Chapter 1

Relations & Functions

Consider the sets A = $\{1,2,3,4,5\}$ and B= $\{3,4,5,6,7\}$. The Cartesian product of A and B is A × B = $\{(1,3), (1,4), (1,5), (1,6), (1,7), (2,3), \dots, (5,6), (5,7)\}$.

A subset of $A \times B$ by introducing a relation R between the first element 'x' and the second element 'y' of each ordered pair (x, y) as

R= {(x,y): x is greater than y, $x \in A$, $y \in B$ }. Then R = {(4,3), (5,3), 5,4)}.

- Note1: Relation R from a non-empty set A to a non-empty set B is a subset of the Cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B. The second element is called the image of the first element.
- Note2: The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.
- Note3: The set of all second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the co-domain of the relation R. Note that range \subseteq co-domain.

Tips 👁

- 1. A relation may be represented algebraically either by Roster method or by Set-builder method.
- 2. An arrow diagram is a visual representation of a relation.
- 3. The total number of relations that can be defined from a set A to a set B is the number of possible subsets of $A \times B$. If n(A) = p and n(B) = q, then $n(A \times B) = pq$ and the total number of relations is 2^{pq} .
- 4. A relation R from A to A is also stated as a relation on A.

Inverse relation: If $D = \{(a,b): a, b \in R\}$ is a relation from set A to a set B, then inverse of $R = R^{-1} = \{(b,a): a, b \in R\}$.

Note: $Domain(R) = Range(R^{-1})$ and $Range(R) = Domain(R^{-1})$.

Types of relations

A relation R in a set A to itself is called:

- 1. Universal relation: If each element of A is related to every element of A. i.e., $R = A \times A$
- 2. An identity relation if $R = \{(a,a): a \in A\}$
- An empty or void relation if no element of A is related to any element of A. i.e., Note: Empty relation and the universal relation are sometimes called trivial relations. R = φ⊂A×A
- 4. A relation R in a set A is said to be
 - a) Reflexive, if every element of A is related to itself. $(a,a) \in \mathbb{R} \quad \forall a \in A$. i.e., ${}_{a}\mathbb{R}_{a} \quad \forall a \in A$.
 - **b)** Symmetric, if $(a,b) \in \mathbb{R}$ then $\forall (b,a) \in \mathbb{R}$. i.e., ${}_{a}\mathbb{R}_{b} = {}_{b}\mathbb{R}_{a} \forall a, b \in \mathbb{R}$.
 - c) **Transitive, if** $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R} \forall a,b,c \in \mathbb{R}$. i.e., ${}_{a}\mathbb{R}_{b}$ and ${}_{b}\mathbb{R}_{c} \Rightarrow {}_{a}\mathbb{R}_{c}$
- 5. Equivalence Relation: A relation R in a set A is called an equivalent if
 - i) R is reflexive, ii) R is symmetric and iii) R is transitive.

Note: 1. If R and S are two relations on a set A, then $R \cap S$ is also an equivalence

relation on A.

- 2. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- 3. The inverse of an equivalence relation is an equivalence relation.

Functions: Let A and B be two non-empty sets. A function f from A to B is a correspondence which associates elements of set A to element of set B such that

i. all elements of set A are associated to elements in set B.

ii. an element of set A is associated to a unique element in set B.

If f is a function from A to B and (a, b) \in f, then f(a)=b, where 'b' is called the image of 'a' under f and 'a' is called the pre-image of 'b' under f.

The function *f* from A to B is denoted by $f: A \rightarrow B$.

Types of Functions

One-one function (Injective): A function $f: A \rightarrow B$ is said to be an one-one function if different elements of A have different images in B.

No. of one-one functions from A to B

$$=\begin{cases} {}^{n}P_{m}, \text{ if } n \ge m\\ 0, \text{ if } n = 0 \end{cases}$$

To check the injectivity of a function

- i. Take two arbitrary elements x_1 and x_2 in the domain of f.
- ii. Check whether $f(x_1) = f(x_2)$
- iii. If $f(x_1) = f(x_2)$, which implies that $x_1 = x_2$ only then the function is a one-one function or injective function otherwise not.

Onto function (surjective): A function $f: A \to B$ is said to be an onto function, if every element of B is the image of some element of A under *f*. i.e., for every element of $y \in B$, there exists an element $x \in A$ such that f(x) = y.

One-one onto function (bijective): A function $f: A \rightarrow B$ is said to be an one-one and onto, if it is both one-one and onto.

Composition of function

Let $f: A \to B$ and $g: A \to B$ be any two functions, the composition of f and g, denoted by *gof* is defined as the function *gof* : $A \to C$ given by *gof* $(x) = g \lceil f(x) \rceil \forall x \in A$

Invertible function

Let $f: A \to B$ and $g: A \to B$ be any two functions, the composition of f and g, denoted by *gof* is defined as the function $gof: A \to C$ given by $gof(x) = g[f(x)] \forall x \in A$. For example, Let $f: R \to R$ be given by f(x) = 4x + 3. Show that f(x) is invertible. Also find the inverse of f.

f(x) = 4x + 3 $f(x_1) = 4x_1 + 3$ $f(x_2) = 4x_2 + 3$ $f(x_1) = f(x_2) \Rightarrow 4x_1 + 3 = 4x_2 + 3 \Rightarrow 4x_1 = 4x_2 = x_1 = x_2.$ $\therefore f \text{ is one - one.}$

Again, y = 4x + 3

$$y-3 = 4x \Rightarrow x = \frac{y-3}{4}$$
$$f(x) = f\left(\frac{y-3}{4}\right) = 4 \times \frac{y-3}{4} + 3 = y-3 + 3 = y \Rightarrow f \text{ is onto.}$$

Hence, f is one-one, onto and therefore, invertible.

Now,
$$y = f(x) = y = 4x + 3 \implies x = \frac{y - 3}{4} \implies f^{-1}(y) = \frac{y - 3}{4}$$

Binary operation

An operation * on a non-empty set A, satisfying the closure property is known as a binary operation. For example, let * be the binary operation on N given by a*b = LCM of a and b. Find

- i. $4 * 3 = LCM \text{ of } 4 \text{ and } 3 = 4 \times 3 = 12$
- ii. $16 * 24 = LCM \text{ of } 16 \text{ and } 24 = 2 \times 2 \times 2 \times 2 \times 3 = 48$

Properties of binary operation:

- 1. **Commutative Property**: A binary operation * on set A is said to be commutative, if a*b=b*a, for all $a,b \in A$.
- 2. Associative Property: A binary operation * on set A is said to be associative, if (a*b)*c = a*(b*c), for all $a, b, c \in A$.
- 3. Identity property: A binary operation * on set A is said to be identity, if an element e∈A, if a * e = a = e * a, ∀ a ∈ A. For example, find the identity element in Z for * on Z, defined by a * b = a + b + 1. Let e be the identity element in Z. a * e = a
 ∴ a * b = a * e = a + e + 1

```
\Rightarrow e = -1\Rightarrow -1 \in Z \text{ is the identity element for } *.
```

Write the operation table of * on the set $\{1, 2, 3, 4, 5\}$ defined by $a * b = \min\{a, b\}$.

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Tips 👁

- 1. (fog)(x) = f(g(x))
- 2. (fof)(x) = f(f(x))
- 3. (gof)(x) = g(f(x))
- 4. (gog)(x) = g(g(x))
- 5. $(fof^{-1})(x) = f(f^{-1}(x))$, etc..