# XI CHEMISTRY MALAYALAM QUICK REVISION NOTES



Prepared by
Sindhya Andrews HSST St Thomas HSS Engadiyoor
JohnRaphael HSST StThomas College HSS Thrissur

# **MACHINE : IN**

#### Chapter - 1

#### കെമിസ്ട്രിയിലെ അടിസ്ഥാന നിയമങ്ങൾ

1. Law of conservation of mass (ദ്രവൃ സംരക്ഷണ നിയമം) (ലാവോസിയർ) ഒരു രാസപ്രവർത്തനത്തിലെ അഭികാരകങ്ങളുടെ മാസ്സും ഉൽപ്പന്നങ്ങളുടെ മാസും തുല്ല്യമായിരിക്കും.

#### 2. Law of defnite proportion

ഒരു രാസസംയുക്തത്തിൽ എല്ലായ്പോഴും ഒരേ മൂലകങ്ങൾ അവയുടെ മാസിന്റെ ഒരു നിശ്ചിത അനുപാതത്തിൽ അടങ്ങിയിരിക്കുന്നു.  $CO_2$  ഏത് രാസപ്രവർത്തനം വഴി നിർമ്മിച്ചാലും അതിന്റെ തൻമാത്രാവാകും എപ്പോഴും  $CO_2$  തന്നെയായിരിക്കും.

#### 3. Law of multiple proportion

രണ്ട് മൂലകങ്ങൾ കൂടിച്ചേർന്ന് രണ്ടോ അതിലധികമോ സംയുക്തങ്ങൾ ഉണ്ടാവുകയാണെങ്കിൽ, സ്ഥിരമാസുള്ള മൂലകവുമായി കൂടിച്ചേരുന്ന രണ്ടാമത്തെ മൂലകത്തിന്റെ മാസുകൾ വളരെ ലളിതമായ ഒരു അനുപാതത്തിലായിരിക്കും. eg CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>O, H<sub>3</sub>O,

#### 4. Avogadro's law അവഗാപ്രോ നിയമം

തുല്ല്യവ്യാപ്തമുള്ള എല്ലാ വാതകങ്ങളിലും ഒരേ ഊഷ്മാവിലും മർദ്ദത്തിലും അടങ്ങിയിരിക്കുന്ന തന്മാത്രകളുടെ എണ്ണം തുല്ല്യമായിരിക്കും.

#### One a.m.u - ഒരു എ.എം.യു

 $1/_{12}$  th mass of C-12 atom, കാർബൺ - 12 ആറ്റത്തിന്റെ 12-ൽ ഒരു ഭാഗത്തിന്റെ മാസ്സാണ് ഒരു എ.എം.യു.

#### One mole - ഒരു മോൾ

12g. C-12 ഐസോടോപ്പിൽ അടങ്ങിയിരിക്കുന്ന ആറ്റങ്ങളുടെ എണ്ണമാണ് ഒരു മോൾ. ഈ എണ്ണം അവഗാഡ്രോ നമ്പർ എന്നറിയപ്പെടുന്നു.  $6.022 \times 10^{23}$  ഒരു പദാർത്ഥത്തിൽ അവഗാഡ്രോ നമ്പറിന് തുല്ല്യമായ കണികകൾ ഉണ്ടെങ്കിൽ അത് ഒരു മോൾ എന്നറിയപ്പെടുന്നു.

1 mole = Avagadro Number of particles

No.of moles = Given Mass Molar Mass

#### Molecular formula - മോളിക്യുലാർ ഫോർമുല

ഒരു തന്മാത്രയിലുള്ള വിവിധ മൂലകങ്ങളുടെ ആറ്റങ്ങളുടെ യഥാർത്ഥത്തിലുള്ള എണ്ണം പ്രതിനിധീകരിക്കുന്നതാണ് മോളിക്യുലാർ ഫോർമുല eg CO<sub>2</sub>, H<sub>2</sub>O

#### Empirical Formula - എംപിരിക്കൽ ഫോർമുല

ഒരു തന്മാത്രയിലുള്ള വിവിധ മൂലകങ്ങളുടെ ആറ്റങ്ങളുടെ ലളിതമായ അനുപാതം കാണിക്കുന്നതാണ്. എംപിരിക്കൽ ഫോർമുല. eg

> Molecular formula of benzene -  $C_6H_6$ Empirical formula of benzene - CH

Molecular formula = n x Empirical formula

# Limiting Reagent - ലിമിറ്റിങ്ങ് റീഏജന്റ്

ഒരു രാസപ്രവർത്തനത്തിൽ ആദ്യം തീർന്നുപോകുന്ന അഭികാരകമാണ് (reactant) ലിമിറ്റിങ്ങ് റീ ഏജന്റ്

#### Molarity - മൊളാരിറ്റി

ഒരു ലിറ്റർ ലായനിയിലുള്ള (solution) ലീനത്തിന്റെ (solution) മോളുകളുടെ എണ്ണമാണ് മൊളാരിറ്റി

> Molarity =  $\underline{\text{No. of moles}}$ 1 litre

# <u>Molality -</u> മൊളാലിറ്റി



ഒരു കിലോഗ്രാം ലായകത്തിലുള്ള, ലീനത്തിന്റെ മോളുകളുടെ എണ്ണമാണ് മൊളാലിറ്റി

Molarity = 
$$\underline{\text{No. of moles}}$$
  
1 Kg

# Mole fraction - മോൾ ഫ്രാക്ഷൻ

Mole fraction =  $\underline{\text{No of moles of one component}}$ 

Total no.of moles

$$\chi_A = \frac{m_A}{m_A + m_B}$$
 $\chi_B = \frac{m_B}{m_A + m_B}$ 

# Chapter - 2

ആറ്റം ഘടന

പ്രോപ്പർട്ടീസ് ഓഫ് കാഥോഡ് റേസ് (J.J. തോംസൺ)

നേർരേഖയിൽ സഞ്ചരിക്കുന്നു

കാഥോഡ് രശ്മികളിൽ അടങ്ങിയിരിക്കുന്നത് മെറ്റീരിയൽ പാർട്ടിക്കിൾസ് ആണ്. (ഇലക്ട്രോൺ)

