APPLICATIONS OF DEFINITE INTEGRALS

First area:

The area enclosed between the curve y = f(x), the x axis and the ordinates at x = a and x = b is

$$\int_{x=a}^{x=b} y \, dx$$

Second area:

The area enclosed between the curve x = f(y), the y axis

and the ordinates at y = a and y = b is $\int_{y=a}^{y=b} x \, dy$

Third area:

If $f(x) \ge 0$, for $a \le x \le c$ and $f(x) \le 0$, for $c \le x \le b$, then the area enclosed between the curve

y = f(x), the x axis and the ordinates at x = a and x = b is

$$\int_{x=a}^{x=c} f(x) dx + \left| \int_{x=c}^{x=b} f(x) dx \right|.$$

Fourth area:

The area enclosed between the curves $y = f_1(x)$ $y = f_2(x)$, the x axis and the ordinates at x = a

and
$$x = b$$
 is
$$\int_{x=a}^{x=b} \left[f_2(x) - f_1(x) \right] dx.$$

Questions:

1. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis.

Area of ABCD =
$$\int_{x=1}^{x=4} y \, dx$$
=
$$\int_{x=1}^{x=4} \sqrt{x} \, dx$$
=
$$\frac{2}{3} \left[x^{\frac{3}{2}} \right]_{1}^{4} = \frac{2}{3} \left[4^{\frac{3}{2}} - 1^{\frac{3}{2}} \right] = \frac{2}{3} (2^{3} - 1) = \frac{2}{3} (7) = \frac{14}{3} \text{ sq units.}$$

2. Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Area of ABCD =
$$\int_{x=2}^{x=4} y \, dx$$
=
$$\int_{x=2}^{x=4} 3\sqrt{x} \, dx$$
=
$$3 \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{2}^{4} = 2 \left[4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right] = 2 \left[2^{3} - \left(\sqrt{2} \right)^{3} \right]$$
=
$$2 \left[8 - 2\sqrt{2} \right] = \left(16 - 4\sqrt{2} \right) \text{ sq. units}$$

3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Area of ABCD =
$$\int_{y=2}^{y=4} x \, dy$$

$$= \int_{y=2}^{y=4} 2\sqrt{y} \, dy$$

$$= 2\left[\frac{2}{3}y^{\frac{3}{2}}\right]_{2}^{4}$$

$$= \frac{4}{3}\left[x^{\frac{3}{2}}\right]_{2}^{4} = \frac{4}{3}\left[4^{\frac{3}{2}} - 2^{\frac{3}{2}}\right] = \frac{4}{3}\left[2^{3} - \left(\sqrt{2}\right)^{3}\right]$$

$$= \frac{4}{3}\left[8 - 2\sqrt{2}\right] = \left(\frac{32 - 8\sqrt{2}}{3}\right) \text{ sq units.}$$

4. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

The given equation of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ can be represented as

It can be observed that the ellipse is symmetrical about *x*-axis and *y*-axis.

 \therefore Area bounded by ellipse = $4 \times$ Area of OAB

Area =
$$4 \times \int_{x=0}^{x=4} y \, dx$$

= $4 \times \frac{3}{4} \int_{0}^{4} \sqrt{16 - x^2} \, dx$ || $\frac{y^2}{9} = 1 - \frac{x^2}{16}$
= $3 \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_{0}^{4}$ || $y^2 = \frac{9}{16} \left(16 - x^2 \right) \Rightarrow y = \frac{3}{4} \sqrt{16 - x^2}$
= $3 \left[0 + 8 \sin^{-1} (1) - \{0 + 0\} \right]$
= $24 \times \frac{\pi}{2} = 12\pi$ sq. units.

5. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Area =
$$4 \times \int_{x=0}^{x=2} y \, dx$$

= $4 \times \frac{3}{2} \int_{0}^{4} \sqrt{2^2 - x^2} \, dx$ $\left\| \frac{y^2}{9} = 1 - \frac{x^2}{4} \right\|$
= $6 \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$ $\left\| y^2 = \frac{9}{4} \left(4 - x^2 \right) \Rightarrow y = \frac{3}{2} \sqrt{4 - x^2}$
= $6 \left[0 + 2 \sin^{-1} (1) - \{0 + 0\} \right]$
= $12 \times \frac{\pi}{2} = 6\pi$ sq. units.

