HOT QUESTIONS - After study the note, do the following questions yourself. Solution will be given in the next session.

1. If $f(x)=x+7$ and $g(x)=x-7, x \in R$, find $(f o g)(7)$.
2. Let $*$ be a binary operation, defined by $a * b=3 a+4 b-2$, find $4 * 5$.
3. Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$ on the set $N \times N$ is an equivalence relation.
4. Show that the relation R defined by $R=\{(a, b): a$-bis divisible by $3 ; a, b \in N\}$ is an equivalence relation.
5. If the binary operation $*$ on the set of integers Z , is defined by $a * b=a+3 b^{2}$, then find the value of $2 * 4$.
6. If $*$ be a binary operation on N given by $a * b=\operatorname{HCF}(a, b), a, b \in N$. Write the value of $22 * 4$.
7. If the binary operation * defined on Q is defined as, $a * b=2 a+b-a b$ for all $a, b \in Q$, find the value of $3 * 4$.
8. If f is an invertible function, defined as $f(x)=\frac{3 x-4}{5}$, write $f^{-1}(x)$.
9. Prove that the relation R in a set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation.
10. Let $f: N \rightarrow N$ defined by $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2}, & \text { if } n \text { is odd } \\ \frac{n}{2}, & \text { if } n \text { is odd }\end{array}\right.$ for all $n \in N$. Find whether the function f is bijective.
11. Show that the relation S in the set R of real numbers defined as $S=\left\{(a, b): a, b \in R\right.$ and $\left.a \leq b^{2}\right\}$ is neither reflexive, nor transitive.
12. If $f: R \rightarrow R$ be defined by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$,
13. If $f(x)=27 x^{3}$ and $g(x)=x^{\frac{1}{3}}$, find $(g o f)(x)$.
14. Show that the relation R defined by $R=\{(a, b): a-$ bis divisible by $3 ; a, b \in N\}$ is an equivalence relation.
15. Show that the relation S in the set R of real numbers defined as $S=\left\{(a, b): a, b \in R\right.$ and $\left.a \leq b^{3}\right\}$ is neither reflexive, nor symmetric nor transitive.
16. Show that the relation S in the set $A=\{(a, b) \in Z,|a-b|$ is divisible by 4$\}$ is an equivalence relation. Find the set of all elements related to 1.
17. Consider f : $R \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible.
18. Let and * be a binary operation on A defined by $(a, b){ }^{*}(c, d)=(a+c, b+d)$. Show that ${ }^{*}$ is commutative as well as associative. Also find its identity, if it exists.
19. Show that the relation S in the set R of real numbers, defined as $S=\left\{(a, b): a, b \in R\right.$ and $\left.\leq b^{3}\right\}$ is neither reflective, nor symmetric not transitive.
20. Show that the relation S in the set
$A=\{x \in z: 0 \leq x \leq 12\}$ given by
$S=\{(a, b): a, b \in z,|a-b|$ is divisibe by 4$\}$ is an equivalence relation. Find the set of all elements related to 1.
21. Consider $\mathrm{f}: R \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with $\mathrm{f}^{-1}(\mathrm{y})=\left(\frac{\sqrt{\mathrm{y}+6}-1}{3}\right)$.
22. Let $A=N \times N$ and $*$ be a binary operation on A defined $\mathrm{by}(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Show that $*$ is commutative and associative. Also, find the identity element for $*$ on A , if any.
23. State the reason for the relation R in the set $\{1,2,3\}$ given by $\{(1,2),(2,1)\}$ not to be transitive.
24. Let $\mathrm{A}=\{1,2,3\} ; \mathrm{B}=\{4,5,6,7\}$ and let
$\mathrm{f}=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.
25. If $\mathrm{R} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+2$, define $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.
26. Consider the binary operation $*$ on the set $\{1,2,3,4,5\}$ fined by $a * b=\min \{a, b\}$. Write the operation table of the operation *.
27. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=10 \mathrm{x}+7$. Find the function $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ such that $\mathrm{gof}=\mathrm{fog}=\mathrm{l}_{\mathrm{R}}$.
28. Write fog, if $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ are given by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=|5 \mathrm{x}-2|$.
29. Write fog, if $f: R \rightarrow R$ andg $: R \rightarrow R$ are given by $f(x)=8 x^{3} \operatorname{andg}(x)=x^{1 / 3}$
30. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as : $a * b= \begin{cases}a+b, & \text { if } a+b<6 \\ a+b-6, & \text { if } a+b \geq 6\end{cases}$ Show that zero is the identify for this operation and each element a of the set is invertible with $6-\mathrm{a}$, beings the inverse of a.
31. Consider $f: R_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$ where R_{+}is the set of all non- negative real numbers.
32. Let $*$ be a binary operation on N given by $\quad a * b=\operatorname{lcm}(a, b)$ for $a l l a, b \in N$. Find $5 * 7$.
33. The binary operation $* \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ is defined as $\mathrm{a} * \mathrm{~b}=2 \mathrm{a}+\mathrm{b}$. Find $(2 * 3) * 4$.
34. Let $A=R-\{3\}$ and $B=R-\{1\}$ consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ show that f is one-one and onto and hence find f^{-1}
35. If the binary operation $*$ on the set Z of integers is defined by $a * b=a+b-5$, then write the identity elements for the operation * in Z.
36. Show that $f: N \rightarrow N$, given by $f(x)=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even }\end{array}\right.$, is bijective(both one-one and onto).
37. Consider the binary operation $*: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{o}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ defined as $\mathrm{a} * \mathrm{~b}=|\mathrm{a}-\mathrm{b}|$ and $\mathrm{aob}=\mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Show that $*$ is commutative but not associative, o is associative but not commutative.
38. If $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}+3}{6 \mathrm{x}-4}, \mathrm{x} \neq \frac{2}{3}$, show that $($ fof $)(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \neq \frac{2}{3}$. What is the inverse of f ?