ആൽഫാ സ്കാറ്ററിംഗ് എക്സ്പീരിമെന്റ് - റൂഥർഫോർഡ്

| നിരീക്ഷണങ്ങൾ                                                                | നിഗമനങ്ങൾ                                                                                  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul><li>(1) ഭൂരിഭാഗം α പാർട്ടിക്കളും</li><li>നേർരേഖയിൽ കടന്നുപോയി</li></ul> | ആറ്റത്തിലെ ഭൂരിഭാഗം സ്ഥലവും ശൂന്യമാണ്                                                      |
| (2) വളരെ വളരെ കുറച്ച് α പാർട്ടിക്കൾ<br>ഡിഫ്ളക്റ്റ് ചെയ്ത് തിരിച്ചു വന്നു    | ആറ്റത്തിന്റെ നടുഭാഗത്തുള്ള പോസിറ്റീവ്<br>പോസിറ്റീവ് ചാർജുള്ള ന്യൂക്ലിയസ്<br>വളരെ ചെറുതാണ്. |

#### ആറ്റം മോഡൽ – റൂഥർഫോർഡ് – സൗരയൂഥ മാതൃക 3.

- (1) ന്യൂക്ലിയസിനു ചുറ്റും ഇലക്ട്രോണുകൾ കറങ്ങിക്കൊണ്ടിരിക്കുന്നു.
- (2) ന്യൂക്ലിയസും ഇലക്ട്രോണുകളും തമ്മിൽ ഒരു ഇലക്ട്രോസ്റ്റാറ്റിക് ഫോർസ് ഓഫ് അട്രാക്ഷനുണ്ട്.

# ആറ്റം മോഡൽ – റൂഥർഫോർഡ് പോരായ്മകൾ

- (1) ആറ്റത്തിന്റെ സ്ഥിരത വിശദീകരിച്ചില്ല
- (2) ഹൈഡ്രജൻ സ്പെക്ട്രം വിശദീകരിച്ചില്ല.

#### 5. ഫോട്ടോ ഇലക്ട്രിക് ഇഫക്ട്

ഒരു നിശ്ചിത ഫ്രീക്വൻസിയുള്ള പ്രകാശം വന്നു പതിക്കുമ്പോൾ ലോഹത്തിന്റെ ഉപരിതലത്തിൽ നിന്നും ഇലക്ട്രോണുകൾ പുറത്തു വരുന്നു. ഇതിനു വേണ്ട ഫ്രീക്വൻസിയാണ് **ത്രെഷോൾഡ്** ഫ്രീക്വൻസി.

പുറത്തുവരുന്ന ഇലക്ട്രോണിന്റെ എനർജി lpha ഫ്രീക്വൻസി പുറത്തുവരുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണം α ഇന്റൻസിറ്റി.

#### ഹൈഡ്രജൻ സ്പെക്ട്രം 6.

- ലൈമാൻ സിരീസ് (UV)
- 2. ബാൾമർ സിരീസ് വിസിബിൾ റീജിയൻ
- 3. പാസ്ക്കൻ സിരീസ് (IR)
- 4. ബ്രാക്കറ്റ് സിരീസ് (IR)
- 5. ഫണ്ട് സിരീസ് (IR)

# 7. ബോർ ആറ്റം മാതൃക

- (1) ഇലക്ട്രോണുകൾ ന്യൂക്ലിയസിനു ചുറ്റും വൃത്താകൃതിയിലുള്ള പാതയിൽ കൂടി (ഓർബിറ്റ്) കറങ്ങുന്നു.
- (2) കറങ്ങുന്ന ഇലക്ട്രോണുകളുടെ എനർജി സ്ഥിരമായിരിക്കും.

#### 8. ഗുണങ്ങൾ

- (1) ആറ്റത്തിന്റെ സ്ഥിരത വിശദീകരിച്ചു.
- (2) H<sub>2</sub> സ്പെക്ട്രം വിശദീകരിച്ചു.

#### 9. ദോഷങ്ങൾ - പോരായ്മകൾ

- (1) ഡീ ബ്രോഗ്ളീ കൺസെപ്റ്റ് വിശദീകരിച്ചില്ല
- (2) ഹെയ്സൻബർഗ് തത്വം വിശദീകരിച്ചില്ല.
- 10. ഡീ ബ്രോഗ്ളീ തത്വം ദൈത സ്വഭാവം

എല്ലാ ചെറിയ കണങ്ങൾക്കും കണികാസ്വഭാവവും തരംഗസ്വഭാവവും ഉണ്ടായിരിക്കും.

$$\lambda = \underline{h}_{mv}$$

#### 11. ഹെയ്സൻബെർഗ് സിദ്ധാന്തം

ഇലക്ട്രോണിനെപോലെയുള്ള ചെറിയ കണികയുടെ സ്ഥാനവും മൊമന്റവും ഒരേ സമയം കണ്ടുപിടിക്കാൻ സാധിക്കില്ല.

$$\Delta \alpha \ \Delta P = \underline{h}$$

#### 12. ക്വാണ്ടം നമ്പേഴ്സ്

- (1) പ്രിൻസിപ്പാൾ കാണ്ടം നമ്പർ (n) = എനർജി ഇലക്ട്രോൺ
- (2) അസിമുത്തൻ കാണ്ടാ നമ്പർ (l) = ആകൃതി Shape orbital o-s, I-P, 2-d, 3-f
- (3) മാഗ്നറ്റിക് കാണ്ടം നമ്പർ (m) = No.of orbitals ഓർബിറ്റലുകളുടെ എണ്ണം
- (4) സ്പിൻ കാണ്ടം നമ്പർ (s) = സ്പിൻ ഇലക്ട്രോൺ

$$+1/2$$
 or  $1/2$ 

ഇലക്ട്രോൺ ഫില്ലിംഗിനുള്ള നിയമങ്ങൾ

# 13. പോളിയുടെ എക്സ്ക്ലൂഷൻ തത്വം

നാല് കാണ്ടം നമ്പറുകളും ഒരേ പോലെയായ രണ്ട് ഇലക്ട്രോണുകൾ ഒരു ആറ്റത്തിൽ ഉണ്ടാവില്ല. Or ഒരു ഓർബിറ്റലിൽ നിറക്കാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം രണ്ടാണ്.

# 14. ഹണ്ടിന്റെ തത്വം



#### 15. ഓഫ്ബോ തത്വം

എനർജി കൂടി വരുന്ന ക്രമത്തിലാണ് ഓർബിറ്റലുകളിൽ ഇലക്ട്രോണുകൾ നിറക്കേണ്ടത്.

# 16. കോപ്പർ (29), ക്രോമിയം (24)

മേൽപ്പറഞ്ഞ രണ്ട് ആറ്റങ്ങളിലും സ്ഥിരതക്കുവേണ്ടി ഇലക്ട്രോണിക് കോൺഫിഗറേഷൻ മാറ്റിയിരിക്കുന്നു.

**HSSLIVE.IN** 

ക്രോമിയം Cr - 3d<sup>5</sup> 4S<sup>1</sup>

- d orbital

(24)

പകുതി നിറയുമ്പോൾ ആറ്റത്തിന് സ്ഥിരത വരുന്നു.

