

PARAPPUR, Malappuram

BTNY-MM: XI

13. PHOTOSYNTHESIS

Photosynthesis is a physico-chemical process by which plants, algae and photosynthetic bacteria use light energy to synthesize organic compounds. It is the basis of life on earth.

Importance of Photosynthesis

- 1° source of all food on earth.
- Releases O₂ into the atmosphere.

Historical Perspective

- 1770: **Joseph Priestley** showed the essential role of air in the growth of green plants.
- 1779: **Jan Ingenhousz** showed the release of O_2 by plants was possible only in sunlight and only by the green parts.
- 1854: **Julius von Sachs** provided evidence for production of glucose (stored as starch). Also showed that the green substance in plants (chlorophyll) is located in chloroplasts.
- 1885: **T.W Engelmann** described the effect of different wavelength of light on photosynthesis (using *Cladophora*) and plotted the first action spectrum of photosynthesis.
- 1905: Blackman formulated "Law of Limiting Factors".
- 1924: **Cornelius van Niel** showed that some bacteria use H₂S (as H-donor) instead of H₂O in photosynthesis in green plants (H from an oxidizable compound reduces CO₂ to form sugar). Hence he inferred that the O₂ evolved by the green plant comes from H₂O, not from CO₂. He gave a simplified chemical equation of photosynthesis-

$$6CO_2 + 12H_2O \xrightarrow{Light} C_6H_{12}O_6 + 6H_2O + 6O_2$$

- 1954: **Melvin Calvin** traced the path of carbon fixation in photosynthesis
- 1965: **Hatch** and **Slack** reported the C₄ pathway of CO₂ fixation.

Photosynthesis takes place in the green parts of the plants. The most active photosynthetic tissue in higher plants is the mesophyll of leaf. Walls of mesophyll cell have 10-100 membrane-bound **chloroplasts**, which is filled with a fluid called the *stroma*. The stroma contains stacks of membranous disks called *grana*.

The process of photosynthesis can be divided into 2-

- I. *Light reactions* or the '*Photochemical' phase* include light absorption, water splitting, O_2 release, and the formation of ATP and NADPH (energy-storage molecules). Take place in grana.
- II. *Dark reactions* or the '*Biosynthetic*' *phase* uses ATP and NADPH to reduce CO₂ which lead to the synthesis of (CH₂O)_n or **sugars**. Take place in *stroma*.

Prism

Light

I. Light reactions / Photochemical phase

SET-UP OF LIGHT REACTION-

- 4 major complexes are involved in the light reaction. They are embedded in the *thylakoid* (each sac of grana) membranes. They are-
 - (i) Photosystem II
 - (ii) Electron Transport System (ETS)
 - (iii) Photosystem I
 - (iv) ATP synthase.

Photosystems (I & II) is composed of Light Harvesting Complex (LHC- responsible for trapping light) and an electron acceptor. The LHC are made up of 200-300 of pigment molecules bound to proteins.

→ 4 pigments seen in leaves are -

· Promotos som mitom es ere		
Pigments	Role	
• Chlorophyll <i>a</i> (bright or blue green)	➤ Act as reaction centre of LHC.	
• Chlorophyll b (yellow green)	Accessory pigments- forming a light harvesting system (or antennae).	
• Xanthophylls (yellow)	✓ Absorb light and transfer the energy to chlorophyll a .	
• Carotenoids (yellow-orange)	✓ Protect chlorophyll <i>a</i> from photo-oxidation	

 \triangleright In PS I the reaction centre chlorophyll *a* has an absorption peak at 700 nm, hence is called **P**₇₀₀. In PS II it has absorption maxima at 680 nm, and is called **P**₆₈₀.

Differences between PS I & PS II

PS I	PS II	
1. Reaction centre of PS I absorb at or below 700nm	1 At an halow 600mm	
wave length of light.	1. At or below 680nm.	
2. This system is not directly involved with photo	V ₁	
oxidation of water (to replace e those removed from	2. Involved	
PS I to reduce NADP) & evolution of molecular O_2 .		
3. PS I is involved both in cyclic & non-cyclic e ⁻ transport.	3. PS II involved only in non-cyclic e ⁻ transport.	

MECHANISM OF LIGHT REACTION-

- (Step-1) When PS II absorbs 680 nm wavelength of red light, e are excited and picked by an e acceptor.
 - The e that were moved from the reaction centre is replaced by e available due to splitting of water in the lumen. The H^+ and O_2 are formed. O_2 diffuses out.
- (Step-2) The electron acceptor passes e to a chain of *electrons transport system* (consisting of cytochromes) and transferred to the pigments of PS I.

The accepter of e which is located towards the outer side of the membrane transfers its e to an H carrier. Hence, this molecule while transporting an e coupled to H transfer into the lumen from the stroma.

This movement of e is downhill, in terms of a redox potential scale.

- (Step-3) Simultaneously, e in PS I are also excited when they receive red light (700 nm) and are transferred to another accepter molecule having a greater redox potential.
- (Step-4) These e are moved downhill to a molecule of NADP⁺. As a result, NADP⁺ is reduced to NADPH +H⁺.

