

Dissolution of gas in liquid is an exothermic process and heat is evolved during dissolution.
Gas + Liquid \rightleftharpoons Solution + Heat
With increase in temperature, heat is supplied which shifts the equilibrium in the backward direction.
Hence, gases always tend to be less soluble in liquids as the temperature is raised.

\#457435

Topic: Solutions of solids or gases in liquids
State Henrys law and mention some important applications?

Solution

According to Henry's law, the solubility of gas in a liquid is directly proportional to the pressure of the gas.
$X=K_{h} \times P$
X is the mole fraction of gas, K_{h} is the Henry's law constant and P is the partial pressure of the gas.
Important applications:

1) In packing of soda cans: Soda water bottles are always packed under higher pressure to increase the solubility of CO_{2} gas.

\#457437

Topic: Solutions of solids or gases in liquids
 of the gas?

Solution

According to Henry's law, the solubility of gas in a liquid is directly proportional to the pressure of the gas.
$X=K_{h} \times P$
X is the mole fraction of gas, K_{h} is the Henry's law constant and P is the partial pressure of the gas.
Also mole fraction of ethane will be directly proportional to its mass.
$W P^{\prime}=W^{\prime} P$
W is the mass of ethane in first solution and P is the partial pressure of ethane in first solution.
W^{\prime} is the mass of ethane in second solution and P^{\prime} is the partial pressure of ethane in second solution.
$6.56 \times 10^{-3} \times P^{\prime}=5.00 \times 10^{-2} \times 1 P^{\prime}=7.6$
Hence, the partial pressure of gas will be 7.6 bar.

\#457439

Topic: Ideal and non-ideal solutions
What is meant by positive and negative deviations from Raoult's law and how is the sign of $\Delta_{m i x} H$ related to positive and negative deviations from Raoult's law?

Solution

Positive deviation from Raoult's law occurs when the total vapour pressure of the solution is more than corresponding vapour pressure in case of ideal solution.
$P=P_{A}+P_{B}>P_{A}^{o} X_{A}+P_{B}^{o} X_{B}$
Negative deviation from Raoult's law occurs when the total vapour pressure of the solution is less than corresponding vapour pressure in case of ideal solution.
$P=P_{A}+P_{B}<P_{A}^{o} X_{A}+P_{B}^{o} X_{B}$
For positive deviation from Raoult's law, $\Delta_{\text {mix }} H$ has positive sign .
For negative deviation from Raoult's law, $\Delta_{m i x} H$ has negative sign.
\#457440
Topic: Vapour Pressure of Liquid Solutions and Raoult's Law
An aqueous solution of 2% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?

Solution

At boiling point, the vapour pressure of pure water is 1 atm or 1.004 bar.
Vapour pressure of solution is 1.004 bar.
Mass of solute is 2 g .
Mass of solution is 100 g .
Mass of solvent is $100-2=98 \mathrm{~g}$
Applying Raoult's law, we get
$\frac{P^{o}-P}{P}=x_{2}=\frac{W_{2} M_{1}}{M_{2} W_{1}}$
$\frac{1.013-1.004}{1.013}=\frac{2 \times 18}{M_{2} \times 98} \Rightarrow M_{2}=41.35 \mathrm{~g} / \mathrm{mol}$

\#457442

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law
 pressure of a mixture of 26.0 g of heptane and 35 g of octane?