(half filled.)

കോപ്പർ Ču - 3d10 - 4S1 -

d orbital മുഴുവൻ നിറയുമ്പോൾ ആറ്റത്തിന് സ്ഥിരത വരുന്നു (fully filled)

ഇലക്ട്രോൺ - J.J.Thomson

പ്രോട്ടോൺ - ഗോൾഡ്സ്റ്റീൻ

ന്യൂട്രോൺ - ചാഡ്വിക്

ന്യൂക്ലിയസ് – റൂഥർ ഫോർഡ്

ഇലക്ട്രോൺ ചാർജ് - മില്ലിക്കൺ - ഓയിൽ ഡ്രോപ് എക്സ്പീരിമെന്റ്

### Chapter - 3

#### പീരിയോഡിക് ടേബിൾ

മെൻഡലിയേഫ് പീരിയോഡിക് നിയമം

മൂലകങ്ങളുടെ ഭൗതികഗുണങ്ങളും രാസഗുണങ്ങളും അവയുടെ അറ്റോമികമാസുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.

2. മോഡേൺ പീരിയോഡിക് നിയമം

മൂലകങ്ങളുടെ ഭൗതികഗുണങ്ങളും രാസഗുണങ്ങളും അവയുടെ അറ്റോമിക നമ്പറുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.

- അവസാനത്തെ ഇലക്ട്രോൺ പ്രവേശിക്കുന്ന ഓർബിറ്റലുകളനുസരിച്ച് മൂലകങ്ങളെ s,p,d,f എന്നിങ്ങനെ 4 block ആയി തിരിച്ചിരിക്കുന്നു.
- 4. അറ്റോമിക റേഡിയസ് :- പീരിയോഡിക് ടേബിളിൽ താഴോട്ടു വരുമ്പോൾ കൂടുന്നു. കാരണം ഷെല്ലുകളുടെ എണ്ണം കൂടുന്നു. ഇടതു നിന്ന് വലത്തോട്ട് പോകുമ്പോൾ കുറയുന്നു. കാരണം ഇലക്ട്രോൺ ഒരേ ഷെല്ലിൽ (ഓർബിറ്റിൽ) തന്നെ നിറയുന്നു.
- 5. അയോണിക റേഡിയസ് :- കാറ്റയോണിന്റെ റേഡിയസ് കുറവും ആനയോണിന്റെ റേഡിയസ് കൂടുതലും ആയിരിക്കും. കാറ്റയോണിന് ഇഫക്റ്റീവ് ന്യൂക്ലിയർ ചാർജ് കൂടുതലും ആനയോണിന് അത് കുറവുമായിരിക്കും
- 6. അയോണൈസേഷൻ എനർജി Ionisation energy completely filled ഉം Half filled ഉം ആയ ആറ്റങ്ങൾക്ക് Ionisation energy വളരെ കൂടുതൽ ആയിരിക്കും.
- ഇലക്ട്രോൺ ഗെയിൽ എൻതാൽപി-

ഹാലോജന്റുകൾക്കാണ് ഏറ്റവും കൂടുതൽ. അതിൽ തന്നെ ക്ലോറിനാണ് ഏറ്റവും അധികം. ഫ്ളൂറിന് കുറഞ്ഞ് പോകാൻ കാരണം അതിന്റെ ചെറിയ size ആണ്.

- ഇലക്ട്രോനെഗറ്റിവിറ്റി ഫ്ളൂറിനാണ് ഏറ്റവും കൂടുതൽ
- 9. ഗ്രൂപ്പിലെ ആദ്യത്തെ മൂലകം ചില പ്രത്യേക സ്വഭാവം കാണിക്കുന്നു. eg. Li, Be, B,C, N,O,Fetc അതാണ് അനോമലസ് ബിഹേവിയർ, അതിനു കാരണം
  - 1. Small Size
  - High electronegativity
  - Absense of d orbitals
- 10. ഡയഗണൽ റിലേഷൻഷിപ്പ് ഗ്രൂപ്പിലെ ആദ്യത്തെ മൂലകം അടുത്ത ഗ്രൂപ്പിൽ ഡയഗണലായി വരുന്ന മൂലകത്തിന്റെ രാസ



സ്വഭാവത്തിനോട് സമാനത കാണിക്കുന്നു. ഉദാ: (Li, Mg.), (Be, Al) (B,Si)

#### Chapter - 4

#### രാസബന്ധനം

- 1. അയോണിക ബന്ധനം Nacl
- Covalent bonding O<sub>2</sub>, N<sub>2</sub>, Cl<sub>2</sub> etc double Triple Single bond bond bond
- 3. VSEPR Theory
  - 1. ഒരു മോളിക്യൂളിന്റെ ആകൃതി central atom ൽ ഉള്ള ഇലക്ട്രോൺ പെയറിനെ ആശ്രയിച്ചിരിക്കുന്നു.
  - 2. LP LP repulsion > P-BP repulm > BP BP
- 4. BF3 trigonal planner

PCl<sub>5</sub> - trigonal bipysamidal

വരക്കാൻ പഠിക്കണം

NH3 - Pyramidal H2O - bent shape

- Dipole moment H2O Dipole moment ഉണ്ട് bent shape ആയതിനാൽ പക്ഷെ CO2 ന് Dipole moment ഇല്ല zero ആണ്. കാരണം CO2 linear shape ആണ്.
- 6. ഹൈബ്രിഡൈസേഷൻ SP,  $SP^2$ ,  $SP^3$ ,  $SP^3$ d,  $SP^3$ d

 $P4_5$  -  $SP^3d$  - trigonal bipyramidal shape

CH<sub>4</sub> - SP<sup>3</sup> - tetrahedron

 $BF_3 - SP^2$  - trigonal planar

Acetylene CH ≅ CH - SP - linear

- σ bond strong, Π bond weak nuclear axis, lateral overlapping overlapping
- 8. M.O.theory, O2 molecule paramagnetic

Bond order = 2

N<sub>2</sub> molecule - Diamagnetic

Bond order = 3

M.O. theory അനുസരിച്ച് Bond Order Zero ആയാൽ അങ്ങനെ ഒരു molecule ഉണ്ടാവില്ല. eg. Ne<sub>2</sub> - molecule ഇല്ല.

H - bonding - രണ്ട് തരം ഉണ്ട്.

