

PARAPPUR, Malappuram

BTNY-MM: XI

14. RESPIRATION IN PLANTS

- **Respiration** is the oxidation of nutrients in the cells to release energy and the trapping of this energy for ATP synthesis which is used in biological work.
- The compounds that are oxidized called respiratory substrates.
 E.g. Carbohydrates (most common), proteins, fats and organic acids

BREATHING IN PLANTS

- For respiration, plants get O₂ and give out CO₂
- In plants, gaseous exchange occurs through stomata and lenticels.
- Plants need no specialized respiratory organs because-
 - (i) Each plant part takes care of its own gas exchange needs. During photosynthesis, O_2 is released within the cell.
 - (ii) Plants have only low demand for gas exchange. They respire at rates much lower than animals do.
 - (iii) Loose packing of parenchyma cells in leaves, stems and roots provide an interconnected network of airspace.
 - (iv) Almost all living cells in a plant have their surfaces exposed to air. The interior cells are dead (only for mechanical support).

RESPIRATION IN PLANTS

• The complete combustion of glucose yields energy most of which is given out as heat.

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy (2870 kJ)$$

Eukaryotic (plant) cell oxidises glucose in several small steps. It enables some steps to couple released energy to ATP synthesis.

The first cells on earth lived in atmosphere had no O_2 . Those and certain present-day living organisms are adapted to anaerobic conditions. Some of them are **facultative** anaerobes. Others are **obligate.**

In eukaryotic cells, aerobic (using O_2) respiration is completed in 4 stages-

1st Stage Glycolysis

2nd Stage Oxidative decarboxylation

3rd Stage Krebs' cycle

4th Stage Oxidative phosphorylation

(1st-Stage) GLYCOLYSIS (Glycos^G = sugar, lysis^G = splitting)

- It is the **partial oxidation** (breakdown) of **glucose** into 2 molecule of **pyruvic acid** in the absence of O_2 .
- It occurs in cytoplasm of all living organisms. In anaerobes, it is the only process in respiration.

- Scheme was given by Gustav Embden, Otto Meyerhof, and J. Parnas (also known as *EMP pathway*).
- In plants, glucose is derived from **sucrose** (end product of photosynthesis) or from **storage carbohydrate**.

 Sucrose is converted into glucose & fructose by the enzyme, *invertase*. These 2 monosaccharides enter the glycolytic pathway.

Mechanism of glycolysis:-

- It includes 10 steps under the control of different enzymes.
- (Step-1) Glucose & fructose are phosphorylated to form glucose-6-phosphate by the enzyme hexokinase. An ATP supplies the phosphate.
- (Step-2) Glucose-6-phosphate is isomerised into fructose-6-phosphate.
- (Step-3) Fructose 6-phosphate is phosphorylated to fructose 1,6-bisphosphate. An ATP supplies the phosphate.
- (Step-4) Fructose 1, 6-bisphosphate is split into 3- carbon dihydroxyacetone phosphate and 3-phosphoglyceraldehyde (PGAL).
- (Step-5) Dihydroxyacetone phosphate is then isomerised to PGAL itself. Thus 2 PGAL is formed from a single Fructose 1, 6-bisphosphate.
- (*Step-6*) Each of 2 PGAL is oxidised and with inorganic phosphate get converted to **1**, **3-bisphosphoglycerate** (**DPGA**). During this, 2 H-atoms are removed from each PGAL and transferred to NAD⁺ forming NADH +H⁺.
- (*Step-7*) DPGA losses a phosphate in 1st carbon and is converted to **3-phosphoglyceric acid** (PGA). The loosed Pi is accepted by an ADP to form an ATP.
- (Step-8) 3-PGA's phosphate transferred from 3rd C to 2nd C forming **2-PGA**.
- (Step-9) 2-PGA losses a water molecule to form Phosphoenol pyruvate (PEP).
- (Step-10) PEP losses a phosphate and is converted to pyruvic acid. The loosed Pi is accepted by an ADP to form an ATP.

- ❖ In glycolysis 2 ATP is utilised while 4 ATP & 2 NADH +H⁺ are synthesised from 1 glucose molecule.
- In eukaryotic cell, pyruvic acid (pyruvate) is the utilised for aerobic respiration.

There is 2 other fate for pyruvic acid under anaerobic condition-

- **♦** Alcoholic fermentation
- **♦** Lactic acid fermentation
- A) **Alcoholic fermentation:** Here, the pyruvic acid formed from glycolysis is converted to CO₂ and ethanol.

