Chapter 1

Relations \& Functions

Consider the sets $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{3,4,5,6,7\}$. The Cartesian product of A and B is $\mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(1,5)$, $(1,6),(1,7),(2,3), \ldots .,(5,6),(5,7)\}$.
A subset of A \times B by introducing a relation R between the first element ' x ' and the second element ' y ' of each ordered pair (x, y) as
$R=\{(x, y): x$ is greater than $y, x \in A, y \in B\}$. Then $R=\{(4,3),(5,3), 5,4)\}$.
Note1: Relation R from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $A \times$ B. The second element is called the image of the first element.

Note2: The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.

Note3: The set of all second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the co-domain of the relation R. Note that range \subseteq co-domain.

Tips

1. A relation may be represented algebraically either by Roster method or by Set-builder method.
2. An arrow diagram is a visual representation of a relation.
3. The total number of relations that can be defined from a set A to a set B is the number of possible subsets of $A \times B$. If $\mathrm{n}(\mathrm{A})=\mathrm{p}$ and $\mathrm{n}(\mathrm{B})=\mathrm{q}$, then $\mathrm{n}(\mathrm{A} \times \mathrm{B})=\mathrm{pq}$ and the total number of relations is 2^{pq}.
4. A relation R from A to A is also stated as a relation on A.

Inverse relation: If $D=\{(a, b): a, b \in R\}$ is a relation from set A to a set B, then inverse of $R=R^{-1}=\{(b, a): a, b \in R\}$.
Note: $\operatorname{Domain}(\mathrm{R})=\operatorname{Range}\left(\mathrm{R}^{-1}\right)$ and $\operatorname{Range}(\mathrm{R})=\operatorname{Domain}\left(\mathrm{R}^{-1}\right)$.

Types of relations

A relation R in a set A to itself is called:

1. Universal relation: If each element of \mathbf{A} is related to every element of \mathbf{A}. i.e., $\mathrm{R}=\mathrm{A} \times \mathrm{A}$
2. An identity relation if $R=\{(a, a): a \in A\}$
3. An empty or void relation if no element of A is related to any element of A. i.e.,

Note: Empty relation and the universal relation are sometimes called trivial relations. $\mathrm{R}=\phi \subset \mathrm{A} \times \mathrm{A}$
4. A relation \mathbf{R} in a set \mathbf{A} is said to be
a) Reflexive, if every element of A is related to itself. $(a, a) \in R \forall a \in A$. i.e., ${ }_{a} R_{a} \forall a \in A$.
b) Symmetric, if $(a, b) \in R$ then $\forall(b, a) \in$ R. i.e., ${ }_{a} R_{b}={ }_{b} R_{a} \forall a, b \in R$.
c) Transitive, if $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R \forall a, b, c \in R$. i.e., ${ }_{a} R_{b}$ and ${ }_{b} R_{c} \Rightarrow{ }_{a} R_{c}$

5. Equivalence Relation: A relation R in a set A is called an equivalent if
 i) R is reflexive, ii) R is symmetric and iii) R is transitive.

Note: 1. If R and S are two relations on a set A, then $R \cap S$ is also an equivalence
relation on A.
2. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
3. The inverse of an equivalence relation is an equivalence relation.

Functions: Let A and B be two non-empty sets. A function f from A to B is a correspondence which associates elements of set A to element of set B such that
i. all elements of set A are associated to elements in set B.
ii. an element of set A is associated to a unique element in set B .

If f is a function from A to B and $(a, b) \in f$, then $\mathrm{f}(\mathrm{a})=\mathrm{b}$, where ' b ' is called the image of ' a ' under f and ' a ' is called the pre-image of 'b' under f.

The function f from A to B is denoted by $f: \mathrm{A} \rightarrow \mathrm{B}$.

Types of Functions

One-one function (Injective): A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be an one-one function if different elements of A have different images in B.