Molecules തമ്മിൽ തമ്മിൽ ഉള്ളത്. eg, H2O, NH3 etc അതാണ് intermolecular H bonding. ഒരു molecule ന്റെ ഉള്ളിൽത്തന്നെ വരുന്നത്. intramolecular H bonding - eg. O-nitrophenol

10. Resonance

ഒരു molecule ന്റെ പ്രവർത്തനങ്ങൾ ഒരു ഘടന വച്ച് വിശദീകരിക്കാൻ കഴിയാതെ വരുമ്പോൾ ഒന്നിൽ കൂടുതൽ ഘടന ഉപയോഗിക്കുന്നു. അതാണ് Resonance. eg. Benzene  $C_6H_6$  ozone  $O_3$  Resonance കാരണം molecule ന് സ്ഥിരത ലഭിക്കുന്നു.



# Chapter - 5





#### ബോയിൽ നിയമം

വാതകത്തിന്റെ മർദ്ദവും (P) വ്യാപ്തവും (V) തമ്മിൽ വിപരീത അനുപാതത്തിലായിരിക്കും.

$$P \alpha \underline{1}$$
 or  $PV = Constant$ 

#### 2. ചാൾസ് നിയമം

ഒരു വാതകത്തിന്റെ വ്യാപ്തവും (V) ഊഷ്മാവും (T) തമ്മിൽ നേർ അനുപാതത്തിൽ

$$V \alpha T \qquad \underline{V} = \text{constant}$$

അബ്സൊലൂട്ട് സീറോ – വാതകങ്ങളുടെ വ്യാപ്തം പൂജ്യമായിരിക്കുന്ന അവസ്ഥയിലെ ഊഷ്മാവാണ് അബ്സൊലൂട്ട് സീറോ.  $-273^{\circ}$ C ഇതനുസരിച്ചുള്ള ഊഷ്മാവിന്റെ Scale ആണ് – കെൽവിൻ scale or അബ്സൊലൂട്ട് Scale.

#### ഗേ ലൂസാക്സ് നിയമം

ഒരു വാതകത്തിന്റെ മർദ്ദം അതിന്റെ ഊഷ്മാവുമായി നേർ അനുപാതത്തിലായിരിക്കും.

$$P \alpha T \frac{P}{T} = constant$$

#### 4. അവഗാഡ്രോ നിയമം

തുല്ല്യവ്യാപ്തമുള്ള വാതകങ്ങളുടെ തന്മാത്രകളുടെ എണ്ണവും തുല്ല്യമായിരിക്കും.

# 5. ആദർശവാതകസമവാക്യം - Ideal gas equation

ബോയിൽ നിയമവും ചാൾസ് നിയമവും അവഗാഡ്രോ നിയമവും ഒരുമിച്ച് ചേർത്താൽ Ideal gas equation കിട്ടും.

$$P \alpha \underline{I} \qquad \therefore PV \alpha nT$$

$$V \alpha T \qquad PV = nRT$$

$$V \alpha n$$

- 6. Real gases, ideal gas ആയി മാറുന്ന സമയം
  - (1) low pressure
  - (2) High temperature

#### 7. Compressibility Factor (Z)

Ideal gas ന് Z=1 ആയിരിക്കും.

#### 8. ബോയിൽ temperature

Real gases ideal gas equation അനുസരിക്കുന്ന temperature ആണ് Boyle temperature. അനുസരിക്കുന്ന temperature ആണ് Boyle temperature.

#### 9. <u>Cause of deviation</u> - വ്യതിയാനത്തിനു കാരണം

Kinetic theory ൽ ഉള്ള ചില നിയമങ്ങൾ തെറ്റാണ്.

(1) വാതകത്തിൽ മോളിക്യൂൾസ് തമ്മിൽ ഒരു Force of attraction നും ഉണ്ടായിരിക്കില്ല.

10. Van der Waal's equation 
$$(P + \frac{n^2 \alpha}{v \alpha})(V - mb) = mRT$$

a,b are Van der Waal's constant



# 11. Boiling Point (തിളനില)

പർവ്വതത്തിന് മുകളിൽ തിളനില കൂടുതലായിരിക്കും. കാരണം മർദ്ദം കൂടുതലാണ്. സമുദ്ര നിരപ്പിൽ തിളനില കുറവായിരിക്കും. കാരണം മർദ്ദം കുറവായിരിക്കും.

- 12. വെള്ളതുള്ളികൾ ഗോളാകൃതി പ്രാപിക്കുന്നത് Surface Tension കാരണം മൂലമാണ്
- 13. തേൻ, ഗ്ലിസറിൻ തുടങ്ങിയവ പതുക്കെ ഒഴുകുന്നത് viscosity കൂടിയ കാരണമാണ്. വെള്ളം, മണ്ണെണ്ണ എന്നിവ വേഗത്തിൽ ഒഴുകുന്നത് <u>viscosity</u> കുറവായതിനാലാണ്.

#### Chapter - 6

#### **Thermodynamics**

 Open System, Closed System, Isolated System Energy, matter എന്നിവ exchange ചെയ്താൽ

#### **Open System**

Energy മാത്രം exchange ചെയ്താൽ <u>closed system</u>. Energy, Matter രണ്ടും exchange ചെയ്താൽ <u>Iso</u>lated System.

#### 2. Extensive or Intensive Properties

System ൽ ഉള്ള വസ്തുവിന്റെ അളവിനെ depend ചെയ്യുന്ന property ആണ് extensive properly, eg. Mass, Volume

System ൽ ഉള്ള വസ്തുവിന്റെ അളവിനെ depend ചെയ്യാത്ത Property ആണ് intensive property. eg. Surface tension, refractive index

#### 3. First law of Thermodynamics

എനർജി നിർമ്മിക്കാനോ നശിപ്പിക്കാനോ സാധിക്കില്ല. അത് എപ്പോഴും സ്ഥിരമായിരിക്കും.

$$\Delta U = q + w$$

4.  $\Delta H = \Delta U + \Delta nRT$ 

$$q_p = q_v + \Delta nRT$$

$$\Delta H = q_D$$

$$\Delta U = q_v$$

5. ഹെസ്സസ്സ് നിയമം

ഒരു രാസപ്രവർത്തനം ഒറ്റ step ൽ നടന്നാലും പല step ൽ നടന്ന് പൂർത്തിയായാലും എൻതാൽപി change സ്ഥിരമായിരിക്കും.

eg. NaCl ന്റെ Lattice Enthalpy - Born Haber Cýcle വഴി കണ്ടുപിടിക്കാൻ പറ്റും.

#### 6. Second law of Thermodynamics

Universe ന്റെ entropy എല്ലായ്പ്പോഴും കൂടുതലായിരിക്കും.