This transfer of e⁻, starting from the PS II, uphill to the acceptor, down the electron transport chain to PS I, excitation of e⁻, transfer to another acceptor, and finally down hill to NADP+ causing it to be reduced to NADPH + H⁺ is called the **Z** scheme, due to its characteristic shape.

(Step-5) These steps decrease H⁺ in the stroma, while in the lumen there is accumulation of H⁺. This develops a H⁺ gradient across the thylakoid membrane.

H⁺ diffuse back through **ATP synthase** from the lumen into the stroma, produces ATP from ADP and P_i. (**Chemiosmotic hypothesis of ATP synthesis-** by Peter Mitchell in 1961, Nobel prize in 1978).

 \rightarrow Photo-phosphorylation is the synthesis of ATP from ADP and P_i in the presence of light.

It occurs in 2 ways- Non cyclic & Cylic.

Difference between Non-cyclic & cyclic phosphorylation

Non-cyclic photo-phosphorylation	Cyclic photo-phosphorylation
1. This system is found dominant in green plants .	1. In bacteria .
2. Occurs in the thylakoid membrane.	 2. Occurs in the stroma lamellae. (Lack PS II as well as NADP reductase enzyme). → Also occurs when only light of wavelengths beyond 680 nm are available for excitation.
3. PS II & PS I work in series and connected through an ETS as seen in Z scheme.	3. Only PS I is functional.
4. It is a non-cyclic process because the e ⁻ lost by PS II does not come back to it but pass on to NADP ⁺ .	4. The excited e ⁻ does not pass on to NADP ⁺ but is cycled back to the PS I complex through the ETS.
5. The first step is photo-oxidation of water resulting splitting of water into H ⁺ , e ⁻ and release of O ₂ .	5. This system is not concerned with it.
6. Here ATP & NADP ⁺ are synthesised.	6. It is only ATP is synthesised.

II. Dark reaction / Biosynthetic phase

- This process of producing sugar needs the products of the light reaction, i.e., ATP and NADPH, besides CO₂ and H₂O.
- The process of CO₂ fixation is of 2 types
 - a) C_3 pathway- In this, the first product of CO_2 fixation is a C_3 acid (PGA).
 - b) C_4 pathway- In this, the first product is a C_4 acid (OAA).

a) The Calvin Cycle (C₃ pathway)

- The Calvin pathway occurs in **all photosynthetic plants** (in C₄ also).
- It has 3 stages:- Carboxylation, reduction and regeneration.

i) Carboxylation of RuBP

CO₂ (1C) is accepted by **RuBP** (5C) to form 2 molecules of **3-PGA** (3C) by the enzyme **RuBisCO**.

Photorespiration

- In C_3 plants, at higher conc. of O_2 , RuBisCO express its oxygenase activity and hence CO_2 fixation is decreased.
- ♦ Here the RuBP, instead of being converted to 2 molecules of PGA, binds with O₂ to form 1 molecule of phosphoglycerate (PGA-3C) and phosphoglycolate (PG-2C).
 - This pathway is called **photorespiration**. (It is named so as it utilise O_2 and release CO_2).
- ♦ In the photorespiratory pathway, 25-50 % CO₂ that is fixed is released with the utilisation of ATP. There is neither synthesis of sugars, nor of ATP. Therefore, photorespiration is a <u>wasteful process</u>.

ii) Reduction

- The fixation of 6 molecules of CO₂ and 6 turns of the cycle are required for the removal of 1 molecule of glucose (6C) from the pathway.
- Here 2 ATP for phosphorylation and 2 NADPH for reduction per CO₂ molecule fixed.

iii) Regeneration of RuBP

• After fixing the CO₂, 6 RuBP is regenerated using 6 ATP by phosphorylation.

b) The Hatch & Slack pathway (C₄ pathway)

- It is present in plants adapted to dry tropical regions.
- C₄ plants are special because:-
 - ♣ They have a special type of leaf anatomy
 - ✓ The large cells around the vascular bundles of the C_4 pathway plants are called **bundle sheath cells**. Such anatomy is called **'Kranz' anatomy**. ('*Kranz'* = wreath).
 - ✓ They have a large number of chloroplasts, thick walls impervious to gaseous exchange and no intercellular spaces.
 - ♣ They tolerate higher temperatures
 - **4** They show a response to high light intensities
 - **They lack photorespiration and hence have greater productivity of biomass.**
 - \rightarrow This is because they have a mechanism that increases the concentration of CO_2 at the enzyme site. This takes place when the C_4 acid from the mesophyll is broken down in the bundle sheath cells to release CO_2 this results in increasing the intracellular concentration of CO_2 .

In turn, this ensures that the RuBisCO functions as a carboxylase minimising the oxygenase activity.

i) Carboxylation of PEP

CO₂ is accepted by 3-C molecule **phosphoenol pyruvate** (**PEP**) present in the mesophyll cells by the enzyme **PEP carboxylase** (**PEPcase**) to form C₄ acid OAA.