Solution

$$
\begin{aligned}
& \text { The molar masses of heptane and octane are } 100 \mathrm{~g} / \mathrm{mol} \text { and } 114 \mathrm{~g} / \mathrm{mol} \text { respectively. } \\
& 26 \mathrm{~g} \text { of heptane corresponds to } \frac{26}{100}=0.26 \text { moles } \\
& 35 \mathrm{~g} \text { of octane corresponds to } \frac{35}{114}=0.31 \text { moles } \\
& \text { Mole fraction of heptane } X=\frac{0.26}{0.26+0.31}=0.456 \\
& \text { Mole fraction of octane } X^{\prime}=1-0.456=0.544 \\
& \text { Partial pressure of heptane } p=0.456 \times 105.2=47.97 \mathrm{kPa} \\
& \text { Partial pressure of octane } p^{\prime}=0.544 \times 46.8=25.46 \mathrm{kPa} \\
& \text { Vapour pressure of solution } P=p+p^{\prime}=47.97+25.46=73.43 \mathrm{kPa}
\end{aligned}
$$

\#457443

Topic: Ideal and non-ideal solutions
The vapour pressure of water is 12.3 kPa at 300 K . Calculate vapour pressure of 1 molal solution of a non-volatile solute in it.

Solution

The vapour pressure of water is 12.3 kPa at 300 K . We need to calculate the vapour pressure of 1 molal solution of a non-volatile solute in it.
1000 g of water contains 1 mole of solute.
Molar mass of water is $18 \mathrm{~g} / \mathrm{mol}$.
Number of moles of water $=\frac{1000}{18}=55.56 \mathrm{~mol}$
Mole fraction of the solute in the solution is ${ }_{x}=\frac{1}{1+55.56}=0.0177^{\circ}$
The relative lowering in the vapour pressure is equal to the mole fraction of solute.
$\frac{p^{0}-p}{p^{0}}=x \frac{12.3-p}{12.3}=0.0177 \Rightarrow p=12.08$
Hence, the vapour pressure of the solution is 12.08 kPa .

\#457445

Topic: Ideal and non-ideal solutions
Calculate the mass of a non-volatile solute (molar mass 40 g mol$)^{-1}$) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.

Solution

Let p be the vapour pressure of pure octane. The vapour pressure of solution will be $\frac{80}{100} p=0.8 p$.
Molar mass of solute (M) and octane (m) are $40 \mathrm{~g} / \mathrm{mol}$ and $114 \mathrm{~g} / \mathrm{mol}$ respectively. Mass of octane, w is 114 g .
$\frac{p-p^{\prime}}{p}=\frac{W m}{M w} \frac{p-0.8 p}{p}=\frac{W \times 114}{40 \times 114} W=8 g$
Hence, 8 g of solute are required.

\#457447

Topic: Ideal and non-ideal solutions
 new vapour pressure becomes 2.9 kPa at 298 K . Calculate:
(i) molar mass of the solute (ii) vapour pressure of water at 298 K .

Solution

Weight of solute, $W_{B}=30 \mathrm{~g}$
Weight of water, $W_{A}=90 \mathrm{~g}$
Vapour pressure of solution $P_{A}=2.8 \mathrm{kPa}$
According to Raoult's law, $\frac{P_{A}^{o}-P_{A}}{P_{A}^{o}}=X_{B} \simeq \frac{W_{B} M_{A}}{M_{B} W_{A}}$
$\frac{P_{A}^{0}-2.8}{P_{A}^{0}}=\frac{30 \times 18}{M_{B} \times 90}$
$\frac{2.8}{P_{A}^{o}}=\frac{M_{B}-6}{M_{B}} \ldots \ldots$ (1)

Weight of solute $W_{B}=30 \mathrm{~g}$
Weight of water $W_{A}=90+18=108 \mathrm{~g}$
Vapour pressure of solution $P_{A}=2.9 \mathrm{kPa}$
According to Raoult's law, $\frac{P_{A}^{o}-P_{A}}{P_{A}^{o}}=X_{B} \simeq \frac{W_{B} M_{A}}{M_{B} W_{A}}$
$\frac{P_{A}^{o}-2.9}{P_{A}^{o}}=\frac{30 \times 18}{M_{B} \times 108}$
$\frac{2.9}{P_{A}^{o}}=\frac{M_{B}-5}{M_{B}}$.
Divide equation (1) by equation (2), we get
$\frac{2.8}{2.9}=\frac{M_{B}-6}{M_{B}-5}$
$M_{B}=34 \mathrm{~g} / \mathrm{mol}$
Substituting the values of M_{B} in equation (1), we get
$\frac{2.8}{P_{A}^{o}}=\frac{34-6}{34}$
$P_{A}^{0}=3.4 \mathrm{kPa}$

\#457449

Topic: Depression in freezing point
A 5% solution (by mass) of cane sugar in water has freezing point of $271 K$. Calculate the freezing point of 5% glucose in water if freezing point of pure water is $273.15 K$.