#### Gibb's Helmholtz equation

$$\Delta G = \Delta H - T \Delta S$$

 $\Delta H = enthalpy change$ 

 $\Delta G$  = Free energy change

 $\Delta S = Entropy change$ 

T = Temperature

8 ഒരു chemical reaction feasible അല്ലെങ്കിൽ spontanemous ആകണമെങ്കിൽ  $\Delta G$  എപ്പോഴും നെഗറ്റീവ് ആയിരിക്കണം.

$$\Delta G = -ve$$

# 2

# **MACHINE : IN**

# **Chemical Equilibrium**

Chapter - 7

(1) 
$$N2 + 3H_2$$
  $2NH_3$ 

$$K_{c} = [NH_{3}]^{2}$$
 $K_{p} = \frac{P^{2}_{NH_{3}}}{[N_{2}][H_{2}]^{3}}$ 
 $K_{p} = K_{c} (RT)^{\Delta n}$ 

# (2) ലേ ഷാറ്റ്ലിയർ തത്വം

Equilibrium ഉള്ള ഒരു system ന്റെ Pressure, temperature and concentration എന്നിവ change ചെയ്താൽ System പഴയ അവസ്ഥയിലേക്ക് തിരിച്ച് പോകും.

# (3) ബ്രോൺസ്റ്റഡ് ലൗറി സിദ്ധാന്തം

ആസിഡുകൾ പ്രോട്ടോണുകൾ വിട്ട് കൊടുക്കുന്നു. ബേസുകൾ പ്രോട്ടോണുകൾ സ്വീകരിക്കുന്നു.

ആസിഡ് - Hcl

ബേസ് - U

# (4) ലൂയിസ് സിദ്ധാന്തം

ആസിഡുകൾ ഇലക്ട്രോൺ സ്വീകരിക്കുന്നു. ബേസുകൾ ഇലക്ട്രോൺ വിട്ടുകൊടുക്കുന്നു.

ആസിഡ് –  $BF_3$  ബേസ് –  $NH_3$  (5)  $P^H = -\log[H_3O^+]$ 

# (6) Common Ion effect

Weak electrolytes ന്റെ dissociation ഒന്നു കൂടി weak ആക്കുന്നതിന് ഒരു Strong electrolyte ന്റെ Common ion add ചെയ്യുന്നതാണ് Common ion effect

eg, CH<sub>3</sub> - COOH NH4OH
CH<sub>3</sub> - COONa NH4Cl

# Solubility Product (Ksp)

വെള്ളത്തിൽ ലയിക്കാത്ത Salt ആണ് BaSO4 AgCl എന്നിവ. പൂരിതലായനിയിൽ അവയുടെ അയോണുകളുടെ കോൺസൺട്രേഷനുകളുടെ ഗുണനഫലമാണ് Solubility Product.

 $K_{sp} = [Ag^+] [Cl]$ 

# <u>Chapter - 8</u> Readox Reaction

#### 1. ഓക്സിഡേഷൻ

ഓക്സിഡേഷൻ നമ്പർ കൂടുന്ന പ്രവർത്തനം

#### 2. റിഡക്ഷൻ

ഓക്സിഡേഷൻ നമ്പർ കുറയുന്ന പ്രവർത്തനം

ഹൈഡ്രജന്റെ ഓക്സിഡേഷൻ നമ്പർ = 1
 ഓക്സിജന്റെ ഓക്സിഡേഷൻ നമ്പർ = -2

- സ്റ്റോക്ക് നൊട്ടേഷൻ ഓക്സിഡേഷൻ നമ്പർ റോമൻ അക്കത്തിൽ ബ്രാക്കറ്റിൽ എഴുതണം  $M_n$  (IV) $O_2$  $M_nO_2$
- ഓക്സിഡെസിങ്ങ് ഏജന്റിന് റിഡക്ഷൻ സംഭവിക്കുന്നു. റിഡ്യൂസിങ്ങ് ഏജന്റിന് ഓക്സിഡേഷൻ സംഭവിക്കുന്നു. 🧸 HSSLIVE.IN
- 6. ഡിസ്പ്രൊപോർഷനേഷൻ റിയാക്ഷൻ

ഒരു രാസപ്രവർത്തനത്തിൽ ഒരു ആറ്റത്തിനു തന്നെ ഓക്സിഷേനും റിഡക്ഷനും നടക്കുകയാണെങ്കിൽ അതിനു പറയുന്ന പേരാണ് ഡിസ്പ്രോപോർഷനേഷൻ റിയാക്ഷൻ.  $2H_2O_2 \rightarrow 2H_2O + O_2$ 

7. ഇലക്ട്രോ കെമിക്കൽ സെൽ – ഡാനിയേൽ സെൽ

റിഡോക്സ് റിയാക്ഷൻ നടക്കുന്ന ഒരു പ്രധാന സെല്ലാണിത്. ഇവിടെ സിങ്ക് മെറ്റലിന് ഓക്സിഡേഷനും കോപ്പറിന് റിഡക്ഷനും സംഭവിക്കുന്നു.

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
  
 $Cu^{2} + 2e^{-} \rightarrow Cu$ 

#### Chapter - 9

#### ഹൈഡ്രജൻ

- ആൽക്കലി ലോഹങ്ങളുമായും ഹാലോജനുകളുമായി സാമൃത കാണിക്കുന്നതിനാൽ ഹൈഡ്രജനെ പീരിയോഡിക് ടേബിളിൽ ഒരു പ്രത്യേക സ്ഥാനത്ത് വച്ചിരിക്കുന്നു.
- കാർബൺ മോണോക്സൈഡും ജലവും തമ്മിൽ പ്രവർത്തിച്ച് ഹൈഡ്രജൻ ഉണ്ടാകുന്ന പ്രവർത്തനമാണ് കോൾ ഗ്യാസിഫികേഷൻ
- സസ്യ എണ്ണകളിൽ ഹൈഡ്രജൻ ചേർത്ത് അവയെ വനസ്പതി, ഡാൽഡ എന്നിവയാക്കി മാറ്റുന്ന പ്രവർത്തനമാണ് ഹൈഡ്രോജിനേഷൻ
- ഹൈഡ്രജന്റെ ഉപയോഗം (uses)
  - (1) അമോണിയ നിർമ്മാണത്തിന് ഉപയോഗിക്കുന്നു.
  - (2) ലികിഡ് ഹൈഡ്രജൻ റോക്കറ്റിൽ ഇന്ധനമായി ഉപയോഗിക്കുന്നു.
- ഹൈഡ്രെഡ്സ് (Hydridas)
  - (1) Ionic or saline hydrides ആൽക്കലി മെറ്റലും ഹൈഡ്രജനും തമ്മിൽ ചേർന്നുണ്ടാകുന്നത് eg. LiH
  - (2) Covalent Hydrides P block elements ഉം ഹൈഡ്രജനും തമ്മിൽ ചേർന്നുണ്ടാകുന്നത്  $eg : HCl, CH_4, NH_3$
  - (3) Interstitial Hydrides d block elements ഉം ഹൈഡ്രജനും തമ്മിൽ ചേർന്നുണ്ടാകുന്നത് eg. ZrH<sub>1.3</sub>
- ഗ്രൂപ്പ് 7,8,9 മൂലകങ്ങൾ ഹൈഡ്രജനുമായി പ്രവർത്തിക്കുന്നില്ല. അതിനാൽ പീരിയോഡിക് ടേബിളിൽ ഈ സ്ഥലത്തിന് Hydride gap എന്നു പറയുന്നു.
- 7. ജലം രണ്ടു തരത്തിലുണ്ട് - കഠിനജലം, മൃദുജലം. കാഠിന്യം രണ്ടു തരത്തിലുണ്ട്
  - (1) താൽക്കാലിക കാഠിന്യം ഇത് ചൂടാക്കിയാൽ മാറും. കാൽസ്യത്തിന്റെയും മഗ്നീഷ്യത്തിന്റെയും ബൈകാർബണേറ്റുകളാണ് ഇതിനു കാരണം