The enzymes, *pyruvic acid decarboxylase* and *alcohol dehydrogenase* catalyse these reactions.

E.g. Yeast. Yeasts poison themselves to death when the concentration of alcohol reaches about 13%.

B) Lactic acid fermentation: Here, pyruvic acid is converted to lactic acid by *lactate dehydrogenase*.

E.g. Some bacteria, In muscle cells (when O_2 is inadequate during exercise).

Net ATP production from fermentation of one glucose molecule = 2. (4 ATP from glycolysis – 2 ATP utilized).

Drawbacks of fermentation

- **I.** Energy production is limited. Less than 7% (56 KCal) of the energy in glucose is released and not all of it is trapped as high energy bonds of ATP.
- **II.** Hazardous products (acid or alcohol) are formed.

(2nd-Stage) OXIDATIVE DECARBOXYLATION

- For this, the **pyruvate** (final product of glycolysis) is transported from the cytoplasm into the mitochondria matrix.
- Pyruvate undergoes oxidative decarboxylation to form acetyl CoA in presence of pyruvic dehydrogenase.
 It requires coenzymes NAD⁺ and Coenzyme A.
- ❖ During this process, 2 molecules of NADH+H⁺ are produced from 2 molecules of pyruvic acid.
- The acetyl CoA then enters **tricarboxylic acid cycle**.

(3rd-Stage) TRICARBOXYLIC ACID CYCLE (Krebs' cycle)

■ TCA cycle was first elucidated by Hans Krebs. (Nobel prize in 1953)

Mechanism of TCA cycle:-

- (Step-1) Acetyl CoA (2C) condensate with oxaloacetic acid (OAA-4C) and water to form citric acid (6C) in presence of the enzyme citrate synthase. During this, a molecule of CoA is released.
- (Step-2) Citrate is isomerised to isocitrate.
- (Step-3) Isocitrate is decarboxylated to form α -ketoglutaric acid (5C). This step reduces NAD⁺ to NADH+ H⁺.
- (Step-4) α -ketoglutaric acid is decarboxylated to form succinyl-CoA (4C). This step also reduce NAD⁺ to NADH+ H⁺
- (Step-5) Succinyl-CoA is converted to **succinic acid**. This step leads to a substrate level phosphorylation of GDP to form GTP. This reaction is simultaneously coupled with the synthesis of ATP from ADP.
- (Step-6) Succinic acid convert to malic acid reduces FAD⁺ to FADH₂.
- (Step-7) Malic acid oxidised to **OAA** and the cycle continues. This step also reduce NAD⁺ to NADH+ H⁺

(4th-Stage) OXIDATIVE PHOSPHORYLATION

- This stage is to release and utilize the energy stored in NADH+H⁺ and FADH₂ (formed during Glycolysis & Krebs' cycle) in synthesising ATP. **Electron Transport System (ETS)** facilitate this event.
- ETS is the metabolic pathway present in the inner mitochondrial membrane through which e passes from one carrier to another.
 - o When the e (supplied by NADH+H and FADH₂) passes from one carrier to another via complex I to IV, the **redox** reaction of carriers progressively extract the energy the e possesses and used it to pump H across the mitochondrial membrane. The H gradient is used by ATP synthase (**complex V**) to produce ATP (phosphorylation). So this process is called **oxidative phosphorylation.**
 - o The number of ATP molecules synthesised depends on the nature of the e donor.
 - ♥ Oxidation of 1 NADH molecule produces 3 ATP molecules.
 - ♥ Oxidation of 1 FADH₂ molecule produces 2 ATP molecules.

Mechanism of Oxidative phosphorylation:-

- (Step-1) e from NADH+H⁺ are oxidised by an **NADH dehydrogenase** (complex I-which contain FMN-Flavin Mono Nucleotide, a protein and is associated with Iron-sulphur protein). e are then transferred to **ubiquinone** (UQ) located within the inner membrane.
- (Step-2) Ubiquinone also receives e from FADH₂ via complex II.
- (Step-3) The **reduced ubiquinone** (**ubiquinol**) is then oxidised with the transfer of e^- to **cytochrome** bc_1 in **complex III** and then to **cytochrome c.**

Cytochrome c is a small protein attached to the outer surface of the inner membrane. It acts as a mobile carrier for transfer of e between complex III and IV.