Solution

The depression in the freezing point of the solution is given by
$\Delta T_{f}=$ freezing point of water - freezing point of solution
$\Delta T_{f}=273.15-271=2.15 \mathrm{~K}$
Molar masses of glucose and sucrose are $180 \mathrm{~g} / \mathrm{mol}$ and $342 \mathrm{~g} / \mathrm{mol}$ respectively.
100 g of solution will contain 5 g of glucose or 5 g of sucrose.
Number of moles of glucose $=\frac{5}{180}=0.028$ moles
Number of moles of sucrose $=\frac{5}{342}=0.0146$ moles
Mass of solvent $=$ total mass of solution - mass of solute $=100-5=95 \mathrm{~g}$ or 0.095 kg
Molality of sucrose solution $=\frac{0.0146}{0.095}=0.154 \mathrm{~m}^{\mathrm{m}}$
$K_{f}=\frac{\Delta T_{f}}{\text { molality }}=\frac{2.15}{0.154}=13.97$
For glucose solution, $\Delta T_{f}=K_{f} \times m=13.97 \times 0.29=4.08$
Freezing point of 5% glucose solution in water $=$ freezing point of water $-\Delta T_{f}=273.15-4.08=269.07 \mathrm{~K}$

\#457450

Topic: Depression in freezing point
 $A B_{4}$ lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. Calculate atomic masses of A and B.

Solution
In case of compound $A B_{2}$:
$M_{B}=\frac{K_{f} W_{B} \times 1000}{W_{A} \Delta T_{f}}$
$\Delta T_{f}=2.3 \mathrm{~K}, W_{B}=1.0 \mathrm{~g}, W_{A}=20.0 \mathrm{~g}, K_{f}=5.1 \mathrm{KKg} / \mathrm{mol}$
$M_{B}=\frac{5.1 \times 1.0 \times 1000}{20.0 \times 2.3}=110.87 \mathrm{~g} / \mathrm{mol}$

In case of compound $A B_{4}$:
$\Delta T_{f}=1.3 \mathrm{~K}, W_{B}=1.0 \mathrm{~g}, W_{A}=20.0 \mathrm{~g}$
$M_{B}=\frac{5.1 \times 1.0 \times 1000}{20.0 \times 1.3}=196.15 \mathrm{~g} / \mathrm{mol}$

Let $a \mathrm{~g} / \mathrm{mol}$ and $b \mathrm{~g} / \mathrm{mol}$ be the atomic masses of A and B respectively.
$M_{A B_{2}}=a+2 b=110.87 \ldots$. ()
$M_{A B_{4}}=a+4 b=196.15 \ldots \ldots$ (i)
Substracting equation (i) from equation ($)$, we have
$-2 b=-85.28$
Atomic mass of B is $b=42.64$.
Substituting the values of b in equation (1 , we get
$a+2 \times 42.64=110.87$
Atomic mass of A is $a=25.59 \mathrm{~g} / \mathrm{mol}$.

\#457452

Topic: Osmotic pressure
At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar . If the osmotic pressure of the solution is 1.52 bars at the same temperature, what
would be its concentration?

