Chapter 14: Mathematical Reasoning

Sample Questions

Question 1:

Determine which of the following are statements and give reasons for your answer.

- (1) Tomorrow is a holiday.
- (2) For real number x, [x] is an integer.
- (3) He died young.
- (4) Galois was a mathematician. He died young.

Solution:

- (1) It is not a statement. It involves variable time.
- (2) Though x is a variable, it is a true statement for every x.So it is a statement.
- (3) Pronoun is used. It is not a statement. Whom does 'he' refer to?
- (4) Here 'he' refers to Galois. This is a statement.

Question 2:

Give negations of following statements.

- (1) Christmas is celebrated on 25th of December.
- (2) Diwali marks the end of current Hindu year.

Solution:

- (1) Christmas is not celebrated on 25th of December.
- (2) Diwali does not mark the end of current Hindu year.

Question 3:

Identify component statements in the following compound statements and determine the truth value of the compound statement.

- (1) Delhi is the capital of Gujarat and $7 \times 5 = 75$.
- (2) Ahmedabad and Vadodara are cities of Gujarat.

Solution:

(2) Let p: Delhi is the capital of Gujarat.

$$q:7 X 5 = 75$$

p and q are both false and hence given statement $p \wedge q$ is also false.

- (3) Let p: Ahmedabad is a city of Gujarat.
 - q: Vadodara is a city of Gujarat.

p and q both are true and hence $p \land q$ is also true.

Question 4:

Determine where 'or' used in following example is in inclusive sense or exclusive sense.

'Two distinct coplanar lines intersect in a point or are parallel.' Solution:

- Let p: Two distinct coplanar lines intersect in a point.
 - q: Two distinct coplanar lines are parallel.

The given disjunction is $p \wedge q$ and it is in exclusive sense as lines intersecting in a point and to be parallel are exclusive events.

Question 5:

Express the following in the implication form.

- (1) The square of an even number is even.
- (2) The sum of digits of an integer is divisible by 9, if it is divisible by 9.
- (3) The roads will be wet only if it rains.

Solution:

(1) Let p: x is an even number.

$$q: x^2$$
 is even.

Implication $p \Rightarrow q$ is : if x is an even number, x^2 is even.

- (2) Let p: An integer is divisible by 9.
 - q: The sum of its digits is divisible by 9.

The implication $p \Rightarrow q$ is: if an integer is divisible by 9, the sum of its digits is divisible by 9.

Question 6:

For each of the following statements, identify component statements and state whether the compound statements are true or not.

- (1) If a triangle is equiangular, all its sides are congruent.
- (2) If a number is a real number, it is a natural number.

Solution:

(1) Let p: A triangle is equiangular.

q: All the sides of the triangle are congruent.

We have $p \Rightarrow q$. Now it cannot happen that p is true and q is false. If p is true, then q is true.

Therefore, $p \Rightarrow q$ is true.

(2) Let p: A number is a real number.

q: The number is a natural number.

Here $\sqrt{2} \in \mathbb{R}$ and $\sqrt{2} \notin \mathbb{N}$.

Thus p is true and q is false for the number $\sqrt{2}$.

Thus there exists a real number for which $p \Rightarrow q$ is false.

 \therefore p \Rightarrow q is false.

Question 7:

Give contrapositive and converse of following.

- (1) If it rains, the roads are wet.
- (2) If x is prime, then x is odd.

Solution:

(1) Let p: It rains.

q: The roads are wet.

Contrapositive is, 'if the roads are not wet, it has not rained'.

Converse is, 'if the roads are wet, it has rained'.

(2) p : x is prime.

q: xis odd.

 $\sim q \Rightarrow \sim p$ is 'if x is not odd, then x is not a prime'.

Converse is 'if x is odd, then x is a prime'.

Question 8:

Using the method of contradiction, prove that sum of an irrational number and a rational number is irrational.

Solution:

Let x be an irrational number and y be a rational number.

Let x + y = z be a rational number, if possible.

Since z and y are both rational, z-y is also rational.

 \therefore x = z - y is also rational.

But x is irrational.

We come to a contradiction.

z = x + y is irrational.

EXERCISE

1.

a) Write the negation of the statement:

"Every natural number is greater than zero".

b) Verify by the method of contradiction:

"
$$\sqrt{13}$$
 is irrational."

(March 2016)

2.

a) Write the negation of the statement:

"
$$\sqrt{7}$$
 is irrational."

b) Prove that : " $\sqrt{7}$ is irrational." by the method of contradiction.

(March 2015)

3.

a) Write the negation of the statement: " $\sqrt{5}$ is irrational."

Verify by the method of contradiction: b) irrational."

(March 2014)

4.

Write the negation of the statement: a)

"All triangles are not equilateral triangle".

Verify by the method of contradiction: b)

" $\sqrt{7}$ is irrational."

(March 2013)

5.

Consider the statement:

"If x is an integer and x^2 is even, then x is also even".

- a) Write the converse of this statement.
- b) Prove the statement by the contra-positive method.

(March 2012)

Prepared By
Fassal Perinsolam
(Maths & Science Tutor)

Visit - My Blog: Science Tablet

"Brains Moozhikkal"