(2) സ്ഥിരകാഠിനും

ഇത് തിളപ്പിച്ചാൽ മാറില്ല. കാത്സ്യത്തിന്റെയും മഗ്നീഷ്യത്തിന്റെയും ക്ലോറൈഡും സൾഫേറ്റ് ഇതിനുകാരണം

🎎 HSSLIVE.IN

# താൽക്കാലിക കാഠിന്യം മാറ്റുന്നതിനുള്ള വഴികൾ

- 1. തിളപ്പിക്കുക
- 2. Clark's Process (lime add ചെയ്യുന്നു)

# 9. സ്ഥിരകാഠിന്യം മാറ്റുന്നതിനുള്ള വഴികൾ

- 1. Washing Soda ഉപയോഗിക്കുന്നു
- 2. Calgon's Process സോഡിയം പെക്സാമെറ്റാഫോസ്ഫേറ്റ്
- 3. Ion exchange Method
- 4. Synthetic resin Method

# 10. ഹൈഡ്രജൻ പെറോക്സൈഡ് $H_2O_2$

ഘടന - തുറന്നുവച്ച പുസ്തകം പോലെയാണ്

സൂക്ഷിക്കുന്നത് - മെഴുക് കൊണ്ട് പൊതിഞ്ഞ ഗ്ലാസ് കുപ്പിയിൽ അല്ലെങ്കിൽ പ്ലാസ്റ്റിക് ബോട്ടിലിൽ സൂക്ഷിക്കുന്നു. കാരണം അത് വളരെ പെട്ടെന്ന് സൂര്യപ്രകാശവുമായി പ്രവർത്തിച്ച് വിഘടിക്കുന്നു.

ഉപയോഗം - ഇതിന്റെ ഓക്സിഡേഷൻ പ്രവർത്തനം കാരണം bleaching agent ആയി ഉപയോഗിക്കുന്നു.

# 11. <u>ഘനജലം</u> <u>D2O</u>

ന്യൂക്ലിയർ റിയാക്റ്ററുകളിൽ മോഡറേറ്റർ ആയി ഉപയോഗിക്കുന്നു.

# 12. ഹൈഡ്രജൻ എക്കണോമി

ഭാവിയിൽ ഹൈഡ്രജൻ ഒരു ഇന്ധനമായി ഉപയോഗിക്കാനുള്ള സാധ്യത വളരെ കൂടുതലാണ്. പക്ഷെ അത് സൂക്ഷിക്കാനുള്ള ബുദ്ധിമുട്ടുകൊണ്ടാണ് ഇന്ധനമായി ഉപയോ ഗിക്കാൻ പറ്റാത്തത്. കാരണം ഹൈഡ്രജൻ പെട്ടെന്ന് കത്തുന്ന ഒരു ഇന്ധനമാണ്.

13. സിൻ ഗ്യാസ് - Syn gas - CO+H<sub>2</sub>

# <u>Chapter - 10</u> S - block elements



- ഗ്രൂപ്പിലെ ആദ്യത്തെ മൂലകം മറ്റുള്ളവയിൽ നിന്നും വ്യത്യസ്തമായ ചില സ്വഭാവം കാണിക്കുന്നു. അതാണ് അനോമലസ് ബിഹേവിയർ അതിനു കാരണം.
  - Small size
  - 2. Absence of d orbitals
- 2. S-block elements 1st group ഉം II<sup>nd</sup> group ഉം ഇതിൽപെടുന്നു. ഈ മൂലകങ്ങൾക്ക് ക്രിയാശീലത reactivity വളരെ കൂടുതലാണ്. അതിനാൽ സ്വതന്ത്രമായി കാണപ്പെടുന്നില്ല. സോഡിയം മണ്ണെണ്ണയിൽ സൂക്ഷിക്കുന്നത് അതുകൊണ്ടാണ്.
- 3. S-block elements liquid അമോണിയയുമായി പ്രവർത്തിക്കുമ്പോൾ നീല നിറം ഉണ്ടാകുന്നു. ഇതിനു കാരണം അമോണിയേറ്റഡ് ഇലക്ട്രോൺസ് ആണ്.
- 4. ലിഥിയവും (1) മഗ്നീഷ്യവും (II) ഒരേ സ്വഭാവം കാണിക്കുന്നു. ഇതാണ് ഡയഗണൽ റിലേഷൻഷിപ്പ്

- സോഡിയവും പൊട്ടാസ്യവും നാഡികളുടെ പ്രവർത്തനത്തിന് വളരെ അത്യാവശ്യമാണ്.
- 6. സോഡിയത്തിന്റെ പ്രധാന സംയുക്തങ്ങൾ
  - (1) സോഡിയം കാർബണേറ്റ് സോഡാ ആഷ് Na<sub>2</sub>CO<sub>3</sub> ഇത് നിർമ്മിക്കുന്ന പ്രവർത്തനമാണ് സോൾവേ പ്രൊസസ്സ്. ഈ പ്രൊസസ്സിൽ അമോണിയ ലായനിയും  $\mathrm{CO}_2$  ഉം തമ്മിൽ പ്രവർത്തിക്കുന്നു. പൊട്ടാസ്യം കാർബണേറ്റ് ( $K_2CO_3$ ) Solvay Process വഴി നിർമ്മിക്കാൻ സാധ്യമല്ല. കാരണം പൊട്ടാസ്യം ബൈ കാർബണേറ്റ് ജ്ലത്തിൽ നന്നായി ലയിക്കുന്നു.
- (2) സോഡിയം ഹൈഡ്രജൻ കാർബണേറ്റ് ബേക്കിംഗ് സോഡ <u>NaHCO</u>3

ഇത് കേക്കുകളുടെയും മറ്റും നിർമ്മാണത്തിന് ഉപയോഗിക്കുന്നു. ഒരു antiseptic ലോഷനായും ഉപയോഗിക്കുന്നു. 🎎 HSSLIVE.IN

- കാൽസൃത്തിന്റെ പ്രധാന സംയൂക്തങ്ങൾ
  - (1) പ്ലാസ്റ്റർ ഓഫ് പാരീസ്  $CaSO_4$   $^{1}/_{2}$   $H_{2}O$

ജിപ്സം ചൂടാക്കിയാണ് ഇത് നിർമ്മിക്കുന്നത്. ഒടിഞ്ഞ എല്ലുകൾ നേരെയാക്കാൻ പ്ലാസ്റ്റർ ഇടാൻ ഉപയോഗിക്കുന്നു.