Solution

As per van't Hoff equation, the relationship between the osmotic pressure and the molar concentration is $\Pi=C R T$. Here, R is the ideal gas constant and T is absolute temperature.
$C_{1}=\frac{36}{180} \mathrm{M}$
(Note: Molar mass of glucose is $180 \mathrm{~g} / \mathrm{mol}$ and molar concentration is the ratio of number of moles of glucose to volume of solution in L. Number of moles is the ratio of mass to molar mass).
$\Pi_{1}=4.98$ bar
$C_{2}=$?
$\Pi_{2}=1.52 \mathrm{bar}$
$4.98=\frac{36}{180}$ RT(i)
$1.52=C_{2}$ RT(ii)
Divide equation (ii) with equation (i),
$\frac{C_{2}}{36} \times 180=\frac{1.52}{4.98}$
$C_{2}=0.061 \mathrm{M}$
Hence, second solution has concentration of 0.061 M .

\#457459

Topic: Solutions of solids or gases in liquids
Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain.
Cyclohexane, $\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$

Solution

n-Octane is non polar and can dissolve non-polar solutes. It cannot dissolve polar (and ionic) solutes.
Cyclohexane is non polar. Hence, easily soluble in n-octane.
Methanol and acetonitrile are polar and have very low solubility in n-octane.
KCl is ionic compound and hence, insoluble in n-octane
The increasing order for solubility in n-octane is as follows:
$\mathrm{KCl}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{CN}<$ Cyclohexane

\#457460

Topic: Solutions of solids or gases in liquids
Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?
(i) phenol (ii) toluene (iii) formic acid (iv) ethylene glycol (v) chloroform (vi) pentanol

Solution

(i) Phenol is partially soluble in water.
(ii) Toluene is water insoluble.
(iii) Formic acid is water soluble.
(iv) Ethylene glycol is water soluble.
(v) Chloroform is water insoluble.
(vi) Pentanol is partially soluble in water.

\#457461

Topic: Expressing concentration of solutions
If the density of some lake water is $1.25 \mathrm{~g} \mathrm{~mL}^{-1}$ and contains 92 g of $N_{a^{+}}$ions per kg of water, calculate the molality of $N_{a}{ }^{+}$ions in the lake.

Solution

Mass of sodium ions $=92 \mathrm{~g}$
Molar mass of sodium ions $=23 \mathrm{~g} / \mathrm{mol}$
Number of moles of sodium ions $=\frac{92 \mathrm{~g}}{23 \mathrm{~g} / \mathrm{mol}}=4$
Mass of water $=1 \mathrm{~kg}$
Molality $=\frac{\text { number of moles of sodium ions }}{\text { Mass of water (in kg) }}=\frac{4}{1}=4 \mathrm{~m}$

\#457463

Topic: Expressing concentration of solutions
If the solubility product of $C u S$ is 6×10^{16}, calculate the maximum molarity of $C u S$ in aqueous solution.

Solution

Let $S \mathrm{M}$ be the maximum possible molarity of CdS in aqueous solution.
$\left[C d^{2+}\right]=\left[s^{2-}\right]=S \mathrm{M}$
Solubility product $K_{s p}=\left[C d^{2+}\right]\left[S^{2-}\right] 6 \times 10^{-16}=S \times S S=2.45 \times 10^{-8} \mathrm{M}$
Hence, the maximum molarity of CuS in aqueous solution is $2.45 \times 10^{-8} \mathrm{M}$.

\#457466

Topic: Expressing concentration of solutions
Calculate the mass percentage of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ when 6.5 g of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ is dissolved in 450 g of $\mathrm{CH}_{3} \mathrm{CN}$.

Solution

Mass percentage of aspirin in acetonitrile
$=\frac{\text { Mass of aspirin }}{\text { Mass of acetonitrile }} \times 100=\frac{6.5}{450} \times 100=1.44 \%$

\#457467

Topic: Expressing concentration of solutions
Nalorphene ($\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$), similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 mg . Calculate the mass of $1.510^{-3} \mathrm{~m}$ aqueous solution required for the above dose.