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3},1)$.

Area of the shaded portion = Area $\triangle OCA + Area ACB$

$$= \int_{0}^{\sqrt{3}} (y \text{ of line}) dx + \int_{\sqrt{3}}^{2} (y \text{ of circle}) dx$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3}} x dx + \int_{\sqrt{3}}^{2} \sqrt{2^{2} - x^{2}} dx$$

$$= \frac{1}{\sqrt{3}} \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{3}} + \left[\frac{x}{2} \sqrt{2^{2} - x^{2}} + \frac{2^{2}}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{\sqrt{3}}^{2}$$

$$= \frac{1}{\sqrt{3}} \left[\frac{\left(\sqrt{3}\right)^{2}}{2} - 0 \right] + \left[0 + 2 \sin^{-1} (1) - \left\{ \frac{\sqrt{3}}{2} \sqrt{2^{2} - \left(\sqrt{3}\right)^{2}} + \frac{2^{2}}{2} \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right\} \right]$$

$$= \frac{\sqrt{3}}{2} + 2 \times \frac{\pi}{2} - \left[\frac{\sqrt{3}}{2} \sqrt{1} + 2 \times \frac{\pi}{3} \right]$$

$$= \frac{\sqrt{3}}{2} + \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} = \pi - \frac{2\pi}{3} = \frac{3\pi - 2\pi}{3} = \frac{\pi}{3} \text{ sq.units}$$

7. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$

The area of the smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line $x = \frac{a}{\sqrt{2}}$, is the area ABCDA.

Area $ABCD = 2 \times Area ABCA$

$$= 2 \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^2 - x^2} \, dx$$

$$= 2 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{\frac{a}{\sqrt{2}}}^{a}$$

$$= 2 \left[\frac{a}{2} (0) + \frac{a^2}{2} \sin^{-1} \left(\frac{a}{a} \right) - \left\{ \frac{\frac{a}{\sqrt{2}}}{2} \sqrt{a^2 - \left(\frac{a}{\sqrt{2}} \right)^2} + \frac{\left(\frac{a}{\sqrt{2}} \right)^2}{2} \sin^{-1} \left(\frac{\frac{a}{\sqrt{2}}}{a} \right) \right\} \right]$$

$$= 2 \left[\frac{a^2}{2} \times \frac{\pi}{2} - \left\{ \frac{a}{2\sqrt{2}} \sqrt{a^2 - \frac{a^2}{2}} + \frac{a^2}{2} \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right\} \right]$$

$$= 2\left[\frac{\pi a^2}{4} - \left\{\frac{a}{2\sqrt{2}} \frac{a}{\sqrt{2}} + \frac{a^2}{2} \times \frac{\pi}{4}\right\}\right]$$

$$= \frac{\pi a^2}{2} - \frac{a^2}{2} - \frac{\pi a^2}{4} = \frac{a^2}{2} \left(\pi - 1 - \frac{\pi}{2}\right)$$

$$= \frac{a^2}{2} \left(\pi - 1 - \frac{\pi}{2}\right) = \frac{a^2}{2} \left(\frac{\pi}{2} - 1\right) \text{ sq. units.}$$

8. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal parts.

∴ Area OAD = Area ABCD

It can be observed that the given area is symmetrical about *x*-axis.

⇒ Area OED = Area EFCD

$$\int_{0}^{a} \sqrt{x} \, dx = \int_{a}^{4} \sqrt{x} \, dx$$

$$\left[x^{\frac{3}{2}} \right]_{0}^{a} = \left[x^{\frac{3}{2}} \right]_{a}^{4}$$

$$a^{\frac{3}{2}} = 4^{\frac{3}{2}} - a^{\frac{3}{2}}$$

$$2 \times a^{\frac{3}{2}} = 2^{3} = 8$$

$$a^{\frac{3}{2}} = 4 \Rightarrow a = 4^{\frac{2}{3}}$$

9. Find the area of the region bounded by the parabola and $y = x^2$ and y = |x|.

The given area is symmetrical about y-axis.

$$y = x^2$$
(1) is an upward parabola.