No. of one-one functions from A to B

$$
=\left\{\begin{array}{cc}
{ }^{n} P_{m}, & \text { if } n \geq m \\
0, & \text { if } n=0
\end{array}\right.
$$

To check the injectivity of a function
i. Take two arbitrary elements x_{1} and x_{2} in the domain of f.
ii. Check whether $f\left(x_{1}\right)=f\left(x_{2}\right)$
iii. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, which implies that $\mathrm{x}_{1}=\mathrm{x}_{2}$ only then the function is a one-one function or injective function otherwise not.

Onto function (surjective): A function $f: A \rightarrow B$ is said to be an onto function, if every element of B is the image of some element of A under f. i.e., for every element of $y \in B$, there exists an element $x \in A$ such that $f(x)=y$.

One-one onto function (bijective): A function $f: A \rightarrow B$ is said to be an one-one and onto, if it is both one-one and onto.

Composition of function

Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be any two functions, the composition of f and g,
 denoted by gof is defined as the function gof : $A \rightarrow C$ given by $\operatorname{gof}(x)=g[f(x)] \forall x \in A$

Invertible function

Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be any two functions, the composition of f and g, denoted by $g o f$ is defined as the function gof : $A \rightarrow C$ given by $g o f(x)=g[f(x)] \forall x \in A$. For example, Let $f: R \rightarrow R$ be given by $f(x)=4 x+3$. Show that $f(x)$ is invertible. Also find the inverse of f.
$f(x)=4 x+3$
$f\left(x_{1}\right)=4 x_{1}+3$
$f\left(x_{2}\right)=4 x_{2}+3$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 4 x_{1}+3=4 x_{2}+3 \Rightarrow 4 x_{1}=4 x_{2}=x_{1}=x_{2}$.
$\therefore f$ is one -one.
Again, $\quad y=4 x+3$
$y-3=4 x \Rightarrow x=\frac{y-3}{4}$
$f(x)=f\left(\frac{y-3}{4}\right)=4 \times \frac{y-3}{4}+3=y-3+3=y \Rightarrow f$ is onto.
Hence, f is one-one, onto and therefore, invertible.
Now, $\quad y=f(x)=y=4 x+3 \Rightarrow x=\frac{y-3}{4} \Rightarrow f^{-1}(y)=\frac{y-3}{4}$

Binary operation

An operation * on a non-empty set A, satisfying the closure property is known as a binary operation. For example, let * be the binary operation on N given by $a * b=$ LCM of a and b. Find
i. $\quad 4 * 3=\mathrm{LCM}$ of 4 and $3=4 \times 3=12$
ii. $\quad 16 * 24=\mathrm{LCM}$ of 16 and $24=2 \times 2 \times 2 \times 2 \times 3=48$

Properties of binary operation:

1. Commutative Property: A binary operation * on set A is said to be commutative, if $a * b=b * a$, for all $a, b \in A$.
2. Associative Property: A binary operation * on set A is said to be associative, if $(a * b) * c=a *(b * c)$, for all $a, b, c \in A$.
3. Identity property: A binary operation * on set A is said to be identity, if an element $e \in A$, if $a * e=a=e * a, \forall a \in A$. For example, find the identity element in Z for $*$ on Z , defined by $a * b=a+b+1$. Let e be the identity element in Z . $a * e=a$
$\therefore a * b=a * e=a+e+1$
$\Rightarrow e=-1$
$\Rightarrow-1 \in Z$ is the identity element for *.

Write the operation table of * on the set $\{1,2,3,4,5\}$ defined by $a * b=\min \{a, b\}$.

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Tips

1. $(f o g)(x)=f(g(x))$
2. $(f \circ f)(x)=f(f(x))$
3. $(g o f)(x)=g(f(x))$
4. $(\operatorname{gog})(x)=g(g(x))$
5. $\left(f o f^{-1}\right)(x)=f\left(f^{-1}(x)\right)$, etc..
