HOT QUESTIONS – After study the note, do the following questions yourself. Solution will be given in the next session.

- 1. If f(x) = x + 7 and $g(x) = x 7, x \in R$, find (fog)(7).
- 2. Let * be a binary operation, defined by a * b = 3a + 4b 2, find 4 * 5.
- 3. Show that the relation R defined by $(a,b)R(c,d) \Rightarrow a+d=b+c$ on the set $N \times N$ is an equivalence relation.
- 4. Show that the relation R defined by $R = \{(a,b) : a b \text{ is divisible by } 3; a, b \in N\}$ is an equivalence relation.
- 5. If the binary operation * on the set of integers Z, is defined by $a * b = a + 3b^2$, then find the value of 2 * 4.
- 6. If * be a binary operation on N given by $a * b = HCF(a, b), a, b \in N$. Write the value of 22 * 4.
- 7. If the binary operation * defined on Q is defined as , a*b = 2a+b-ab for all $a, b \in Q$, find the value of 3*4.
- 8. If *f* is an invertible function, defined as $f(x) = \frac{3x-4}{5}$, write $f^{-1}(x)$.
- 9. Prove that the relation R in a set $A = \{1,2,3,4,5\}$ given by $R = \{(a,b) : |a-b| \text{ is even}\}$, is an equivalence relation.

10. Let
$$f: N \to N$$
 defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is odd} \end{cases}$ for all $n \in N$. Find whether the function f is bijective.

- 11. Show that the relation S in the set R of real numbers defined as $S = \{(a,b): a, b \in R \text{ and } a \le b^2\}$ is neither reflexive, nor transitive.
- 12. If $f: R \to R$ be defined by $f(x) = (3-x^3)^{\frac{1}{3}}$,
- 13. If $f(x) = 27x^3$ and $g(x) = x^{\frac{1}{3}}$, find (gof)(x).
- 14. Show that the relation R defined by $R = \{(a,b) : a b \text{ is divisible by } 3; a, b \in N\}$ is an equivalence relation.
- 15. Show that the relation S in the set R of real numbers defined as $S = \{(a,b): a, b \in R \text{ and } a \le b^3\}$ is neither reflexive, nor symmetric nor transitive.
- 16. Show that the relation S in the set $A = \{(a, b) \in Z, |a b| \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1.
- 17. Consider $f: R \to [-5,\infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible.
- 18. Let and * be a binary operation on A defined by (a,b) * (c,d) = (a+c,b+d). Show that * is commutative as well as associative. Also find its identity, if it exists.
- 19. Show that the relation S in the set R of real numbers, defined as $S = \{(a, b): a, b \in R \text{ and } \le b^3\}$ is neither reflective, nor symmetric not transitive.
- 20. Show that the relation S in the set

 $A = \left\{ x \in z : 0 \leq x \leq 12 \right\}$ given by

 $S = \{(a, b): a, b \in z, |a - b| \text{ is divisibe by } 4\}$ is an equivalence relation. Find the set of all elements related to 1.

- 21. Consider $f: R \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$.
- 22. Let $A = N \times N$ and * be a binary operation on A defined by (a,b) * (c,d)=(a+c,b+d). Show that * is commutative and associative. Also, find the identity element for * on A, if any.
- 23. State the reason for the relation R in the set $\{1,2,3\}$ given by $\{(1,2),(2,1)\}$ not to be transitive.
- 24. Let $A = \{1, 2, 3\}$; $B = \{4, 5, 6, 7\}$ and let

 $f = \{(1,4), (2,5), (3,6)\}$ be a function from A to B. State whether f is one-one or not.

- 25. If $R \rightarrow R$ is defined by f(x) = 3x + 2, define f(f(x)).
- 26. Consider the binary operation * on the set $\{1,2,3,4,5\}$ fined by $a * b = \min \{a,b\}$. Write the operation table of the operation *.
- 27. Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = l_R$.
- 28. Write fog, if $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = |5x-2|.
- 29. Write fog, if $f: R \to R$ and $g: R \to R$ are given by $f(x) = 8x^3$ and $g(x) = x^{1/3}$
- 30. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as : a * b= $\begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$

Show that zero is the identify for this operation and each element a of the set is invertible with 6-a, beings the inverse of a.

- 31. Consider $f: R_+ \to [4,\infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$ where R_+ is the set of all non-negative real numbers.
- 32. Let * be a binary operation on N given by a * b = lcm (a,b) for all $a, b \in N$. Find 5 * 7.
- 33. The binary operation $* \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined as a * b = 2a + b. Find(2*3)*4.
- 34. Let $A = R \{3\}$ and $B = R \{1\}$ consider the function $f : A \to B$ defined by $f(x) = \frac{x-2}{x-3}$ show that f is one-one and onto and hence find f^{-1}
- 35. If the binary operation * on the set Z of integers is defined by a * b = a + b 5, then write the identity elements for the operation * in Z.
- 36. Show that $f: N \to N$, given by $f(x) = \begin{cases} x+1, \text{ if } x \text{ is odd} \\ x-1, \text{ if } x \text{ is even} \end{cases}$, is bijective (both one-one and onto).
- 37. Consider the binary operation $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * b = |a b| and $a \circ b = a$ for all $a, b \in R$. Show that * is commutative but not associative, o is associative but not commutative.

38. If
$$f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$$
, show that $(fof)(x) = x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