Substituting y = |x| in (1)

$$x^{2} = |x|$$

$$x^{4} = x^{2} \Rightarrow x^{4} - x^{2} = 0$$

$$\Rightarrow x^{2} (x^{2} - 1) = 0$$

$$\Rightarrow x = 0 \text{ or } x = \pm 1$$

The point of intersection of parabola, $y = x^2$, and line, y = |x|, is A (1, 1).

$$\therefore \text{ Required area} = 2 \left[\int_{0}^{1} (|x| - x^{2}) dx \right] = 2 \left[\int_{0}^{1} (x - x^{2}) dx \right]$$
$$= 2 \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1} = 2 \left[\frac{1^{2}}{2} - \frac{1^{3}}{3} - 0 \right]$$
$$= 2 \left[\frac{1}{2} - \frac{1}{3} \right] = 2 \left(\frac{3 - 2}{6} \right) = \frac{2}{6} = \frac{1}{3} \text{ sq.units.}$$

10. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.

Let the curves be
$$x^2 = 4y$$
.....(1) and $x = 4y - 2$ (2)

Solving, we have: x + 2 = 4y

Sub. in (1),
$$x^2 = x + 2 \Rightarrow x^2 - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0$$

$$\Rightarrow x = 2$$
 and $x = -1$

when
$$x = 2$$
, $2 + 2 = 4y \Rightarrow y = \frac{4}{4} = 1$

when
$$x = -1$$
, $-1 + 2 = 4y \implies y = \frac{1}{2}$

 \therefore co-ordinates of A and B are: $\left(-1,\frac{1}{2}\right)$ and $\left(2,1\right)$

:. The area of the shaded region = $\int_{-1}^{2} (y \text{ of line} - y \text{ of parabola}) dx$

$$= \int_{-1}^{2} \left(\frac{x+2}{4} - \frac{x^2}{4} \right) dx$$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$

$$= \frac{1}{4} \left[\frac{2^2}{2} + 2(2) - \frac{2^3}{3} - \left\{ \frac{(-1)^2}{2} + 2(-1) - \frac{(-1)^3}{3} \right\} \right]$$

$$= \frac{1}{4} \left[2 + 4 - \frac{8}{3} - \left\{ \frac{1}{2} - 2 + \frac{1}{3} \right\} \right]$$

$$= \frac{1}{4} \left[6 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3} \right] = \frac{1}{4} \left[8 - \frac{9}{3} - \frac{1}{2} \right]$$

$$= \frac{1}{4} \left[5 - \frac{1}{2} \right] = \frac{1}{4} \times \frac{9}{2} = \frac{9}{8} \text{ sq. units.}$$

11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO.

:. The required =
$$2 \times \int_{0}^{3} y \, dx = 2 \int_{0}^{3} 2 \sqrt{x} \, dx = 4 \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{3}$$

$$=4\times\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{3}=\frac{8}{3}\left[3^{\frac{3}{2}}-0\right]=\frac{8}{3}\left[\left(\sqrt{3}\right)^{3}\right]=\frac{8}{3}\times3\sqrt{3}=8\sqrt{3} \text{ sq.units}$$

12. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x=0 and x=2 is **A.** π **B.** $\frac{\pi}{2}$ **B.** $\frac{\pi}{3}$ **C.** $\frac{\pi}{4}$ **D.**

$$\frac{\pi}{2}$$
 B

$$\frac{\pi}{3}$$

$$\frac{\pi}{4}$$
 D

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ The required } = \int_{0}^{2} \sqrt{2^{2} - x^{2}} \, dx = \left[\frac{x}{2} \sqrt{2^{2} - x^{2}} + \frac{2^{2}}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$$
$$= \left[0 + 2 \sin^{-1} \left(1 \right) - \left(0 + 0 \right) \right]$$

$$=2\times\frac{\pi}{2}=\pi$$
 sq. units.

Ans: (A)

13. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

A. 2

В.