The mesophyll cells lack RuBisCO enzyme.

ii) Transportation

It then forms other 4-C compounds like malic acid or aspartic acid in the mesophyll cells, which are transported to the bundle sheath cells.

iii) Decarboxylation

In the bundle sheath cells these C_4 acids are broken down to release CO_2 and a 3-C molecule. The CO_2 released in the bundle sheath cells enters the C_3 or the Calvin pathway.

iv) Transportation

The 3-C molecule is transported back to the mesophyll where it is converted to PEP again, thus, completing the cycle.

Differences between C₃ plants & C₄ plants

Differences between 63 plants & 64 plants		
C ₃ plants	C ₄ plants	
1. Include most crop plants such as cereals, beans,	1. Include maize , sorghum , sugarcane, <i>Amaranthus</i> etc.	
tobacco etc.	(Around 1000 sps.)	
2. Leaves do not exhibit 'Kranz' anatomy.	2. Shows	
3. Photosynthesis occurs in mesophyll cells.	3. In mesophyll and bundle sheath cells.	
i.e., Chloroplast is only 1 type.	Chloroplast are 2 types-	
Only C ₃ pathway is performed by mesophyll	The mesophyll chloroplast perform C ₄ cycle and bundle	
chloroplast.	sheath chloroplast perform C ₃ cycle.	
4. Primary CO ₂ acceptor is RuBP .	4. PEP	
5. CO ₂ fixing enzyme is RuBP carboxylase.	5. PEP carboxylase	
6. The first stable product of photosynthesis is 3C- PGA	6. 4C-OAA	
7. Photorespiratory loss is high.	7. Absent or Negligible	
i.e., Less efficient in utilising atmospheric CO ₂ .	More efficient (even when the stomata are nearly closed).	
8. Higher temperature inhibits CO ₂ uptake.	8. Promotes.	
Optimum temp. for photosynthesis is 25 ^o C.	About 35-45 ⁰ C.	

FACTORS AFFECTING PHOTOSYNTHESIS

- Internal (plant) factors:-
 - The number, size, age and orientation of leaves, mesophyll cells and chloroplasts,
 - ➤ Internal CO₂ concentration
 - The amount of chlorophyll.

The plant or internal factors are dependent on the genetic predisposition (i.e., different in different sps.) and the growth of the plant.

- External factors:-
 - ➤ The availability of sunlight, CO₂ concentration, temperature & water.

a) Light

- ▼ Light quality, light intensity and the duration of exposure to light, affects photosynthesis.
- ▼ There is a linear relationship between incident light and CO₂ fixation rates at low light intensities.
- ▼ At higher light intensities, gradually the rate does not show further increase as other factors become limiting.
- The optimum light intensity at which photosynthetic rate is maximal is called **Light saturation**. Light saturation occurs at 10% of the full sunlight. Hence, except for plants in shade or in dense forests, light is rarely a limiting factor in nature.
- ▼ High increase in incident light breakdown chlorophyll and a decrease in photosynthesis.

b) CO₂ Concentration

- \bullet CO₂ is the major limiting factor for photosynthesis.
- ▼ The concentration of CO₂ is very low in the atmosphere (between 0.03 and 0.04 %). Increase in concentration upto 0.05% can cause an increase in CO₂ fixation rates. Beyond this the levels can <u>become damaging</u> over longer periods.
- \bullet At low light conditions C₃ and C₄ plants do not responds to high CO₂ conditions.
 - At high light intensities, they show increase in the rates of photosynthesis.
- C₄ plants show saturation at about 360 μlL⁻¹
 - C_3 responds to increased CO_2 concentration and saturation is seen only beyond 450 μ lL⁻¹. Thus, current availability of CO_2 levels is limiting to the C_3 plants.
- ▶ Due to higher productivity in higher CO₂ concentration, C₃ plants (such as tomatoes and bell pepper) are allowed to grow in CO₂ enriched atmosphere in some green houses.

c) Temperature

- ▼ The dark reactions being enzymatic are temperature controlled. Influence of temperature on light reactions is less.
- ▼ The C₄ plants respond to higher temperatures and show higher rate of photosynthesis
- \bullet C₃ plants have a much lower temperature optimum.
- ▼ The temperature optimum for photosynthesis of different plants also depends on the habitat that they are adapted to. Tropical plants have a higher temperature optimum than the plants adapted to temperate climates.

d) Water

- No direct effect on photosynthesis (Less than 1% of water absorbed by a land plant is utilised for photosynthesis).
- ▶ Decrease in water content (water stress) causes the stomata to close hence reducing the CO₂ availability.
- Water stress also makes leaves wilt, thus, reducing the surface area of the leaves and their metabolic activity.
- Blackman's **Law of Limiting Factors:** If a chemical process is affected by more than one factor, then its rate will be determined by the factor which is nearest to its minimal value: it is the factor which directly affects the process if its quantity is changed.