- (2) സിമന്റ് കാത്സ്യം അലുമിനിയം സിലിക്കേറ്റാണ് സിമന്റ്. സിമന്റ് നിർമ്മാണത്തിൽ Setting time control ചെയ്യാൻ ജിപ്സം ചേർക്കുന്നു.
- കാൽസ്യ എല്ലുകൾക്കും പല്ലുകൾക്കും അത്യാവശ്യമാണ്. സസ്യങ്ങൾ ഫോട്ടോസിന്തസിസിന് ഉപയോഗപ്പെടുത്തുന്ന ക്ലോറോഫില്ലിലെ പ്രധാന മൂലകം മഗ്നീഷ്യം ആണ്.
- IInd ഗ്രൂപ്പിലെ ബെറിലിയവും 13th ഗ്രൂപ്പിലെ അലുമിനിയവും ചില രാസപ്രവർത്തനങ്ങളിൽ സമാനത കാണിക്കുന്നു. ഇതിനെയും നാം diagonal relationship എന്ന് വിളിക്കുന്നു.
- 10. 1st ഗ്രൂപ്പിൽ ലിഥിയവും IInd ഗ്രൂപ്പിൽ ബെറിലിയവും അനോമലസ് ബിഹേമിയർ കാണിക്കുന്നു.

# Chapter - 11

#### P-block elements

- 1. ഗ്രൂപ്പ് 13, ഗ്രൂപ്പ് 14 എന്നിവയാണ് P - block ൽ ഈ അധ്യായത്തിലുള്ളത്
- 2. ഗ്രൂപ്പ് 13 ൽ ബോറോൺ അനോമലസ് ബിഹേവിയർ കാണിക്കുന്നു.
- ബോറോണിന്റെ പ്രധാന സംയൂക്തങ്ങൾ
  - (1) ബോറോക്സ്  $m N_{a2}\,B_4O_4\,10\,H_2O$  ഇത് ബോറാക്സ് ബീഡ് ടെസ്റ്റുവഴി കളറുള്ള അയോൺസ്  $(Fe^{2+}, Co^{2+})$  തിരിച്ചറിയാനായി ഉപയോഗിക്കുന്നു.
  - (2) ഓർതോ ബോറിക് ആസിഡ്  $H_3BO_3$  ഇതിന് trigonal planar ഘടന ആണ്.



ഇത് ചൂടാക്കുമ്പോൾ മെറ്റാ ബോറിക് ആസിഡ് ലഭിക്കുന്നു.

- ഡെബൊറൈൻ ( $B_2$   $H_6$ ) Diborane ഇതിൽ ബോറോണിന്  $SP^3$  hybridisation ആണ്. രണ്ട് bridge B----H bonds ഉം നാല് terminal B---H bond ഉം ഉണ്ട്. ഇത് ഒരു ഇലക്ട്രോൺ ഡെഫിഷ്യന്റ് Compound ആണ്. അതായത് ലൂയീസ് ആസിഡാണ്.
  - \* Diborane അമോണിയയുമായി (NH3) പ്രവർത്തിക്കുമ്പോൾ ബൊറാസീൻ എന്ന compound ലഭിക്കുന്നു. ഇതിന് ബെൻസീന്റെ ( $\mathrm{C_6H_6}$ ) ഘടനയുമായി സാമ്യമുള്ളതിനാൽ ഇതിനെ ഇൻഓർഗാനിക് ബെൻസിൻ എന്നു പറയുന്നു.

- 4. 14-ാം ഗ്രൂപ്പിലെ ആദ്യത്തെ മൂലകമായ കാർബണ് ഒരുപാട് പ്രത്യേകതകളുണ്ട്.
  - \* കാർബൺ ആറ്റങ്ങൾ തമ്മിൽ തമ്മിൽ ബന്ധിപ്പിച്ച് ഒരുപാട് സംയുക്തങ്ങൾ ഉണ്ടാക്കുന്നു
  - കാറ്റിനേഷൻ
  - \* കാർബൺ  $P\pi-P\pi$  multiple bond കൾ ഉണ്ടാക്കുന്നു.



- 5. കാർബണിന്റെ രൂപാന്തരങ്ങൾ (Allotrops)
  - (1) ഡയമണ്ട് കാർബൺ  $\mathrm{SP}^3$  hybridisation കാഠിന്യമുള്ളതും തിളക്കമുള്ളതുമായ ഒരു വസ്തു
  - (2) ഗ്രാഫൈറ്റ് കാർബൺ SP<sup>2</sup> hybridisation മൃദുവായതും കറുത്ത നിറമുള്ളതുമായ ഒരു വസ്തു. ഏറ്റവും Stable ആയ കാർബണിന്റെ രൂപം
  - (3) ഫുള്ളറീൻ കാർബൺ SP<sup>2</sup> hybridisation കൂടുപോലെ ഘടനയുള്ള കാർബണിന്റെ രൂപാന്തരം
- 6. Dry ice Solid CO2
- കാർബൺ മോണോക്സൈഡ് (CO) ഒരു വിഷവാതകമാണ്. അത് രക്തത്തിലെ ഹീമോഗ്ലോബിനുമായി ചേർന്ന് കാർബോക്സി ഹീമോഗ്ലോബിൻ ഉണ്ടാകുന്നു. ശ്വാസതടസ്സ ത്തിൽ തുടങ്ങി മരണം വരെ സംഭവിക്കുന്നു.
- 8. സിലികേറ്റ്സ് SiO<sub>4</sub><sup>4-</sup> Tetrahedral Shape വിവിധ ട്രൈഹീഡ്രലുകൾ ഒരുമിച്ച് ചേർന്ന് ചെയിൻ, റിങ്ങ്, 3D സിലിക്കേറ്റുകൾ ഉണ്ടാകുന്നു.
- 9. സിലിക്കോൺസ് സിന്തറ്റിക് ഓർഗാനോ സിലിക്കൺ പോളിമേഴ്സ്  $m R_2Sio~unit$  ആവർത്തിക്കുന്നു.
- 10. സിയോലൈറ്റ്സ് Zeolites അലുമിനോസിലിക്കേറ്റ്സ് അതിൽ  $\mathrm{Na}^+,\mathrm{K}^+$  എന്നീ അയോണുകൾ ഉണ്ടായിരിക്കും. പെട്രോളിയം നിർമ്മാണത്തിൽ കാറ്റലിസ്റ്റുകളായി ഉപയോഗിക്കുന്നു.