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as

Area of the shaded region =
$$\int_{0}^{3} x \, dy = \int_{0}^{3} \frac{y^{2}}{4} \, dy = \frac{1}{4} \left[\frac{y^{3}}{3} \right]_{0}^{3}$$

$$=\frac{1}{12}(3^3-0^3)=\frac{1}{12}(27)=\frac{9}{4}$$
 sq.units.

Ans: B.

Exercise 8.2

1. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$

 $4x^2 + 4y^2 = 9$(1) is a circle passing through the origin and having radius $\frac{3}{2}$ units and

$$x^2 = 4y$$
(2) is an upward parabola.

In (1), we have,
$$4(4y)+4y^2=9 \Rightarrow 4y^2+16y-9=0$$

$$4y^2 + 18y - 2y - 9 = 0 \Rightarrow 2y(2y+9) - 1(2y+9) = 0$$

$$(2y+9)(2y-1)=0 \Rightarrow 2y+9=0 \text{ or } 2y-1=0$$

$$y = -\frac{9}{2}$$
 or $y = \frac{1}{2}$

But
$$y = -\frac{9}{2}$$
 is inadmissible. $\Box y = \frac{1}{2}$

When
$$y = \frac{1}{2}$$
, $x^2 = 4\left(\frac{1}{2}\right) = 2 \Rightarrow x = \pm\sqrt{2}$

 \therefore the points of intersection of the circle and parabola are $\left(\sqrt{2},\frac{1}{2}\right)$ and $\left(-\sqrt{2},\frac{1}{2}\right)$.

The required area =
$$2 \times \int_{0}^{\sqrt{2}} \left[\sqrt{\left(\frac{3}{2}\right)^{2} - x^{2}} - \left(\frac{x^{2}}{4}\right) \right] dx$$

$$= 2\left[\frac{x}{2}\sqrt{\left(\frac{3}{2}\right)^{2} - x^{2}} + \frac{\left(\frac{3}{2}\right)^{2}}{2}\sin^{-1}\left(\frac{x}{\frac{3}{2}}\right) - \frac{1}{4} \times \frac{x^{3}}{3}\right]_{0}^{\sqrt{2}}$$

$$= 2\left[\frac{\sqrt{2}}{2}\sqrt{\left(\frac{3}{2}\right)^{2} - \sqrt{2}^{2}} + \frac{\left(\frac{3}{2}\right)^{2}}{2}\sin^{-1}\left(\frac{\sqrt{2}}{\frac{3}{2}}\right) - \frac{1}{4} \times \frac{\left(\sqrt{2}\right)^{3}}{3} - 0\right]$$

$$= 2\left[\frac{\sqrt{2}}{2}\sqrt{\frac{9}{4} - 2} + \frac{9}{8}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) - \frac{1}{4} \times \frac{2\sqrt{2}}{3}\right]$$

$$= 2\left[\frac{\sqrt{2}}{4} - \frac{2\sqrt{2}}{12} + \frac{9}{8}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)\right]$$

$$= 2\left[\frac{3\sqrt{2}}{12} - \frac{2\sqrt{2}}{12} + \frac{9}{8}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)\right]$$

$$= 2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)\right] = \frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) \text{ sq. units.}$$

2. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

 $(x-1)^2 + y^2 = 1$ (1) is a circle passing having centre (1,0) and radius 1 unit and $x^2 + y^2 = 1$ (2) is a circle passing through the origin and having radius 1 unit. From (2), $y^2 = 1 - x^2$ (3)

Sub. in (1), we have, $(x-1)^2 + 1 - x^2 = 1 \Rightarrow x^2 - 2x + 1 + 1 - x^2 = 1$

$$-2x = 0 - 1 \Rightarrow x = \frac{1}{2}$$

When
$$x = \frac{1}{2}$$
, in (3), $y^2 = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \Rightarrow y = \pm \frac{\sqrt{3}}{2}$

 \therefore the points of intersection of the circles are $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$.