- (Step-4) Cytochrome c oxidase (Complex IV –complex containing cytochromes $a \& a_3$, and 2 Cu centres) pass e^- on to O_2 , which is reduced to H_2O by the addition of H^+ . This is called **terminal** oxidation.
- (Step-5) The passage of H⁺ from inter membrane space to matrix through the **ATP synthase** is coupled for ATP production. For each ATP produced, 2H⁺ passes through **ATP synthase** from the inter-membrane space to the matrix down the electrochemical proton gradient.
 - **ATP synthase** complex consists of 2 major components, F_1 and F_0 .
 - ✓ $\mathbf{F_0}$ is an integral membrane protein complex that forms the channel through which \mathbf{H}^+ cross the inner membrane.
 - ✓ **F**₁ headpiece is a peripheral membrane protein complex. It contains the site for ATP synthesis from ADP & inorganic phosphate.

THE RESPIRATORY BALANCE SHEET

- It is the calculations of the net gain of ATP for every glucose molecule oxidised.
- The net gain of ATP from each glucose molecule can be calculated based on the following assumptions:
 - o All steps in Glycolysis, TCA cycle and ETS pathway occur in a sequential and orderly manner
 - o The NADH synthesised in glycolysis is transferred into mitochondria and undergoes oxidative phosphorylation.
 - o None of the intermediates in the pathway are utilised to synthesise any other compound.
 - o Only glucose is being respired no other alternative substrates are entering in the pathway at any of the intermediary stages.
- Such assumptions are not valid because,
 - o All pathways work simultaneously and do not take place one after another.
 - o Substrates enter the pathways and are withdrawn from it as and when necessary.
 - o ATP is utilized as and when needed.
 - o Enzymatic rates are controlled by multiple means.

Such calculations are useful to appreciate the efficiency of the living system in extraction and storing energy.

Net gain of ATP molecules from 1 glucose molecule

Glycolysis:	2 ATP directly2 molecules of NAD	= 2 ATP + H = 6 ATP +	
Oxidative decarboxylation	n: 2 NADH	= 6 ATP +	
TCA cycle:	6 NADH	= 18 ATP +	
	2 FADH	=4 ATP +	
	2 GTP	= 2 ATP	
	Total	=38 ATP -	2 ATP molecules are spent for transporting 2 NADH
	Transp. of NADH ₂	= 2 ATP◀	molecules formed during glycolysis to the mitochondria.
	Net gain	=36 ATP	

The complete oxidation of 1 molecule of glucose gives =2870 kJ energy

Total energy stored by 1 ATP = 34 kJ

Total energy stored by 38 ATP = 1292 kJ

Efficiency of aerobic respiration = $\frac{1292}{2870}$ x 100 = 45%

The rest of energy generated during aerobic respiration is lost in the form of heat.

Comparison b/w anaerobic (fermentation) & aerobic respiration

Fermentation	Aerobic respiration	
Occurs in the absence of O_2	Occurs in the presence of O ₂	
Partial breakdown of glucose to CO ₂ and ethyl alcohol or lactic acid .	Complete breakdown of glucose to CO ₂ and H ₂ O.	
It occurs in the cytoplasm only	It occurs partly in the cytoplasm and the rest in mitochondria	
Net gain of only 2 ATP molecules.	Net gain of 36 ATP molecules.	
NADH is oxidised to	NADH is oxidised to NAD ⁺ very	
NAD ⁺ rather slowly.	vigorously.	

AMPHIBOLIC PATHWAY

- Glucose is the favoured substrate for respiration. All carbohydrates are usually first converted into glucose before they are used for respiration.
 Other substrates are also respired-
- (a) **Fats** breakdown into glycerol & fatty acid. Fatty acid is degraded to acetyl CoA and enters the pathway. Glycerol is converted to PGAL and enters the pathway.
- (b) **Proteins** are degraded by proteases into amino acids. Each amino acid (after deamination) enters the pathway as pyruvate.
- The respiratory pathway is an amphibolic pathway as it involves both anabolism (synthesis) and catabolism (break down).

Respiratory quotient

■ It is the ratio of the volume of CO₂ evolved to the volume of O₂ consumed in respiration.

$$RQ = \frac{Volume \ of \ CO_2 \ evolved}{Volume \ of \ O_2 \ consumed}$$

- RQ depends upon the type of respiratory substrate.
 - \blacksquare **RQ for carbohydrates**= 1, because equal amounts of CO₂ and O₂ are evolved and consumed, respectively
 - \blacksquare RQ for fats =< 1.
 - \blacksquare RQ for proteins = 0.9.