Solution

Molality $=\frac{\text { Moles of solute }}{\text { Mass of solvent }(\text { in } \mathrm{kg})}$
$0.15=\frac{\text { Moles of benzoic acid }}{\frac{250}{1000}}$

Moles of benzoic $=\frac{0.15 \times 250}{1000}=0.0375$

Molar mass of benzoic acid is $122 \mathrm{~g} / \mathrm{mol}$ respectively.

Amount of benzoic acid $=0.0375 \times 122=4.575 \mathrm{~g}$

\#457469

Topic: Expressing concentration of solutions
Calculate the amount of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ required for preparing 250 mL of 0.15 M solution in methanol

Solution
Number of moles of benzoic acid required $=0.15 \times \frac{250}{1000}=0.0375 \mathrm{moles}^{\text {mos }}$
Molar mass of benzoic acid $=7(12)+6(1)+2(16)=84+6+32=122 \mathrm{~g} / \mathrm{mol}$
Mass of benzoic acid required $=122 \times 0.0375=4.575 \mathrm{~g}$

\#457470

Topic: Abnormal molecular mass
The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid and trifluoroacetic acid increases in the order given above. Explain briefly.

Solution
When strongly electron withdrawing groups are present on alpha C atom of acetic acid, the acid strength and the degree of dissociation increases. This increases the vant Hoff factor i and the depression in the freezing point. Trifluoroacetic is most acidic because fluorine is most electron withdrawing in nature. Hence, trifluoroacetic acid has maximum depression in the freezing point.

\#457473

Topic: Abnormal molecular mass
Calculate the depression in the freezing point of water when 10 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCICOOH}$ is added to 250 g of water. $\mathrm{Ka}=1.4 \times 10^{-3}, \mathrm{~K}_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol} I^{-1}$

Solution

Molar mass of 2-chloro butanoic acid is $122.5 \mathrm{~g} / \mathrm{mol}$.

Number of moles $=\frac{10}{122.5}=0.0816 \mathrm{~mol}$

Molality of solution $=\frac{0.0816 \times 1000}{250}=0.3265 \mathrm{~m}$

Let α be the degree of dissociation and c be the initial concentration. The concentration after dissociation is as shown.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOOH}(1-\alpha) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOO}^{-} \mathrm{C} \mathrm{\alpha}+\mathrm{Hca}^{+}$
The equilibrium constant expression is
$K=\frac{c \alpha \times c \alpha}{c(1-\alpha)}=c \alpha^{2}$
$\alpha=\sqrt{\frac{\bar{K}}{c}}=\sqrt{\frac{1.4 \times 10^{-3}}{0.3265}}=0.065$

Calculation of vant Hoff factor:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOOH}(1-\alpha) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOO}^{-} \alpha+\alpha \mathrm{H}^{+}$
$i=\frac{1-\alpha+\alpha+\alpha}{1}=1+\alpha=1+0.065=1.065$
The depression in the freezing point $\Delta T_{f}=i K_{f} m=1.065 \times 1.86 \times 0.3265=0.647^{\circ}$

\#457475

Topic: Abnormal molecular mass
19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in the freezing point of water observed is $1.00^{\circ} \mathrm{C}$. Calculate the van't Hoff factor and dissociation constant of
fluoroacetic acid.