 $\therefore \text{ the required area } = 2 \times \int_{0}^{\frac{1}{2}} \sqrt{1 - \left(x - 1\right)^2} dx + 2 \int_{\frac{1}{2}}^{1} \sqrt{1 - x^2} dx$

$$= 2 \times \left[\frac{(x-1)}{2} \sqrt{1 - (x-1)^2} + \frac{1}{2} \sin^{-1}(x-1) \right]_0^{\frac{1}{2}} + 2 \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1}x \right]_{\frac{1}{2}}^{1}$$

$$= 2 \times \left[\frac{\left(\frac{1}{2} - 1\right)}{2} \sqrt{1 - \left(\frac{1}{2} - 1\right)^2} + \frac{1}{2} \sin^{-1}\left(\frac{1}{2} - 1\right) - \left\{0 + \frac{1}{2} \sin^{-1}\left(0 - 1\right)\right\} \right]$$

$$+ 2 \left[0 + \frac{1}{2} \sin^{-1}1 - \left\{\frac{1}{4} \sqrt{1 - \frac{1}{4}} + \frac{1}{2} \sin^{-1}\left(\frac{1}{2}\right)\right\}\right]$$

$$= 2 \left[\frac{-1}{4} \sqrt{1 - \frac{1}{4}} + \frac{1}{2} \sin^{-1}\left(-\frac{1}{2}\right) - \frac{1}{2} \sin^{-1}\left(-1\right)\right]$$

$$+ 2 \left[\frac{1}{2} \left(\frac{\pi}{2}\right) - \frac{1}{4} \frac{\sqrt{3}}{2} - \frac{1}{2} \left(\frac{\pi}{6}\right)\right]$$

$$= 2 \left[\frac{-1}{4} \frac{\sqrt{3}}{2} + \frac{1}{2} \left(-\frac{\pi}{6}\right) - \frac{1}{2} \left(-\frac{\pi}{2}\right)\right] + 2 \left[\frac{\pi}{4} - \frac{1}{4} \frac{\sqrt{3}}{2} - \frac{\pi}{12}\right]$$

$$= 2\left[\frac{-\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} + \frac{\pi}{4} - \frac{\sqrt{3}}{8} - \frac{\pi}{12}\right]$$

$$= 2\left[\frac{\pi}{2} - \frac{\pi}{6} - \frac{2\sqrt{3}}{8}\right] = 2\left[\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right]$$

$$= \left[\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right] \text{ sq. units.}$$

3. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3

$$y = x^2 + 2$$
(1) is an upward parabola and

when
$$x = 0$$
, $y = 0$

when
$$x = 3$$
, $y = 3^2 + 2 = 11$

And y = x(2) is an identity function.

when
$$x = 0$$
, $y = 0$

when
$$x = 3$$
, $y = 3$

∴ the required area =
$$\int_{0}^{3} (x^{2} + 2 - x) dx$$

$$= \left[\frac{x^{3}}{3} + 2x - \frac{x^{2}}{2} \right]_{0}^{3}$$

$$= \left[\frac{3^{3}}{3} + 2(3) - \frac{(3)^{2}}{2} - 0 \right] = 9 + 6 - \frac{9}{2}$$

$$= 15 - \frac{9}{2} = \frac{30 - 9}{2} = \frac{21}{2} \text{ sq. units}$$

4. Using integration finds the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Equation of line segment AB is
$$\frac{x+1}{1+1} = \frac{y-0}{3-0} \Rightarrow \frac{x+1}{2} = \frac{y}{3} \Rightarrow y = \frac{3}{2}(x+1)$$

Equation of line segment BC is
$$\frac{x-1}{3-1} = \frac{y-3}{2-3} \Rightarrow \frac{x-1}{2} = \frac{y-3}{-1} \Rightarrow y-3 = -\frac{1}{2}(x-1)$$

$$\Rightarrow y = -\frac{1}{2}(x-1) + 3 = -\frac{1}{2}(x-1) + \frac{6}{2} = \frac{1}{2}[-x+1+6] = \frac{1}{2}(7-x)$$

Equation of line segment AC is
$$\frac{x+1}{3+1} = \frac{y-0}{2-0} \Rightarrow \frac{x+1}{4} = \frac{y}{2} \Rightarrow y = \frac{1}{2}(x+1)$$