# Chapter - 12 Organic Chemistry

# 1. ഇലക്ട്രോൺ ഡിസ്പ്ലെസ്മെന്റ് ഇഫക്ട്

(1) ഇൻഡക്ടീവ് ഇഫക്ട് (I effect)

സ്ഥിരമായി കാണുന്നു.

σ bond ഉള്ള സംയൂക്തങ്ങളിൽ കാണുന്നു.

(2) മീസോമെറിക് ഇഫക്ട് (M effect)

സ്ഥിരമായി കാണപ്പെടുന്നു.

Conjugate bond ഉള്ള സംയൂക്തങ്ങളിൽ കാണുന്നു.

ഹോമോലിറ്റിക് ഫിഷൻ, ഹെറ്റ റോലിറ്റിക് ഫിഷൻ

രണ്ട് ആറ്റങ്ങളും തുല്ല്യമായി ഇലക്ട്രോണുകൾ പങ്കു വയ്ക്കുന്നു. – ഹോമോലിറ്റിക് ഫിഷൻ ഒരു ആറ്റം തന്നെ രണ്ട് ഇലക്ട്രോണുകളും സ്വീകരിക്കുന്നു – ഹെറ്ററോലിറ്റിക് ഫിഷൻ.

3. ഫ്രീ റാഡിക്കൽ

ഒരു ആറ്റം അല്ലെങ്കിൽ ഒന്നിൽ കൂടുതൽ ആറ്റങ്ങളുടെ ഗ്രൂപ്പിൽ unpaired electron ഉണ്ടെങ്കിൽ അതാണ് free radical. eg. Cl., Br. സ്ഥിരതയുടെ order  $3^0>2^0>1^0$ 

#### 4. കാർബോകാറ്റയോൺ

പോസിറ്റീവ് ചാർജുള്ള കാർബൺ ആറ്റം അടങ്ങിയ ഗ്രൂപ്പിനെ കാർബോകാറ്റയോൺ എന്ന് പറയുന്നു.

eg.  $CH_3^+$  mıcılom  $3^0 > 2^0 > 1^0$ 

#### 5. കാർബാനയോൺ

നെഗറ്റീവ് ചാർജുള്ള കാർബൺ ആറ്റം അടങ്ങിയ ഗ്രൂപ്പാണ് കാർബാനയോൺ eg.  $\mathrm{CH_3}^-$  സ്ഥിരത  $1^0 > 2^0 > 3$ 

# 6. ലസാൻജേയ്സ് ടെസ്റ്റ്

ഓർഗാനിക് സംയുക്തവും സോഡിയവും ചേർത്ത് ചൂടാക്കി, ഫിൽട്ടർ ചെയ്തു കിട്ടുന്ന ലായനിയാണ് ലസാൻജേയ്സ് extract or സോഡിയം ഫ്യൂഷൻ extract

# **Detection of Nitrogen**

മുകളിൽ ഉണ്ടാക്കിയ extract ൽ സൾഫ്യൂറിക്കാസിഡും ഫെറസ് സൾഫേറ്റും ചേർത്താൽ നല്ല നീല നിറം ലഭിക്കുകയാണെങ്കിൽ നൈട്രജൻ ഉണ്ട് എന്നാണർത്ഥം.

# Chapter - 13

# ഹൈഡ്രോകാർബൺ

# 1. $\underline{\underline{\mathbf{gochvid}}}_{0}$ ( $\mathbf{C_{2}H_{6}}$ ) $\mathbf{golim}_{0}$ രണ്ടു തരം കൺഫേർമേവനുകളുണ്ട്

(1) Edipsed - ഇത് unstable ആണ്.



(2) Staggered ഇത് stable ആണ്.



# 2. മാർക്കോണിക്കോഫ്സ് നിയമം

ഒരു ആൽക്കീനിലേക്ക് HBr add ചെയ്യുമ്പോൾ ഹൈഡ്രജൻ കൂടുതൽ H atom ഉള്ള കാർബണിന്റെ കൂടെ ചേരും. ഇതാണ് നിയമം.

eg. 
$$CH_3$$
 -  $CH = CH_2 + HBr$   $CH_3$  -  $CH_3$  -  $CH_3$  -  $CH_3$  -  $CH_2$  -  $CH_3$  -  $CH_2$  -  $CH_3$  -  $CH_3$ 

# 3. ഓസോണോളിസിസ്

ആൽക്കീനും ഓസോണുമായുള്ള  $({
m O_3})$  പ്രർത്തനമാണ് ഓസോണോളിസിസ്

# 4. ആരോമാറ്റൈസേഷൻ

ആൽക്കീൻ (എഥീൻ) red hot iron tube ലൂടെ കടത്തി വിട്ടാൽ benzene ലഭിക്കുന്നു

$$CH_2 = CH_2 \Delta \bigcirc 0$$

benzene

5. ആൽക്കൈനുകൾ അസിഡിറ്റി കാണിക്കുന്നു



6. ഹക്കൽസ് റൂൾ (Huckel's Rule)

(4n+2) πes ഉള്ള ഒരു cyclic ring system എപ്പോഴും അരോമാറ്റിക് ആയിരിക്കും.

#### 7. Fridal Crafts Reaction

Benzene alkyl halide യുമായി പ്രവർത്തിക്കുമ്പോൾ Alkyl Benezene ലഭിക്കുന്നു. ഇതിൽ <u>amhydrous AlCl</u>3 ഒരു catalyst ആയി ഉപയോഗിക്കുന്നു.

eg 
$$CH_3$$

$$O + CH_3 --- C1 \rightarrow O$$
Benzene Methyl Toluene chloride (Methyl benzene)

8. Benzene + chlorine - react ചെയ്യുമ്പോൾ Benzene hexa chloride ലഭിക്കുന്നു. ഇതിനെ gammaxene അല്ലെങ്കിൽ 666 എന്നു പറയുന്നു. ഇത് ഒരു കീടനാശിനിയാണ്.