Solution

Fluoroacetic acid has molecular mass of $78 \mathrm{~g} / \mathrm{mol}$.
Number of moles of fluoroacetic acid is $\frac{19.5}{78}=0.25$
Molality is the number of moles of solute in 1 kg of solvent.
Molality $=\frac{0.25}{\frac{500}{1000}}=0.50 \mathrm{~m}$
Calculated depression in the freezing point.
$\Delta T_{f}=K_{f} \times m=1.86 \times 0.50=0.93 \mathrm{~K}$
Van't Hoff factor is the ratio of observed freezing point depression to calculated freezing point depression.
$i=\frac{1.0}{0.93}=1.0753$
Let c be the initial concentration of fluoro acetic acid and α be its degree of dissociation.
$\mathrm{CH}_{2} \mathrm{FCOOHC}(1-\alpha) \rightarrow \mathrm{CH}_{3} \mathrm{FCOO}^{-} \mathrm{C} \mathrm{\alpha}+\mathrm{H}^{+} \mathrm{c} \mathrm{\alpha}$
Total number of moles $=c(1-\alpha)+c \alpha+c \alpha=c(1+\alpha)$
$i=\frac{c(1+\alpha)}{c}=1+\alpha=1.0753$
$\alpha=0.0753$
$\left[\mathrm{CH}_{2} \mathrm{FCOO}^{-}\right]=\left[\mathrm{H}^{+}\right]=\mathrm{ca}=0.50 \times 0.0753=0.03765$
$\left[\mathrm{CH}_{2} \mathrm{FCOOH}\right]=c(1-\alpha)=0.50(1-0.0753)=0.462$
$K_{a}=\frac{\left[\mathrm{CH}_{2} \mathrm{FCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{2} \mathrm{FCOOH}\right]}$
$K_{a}=\frac{0.03765 \times 0.03765}{0.462}$
$K_{a}=3.07 \times 10^{-3}$

\#457476

Topic: Ideal and non-ideal solutions
Vapour pressure of water at 293 K is 17.535 mm Hg . Calculate the vapour pressure of water at 293 K when 25 g of glucose is dissolved in 450 g of water.

Solution

The molar masses of glucose and water are $180 \mathrm{~g} / \mathrm{mol}$ and $18 \mathrm{~g} / \mathrm{mol}$ respectively.
Number of moles of glucose $=\frac{25}{180}=0.139$

Number of moles of water $=\frac{450}{18}=25$

Mole fraction of glucose $=\frac{0.139}{0.139+25}=0.0055$

Vapour pressure lowering is directly proportional to mole fraction
$\frac{P^{0}-P}{P^{0}}=x^{\frac{17.535-P}{17.535}}=0.0055 P=17.438$
Hence, the vapour pressure of solution is 17.438 mm Hg .

\#457477

Topic: Solutions of solids or gases in liquids
Henry's law constant for the molality of methane in benzene at 298 K is $4.27 \times 105 \mathrm{~mm} \mathrm{Hg}$. Calculate the solubility of methane in benzene at 298 K under 760 mm Hg .

Solution

It is given that the molality of methane in benzene at $298 K$ is $4.27 \times 10^{5} \mathrm{~mm}$ of Hg .
$C=\frac{p}{k}$
$C=\frac{760 \mathrm{~mm} \mathrm{Hg}}{4.27 \times 10^{5} \mathrm{~mm} \mathrm{Hg} / \mathrm{m}}$
$C=1.78 \times 10^{-3} \mathrm{~m}$
Here, C is the molality of methane in benzene, p is the pressure of methane and k is the Henry's law constant.

\#457478

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law
100 g of liquid A (molar mass $140 \mathrm{~g} \mathrm{~mol}^{-1}$) was dissolved in 1000 g of liquid B (molar mass $180 \mathrm{~g} \mathrm{~mol}{ }^{-1}$). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 Torr.

Solution

Number of moles is the ratio of mass to molar mass.

For liquid A, number of moles $=\frac{100}{140}=0.714$

For liquid B, number of moles $=\frac{1000}{180}=5.556$

Mole fraction of $A=\frac{0.714}{0.714+5.556}=0.114$

Mole fraction of $B=1-0.114=0.886$
$P_{\text {total }}=P_{A}+P_{B}=P_{A}^{O} X_{A}+P_{B}^{O} X_{B}$
$475=P_{A}^{0} \times 0.114+500 \times 0.886$
$475=0.114 P_{A}^{O}+443$

Vapour pressure of pure $A, P_{A}^{O}=280.7$ torr

Vapour pressure of A in solution $=280.7 \times 0.114=32$ torr

\#457484

Topic: Ideal and non-ideal solutions
 composition, plot $p_{\text {total }}, p_{\text {chloroform }}$, and $p_{\text {acetone }}$ as a function of $x_{\text {acetone }}$. The experimental data observed for different compositions of mixture is:

$100 x x_{\text {acetone }}$	0	11.8	23.4	36.0	50.8	58.2	64.5	72.1
$P_{\text {acetone }} / m m ~ H g$	0	54.9	110.1	202.4	322.7	405.9	454.1	521.1
$P_{\text {chloroform }} / \mathrm{mm} \mathrm{Hg}$	632.8	548.1	469.4	359.7	257.7	193.6	161.2	120.7

Plot this data also on the same graph paper. Indicate whether it has positive deviation or negative deviation from the ideal solution

Solution

x (acetone)	0	0.118	0.234	0.360	0.508	0.508	0.582	1.0 .6450 .721
P (acetone, mm Hg)	0	54.9	110.1	202.4	202.4	322.7	405.9	454.1521 .1
P (chloroform, mm Hg)	632.8	548.1	469.4	359.7	359.7	257.7	193.6	151.2120 .7
P (total)	632.8	603.0	579.5	562.1	562.1	580.4	599.5	615.3641 .8

The plot of P (total) shows a dip downwards. This indicates negative deviation from ideal behaviour.

\#457485
Topic: Vapour Pressure of Liquid Solutions and Raoult's Law

Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.

Solution

Number of moles is the ratio of mass to molar mass

The molar masses of benzene and toluene are $78 \mathrm{~g} / \mathrm{mol}$ and $92 \mathrm{~g} / \mathrm{mol}$ respectively.

Number of moles of benzene $=\frac{80}{78}=1.026$

Number of moles of toluene $=\frac{100}{92}=1.087$

Mole fraction of benzene, $X_{B}=\frac{1.026}{1.026+1.087}=0.486$

Mole fraction of toluene, $X_{T}=1-0.486=0.514$
$P_{B}=P_{B}^{0} \times X_{B}=50.71 \times 0.486=24.65 \mathrm{~mm} \mathrm{Hg}$
$P_{T}=P_{T}^{o} X_{T}=32.06 \times 0.514=16.48 \mathrm{~mm}$ of Hg

Total vapour pressure $=24.65+16.48=41.13 \mathrm{~mm} \mathrm{Hg}$

Mole fraction of benzene in vapour phase is as follows:
$Y_{B}=\frac{24.65}{41.13}=0.60$

\#457486

Topic: Solutions of solids or gases in liquids

the composition of these gases in water.

Solution

The vapour pressure of air over water is 10 atm

The partial pressure of nitrogen $=P_{N_{2}}=\frac{79 \times 10}{100}=7.9 \mathrm{~atm}=7.9 \times 760 \mathrm{~mm} \mathrm{Hg}=6004 \mathrm{~mm} \mathrm{Hg}$

The partial pressure of oxygen $P_{\mathrm{O}_{2}}=\frac{20 \times 10}{100}=2.0 \mathrm{~atm}=2.0 \times 760 \mathrm{~mm} \mathrm{Hg}=1520 \mathrm{~mm} \mathrm{Hg}$

According to Henry's law,
$P_{N_{2}}=K_{H}\left(N_{2}\right) \times X_{N_{2}}$
$X_{N_{2}}=\frac{P_{N_{2}}}{K_{H}\left(N_{2}\right)}=\frac{6004}{6.51 \times 10^{7}}=9.22 \times 10^{-5}$
$X_{O_{2}}=\frac{P_{O_{2}}}{K_{H} O_{2}}=\frac{1520}{3.30 \times 10^{7}}=4.6 \times 10^{-5}$

Determine the amount of $\mathrm{CaCl}_{2}(i=2.47)$ dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.