Area of
$$\triangle ABC = \int_{-1}^{1} (y \text{ of } AB) dx + \int_{1}^{3} (y \text{ of } BC) dx + \int_{-1}^{3} (y \text{ of } AC) dx$$

$$= \int_{-1}^{1} \frac{3}{2} (x+1) dx + \int_{1}^{3} -\frac{1}{2} (7-x) dx - \int_{-1}^{3} \frac{1}{2} (x+1) dx$$

$$= \frac{3}{2} \left[\frac{x^{2}}{2} + x \right]_{-1}^{1} + \frac{1}{2} \left[7x - \frac{x^{2}}{2} \right]_{1}^{3} - \frac{1}{2} \left[\frac{x^{2}}{2} + x \right]_{-1}^{3}$$

$$= \frac{3}{2} \left[\frac{1^{2}}{2} + 1 - \left\{ \frac{(-1)^{2}}{2} + (-1) \right\} \right] + \frac{1}{2} \left[7(3) - \frac{(3)^{2}}{2} - \left\{ 7(1) - \frac{(1)^{2}}{2} \right\} \right]$$

$$- \frac{1}{2} \left[\frac{3^{2}}{2} + 3 - \left\{ \frac{(-1)^{2}}{2} + (-1) \right\} \right]$$

$$= \frac{3}{2} \left[\frac{1}{2} + 1 - \left\{ \frac{1}{2} - 1 \right\} \right] + \frac{1}{2} \left[21 - \frac{9}{2} - \left\{ 7 - \frac{1}{2} \right\} \right] - \frac{1}{2} \left[\frac{9}{2} + 3 - \left\{ \frac{1}{2} - 1 \right\} \right]$$

$$= \frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] + \frac{1}{2} \left[21 - \frac{9}{2} - 7 + \frac{1}{2} \right] - \frac{1}{2} \left[\frac{9}{2} + 3 - \frac{1}{2} + 1 \right]$$

$$= \frac{3}{2} [2] + \frac{1}{2} [14 - 4] - \frac{1}{2} [4 + 4]$$

$$= 3 + 5 - 4 = 4 \text{ sq. units.}$$

5. Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

On solving these equations, we obtain the vertices of triangle as: A(0, 1), B(4, 13), and C (4, 9).

6. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

A. 2
$$(\pi - 2)$$

B.
$$\pi - 2$$

C.
$$2\pi - 1$$

D. 2
$$(\pi + 2)$$

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as

The required area
$$= \int_0^2 \left[\sqrt{2^2 - x^2} - (2 - x) \right] dx$$

$$= \left[\frac{x}{2} \sqrt{2^2 - x^2} + \frac{2^2}{2} \sin^{-1} \left(\frac{x}{2} \right) - 2x + \frac{x^2}{2} \right]_0^2$$

$$= \left[0 + \frac{4}{2} \sin^{-1} (1) - 2(2) + \frac{(2)^2}{2} \right]$$

$$= 2 \times \frac{\pi}{2} - 4 + 2$$

$$= (\pi - 2) \text{ sq. units.}$$
 Thus, the correct ans

hsslive.in |rchciit@gmail.com 16

Thus, the correct answer is B.

7. Area lying between the curve $y^2 = 4x$ and y = 2x is

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{1}{4}$$

C.
$$\frac{1}{4}$$
 D. $\frac{3}{4}$

The area lying between the curve, $y^2 = 4x$ and y = 2x, is represented by the shaded area OBAO as

The points of intersection of these curves are O(0, 0) and A(1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

$$\therefore \text{ Required area} = \int_{0}^{1} \left(2x - 2\sqrt{x}\right) dx$$

$$= \left[2\frac{x^2}{2} - 2 \times \frac{2}{3}x^{\frac{3}{2}}\right]_0^1$$

$$= \left[1 - \frac{4}{3}\right] = \left|\frac{3 - 4}{3}\right| = \left|\frac{-1}{3}\right| = \frac{1}{3} \text{ sq. units}$$

Thus, the correct answer is B.