Solution

According to Van't Hoff's equation, the osmotic pressure $\Pi=i C R T=\frac{i n_{B} R T}{V}$.
 the solution.
$0.75=\frac{2.47 \times n_{B} \times 0.082 \times 300}{2.5}$
$n_{B}=0.0308 \mathrm{~mol}$
Molar mass of calcium chloride is $111 \mathrm{~g} / \mathrm{mol}$.
Amount of calcium chloride dissolved $=0.0308 \times 111=3.42 \mathrm{~g}$

\#457489

Topic: Abnormal molecular mass
Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 litre of water at $25^{\circ} \mathrm{C}$, assuming that it is completely dissociated

Solution

For complete dissociation of potassium sulphate, $K_{2} S O_{4} \rightleftharpoons 2 K^{+}+S O_{4}^{2-}$, the Van't Hoff's factor (i) is 3 . Molar mass of potassium sulphate is $174 \mathrm{~g} / \mathrm{mol}$
According to Van't Hoff's equation,
$\Pi=i C R T$
$\Pi=\frac{W_{B} R T}{M_{B} V}$
$\Pi=\frac{3 \times 25 \times 10^{-3 \times 0.082 \times 298}}{174 \times 2.0}=5.27 \times 10^{-3} \mathrm{~atm}$
Note: $\Pi=$ osmotic pressure
$C=$ molar concentration of potassium sulphate
$W_{B}=$ Mass of potassium sulphate
$M_{B}=$ Molar mass of potassium sulphate

\#464353

Topic: Solutions
Write the steps you would use for making tea. Use the words solution, solvent, solute, dissolve, soluble, insoluble, filtrate and residue

Solution

(i) Tea can be prepared by following steps:Take 100 ml of water as solvent and boil it few minutes.
(ii) Now add one tea spoon sugar, one tea spoon tea leaves and 50 ml of milk. Here sugar, tea leaves and milk are solute.
(iii) Now boil it again for few minutes so that sugar will dissolves in solution as sugar is soluble in water
(iv) Now filter the solution. Collect the filtrate in cup. The insoluble tea leaves will be left behind as residue.

Substance Dissolved	Temperature in K				
	283	293	313	333	353
	Solubility				
Potassium nitrate	21	32	62	106	167
Sodium chloride	36	36	36	37	37
Potassium chloride	35	35	40	46	54
Ammonium chloride	24	37	41	55	66

Pragya tested the solubility of three different substances at different temperatures and collected the data as given below(results are given in the following table, as grams of substance dissolved in 100 grams of water to form a saturated solution).
(a) What mass of potassium nitrate would be needed to produce a saturated solution of potassium nitrate in 50 grams of water at 313 K ?
(b) Pragya makes a saturated solution of potassium chloride in water at $353 K$ and leaves the solution to cool at room temperature. What would she observe as the solution cools? Explain.
(c) Find the solubility of each salt at $293 K$. Which salt has the highest solubility at this temperature?
(d) What is the effect of change of temperature on the solubility of a salt?

Solution

(a) At 313 K 62 g of potassium nitrate dissolved in 100 g of water. So to produce a saturated solution of potassium nitrate in 50 g of water we need $\frac{62}{100} \times 50=31 \mathrm{~g}$ of potassium nitrate.
(b)Some soluble potassium chloride will separate out in the form of crystal at room temperature because the solubility of potassium chloride will decrease.
(c)
(i) Solubility of Potassium nitrate at 293 K is 32 g .
(ii) Solubility of sodium chloride at 293 K is 36 g .
(iii) Solubility of Potassium chloride at 293 K is 35 g .
(iv) Solubility of Ammonium chloride at 293 K is 37 g .

The solubility of Ammonium chloride is highest at this temperature.
(d)The solubility of salt increases with the increase in temperature.

\#464377

Topic: Solutions
Identify the solutions among the following mixtures
(a) Soil
(b) Sea water
(c) Air
(d) Coal
(e) Soda water.

Solution

Out of the above mixtures, sea water, air and soda water are solution. A solution is a homogeneous mixture of two or more substance.

