XI MATHEMATICS

101 MULTIPLE CHOICE ITEMS

SETS

1. If $B \subset A$, then which set is equal to the set $\left[A-\left(A^{\prime} \cap B^{\prime}\right)\right]^{\prime}$ [$\left.\phi, A^{\prime}, B^{\prime}, ~ U\right]$
2. If four sets A, B, C and D are such that $A \subset B, B \subset D, C \subset D$,then which set is equal to (AUC) U ($B-D$)
[$A, B, C, D]$
3. If $n(A)+n(B)=(a+b)^{2}, n(A-B)+n(B-A)=(a-b)^{2}$, then the value of $n(A \cup B)$ is
$\left[2 a b, a^{2}+b^{2}, 2 a^{2} b^{2}, a^{2}-b^{2}\right]$
4. If A and B are two non empty sets such that $A-B=B-A$, then the relation between the sets A and B is given by
$[A=B, A \subset B$ and $A \neq B, B \subset A$ and $A \neq B, A \cap B=\phi]$
5. $n(U)=45, n(A)=30, n(B)=15, n(A-B)=13$, then $n\left[(A U B)^{\prime}\right]=$
[28,25,17,15]
6. For any sets A and $B, A-(A-B)=$ \qquad
[$A, A \cap B, B, B-A]$
7. If $A=\{1 / n: n \in N\}$, then which of the following is not an element of A [1, 0.1, 0.2, 0.3]
8. If $A=\{1,2,3\}$, the number of elements in the power set of A is....... $\left[3,2,2^{3}, 3^{2}\right]$
9. If $A \subset B$, then $A \cap B=$ \qquad
$[A, B, U, \phi]$
10. $(A \cup B)-(A \cap B)=$ \qquad
$[A-B, B-A,(A-B) \cup(B-A)$, None of these)

RELATIONS AND FUNCTIONS

1. Range of $y=-|x|$ is

$$
[y \geq 0, y \leq 0, y<0, y>0]
$$

2. If $A=\{1,2,3\}, B=\{3,4\}$, then the number of relations from A to B is

$$
[2,3,6,64]
$$

3. Let $\mathrm{f}(\mathrm{x})=\sqrt{x+5}, \mathrm{~g}(\mathrm{x})=\sqrt{ }\left(25-x^{2}\right)$ be the real functions. What is the value of $\frac{f}{g}\left(\frac{1}{2}\right)$ $\left[\frac{\sqrt{2}}{3}, \frac{2}{3}, \frac{3}{\sqrt{2}}, \frac{3}{2}\right]$
4. Domain of the function $f(x)=\frac{x+3}{x-5}$ is \qquad

$$
[R, R-\{-3\}, R-\{5\}, R-\{-3,5\}]
$$

5. The range of $f(x)=\sin 2 x$ is \qquad [(-1,1), [-1,1] , (-2,2) , [-2,2]]
6. If $f(x)=2 x-5$, then $f(1)+f(2)=\ldots \ldots$

$$
[-1,-2,-3,-4]
$$

7. Which of the following is a straight line?

$$
\left[f(x)=x, f(x)=x^{2}, f(x)=e^{x}, f(x)=\log x\right]
$$

TRIGONOMETRY

1. If $\sin x=\frac{3}{5}, x$ lies in the second quadrant, then the value of $\tan x$ is $\left[\frac{-4}{5}, \frac{4}{5}, \frac{3}{4}, \frac{-3}{4}\right]$
2. The value of $\sec ^{2} x-\tan ^{2} x$ is [1, -1, 0, 2]
3. $\operatorname{Sin} x$ is positive when x takes the value $\left[\frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}, \frac{13 \pi}{8}\right]$
4. Measure of sides of a triangle are 3,5 and 7 , then the greatest angle is $\left[60^{\circ}, 90^{\circ}, 100^{\circ}, 120^{\circ}\right]$
5. Angles of a triangle are in AP, the least angle is 30°, then the greatest angle in radian measure is $\left[\frac{\pi}{2}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{3}\right]$
6. $\operatorname{Cos}(\pi-x)=\ldots \ldots \ldots$
$[\sin \mathrm{x},-\sin \mathrm{x}, \cos \mathrm{x},-\cos \mathrm{x}]$
7. General solution of $\sin x=\frac{1}{\sqrt{2}}$ is

$$
\left[\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}, \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{4}, \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{x}=2 \mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}\right]
$$

8. In a triangleABC $a=4, b=12$ and angle $B=60^{\circ}$, then $\sin A=$

$$
\left[\frac{1}{2 \sqrt{3}}, \frac{-1}{2 \sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{\sqrt{3}}{2}\right]
$$

9. If A and B are acute angles such that $\tan A=\frac{1}{2}, \tan B=\frac{1}{3}$, then $A+B=$
$\left[\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{\pi}{6}\right]$
10. If $\operatorname{Cot} A=1, \operatorname{Cot} B=2$, then the value of $\operatorname{Tan}(A+B)$ is $\left[\frac{1}{2}, 1,2,3\right]$

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. Conjugate of the complex number $z=4-5 i$ is

$$
\left[5-4 i, 5+4 i, 4+5 i, \frac{1}{4-5 i}\right]
$$

2. The value of $i^{5}+i^{6}+i^{7}+i^{8}$ is [i, -i, 1,-1]
3. If $z=1+\sqrt{3} i$, then $|z|$ is $\left[2, \sqrt{2}, \sqrt{3}, \frac{1}{2}\right]$
4. The argument of the complex number $z=1+i$ is $\left[\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{6}\right]$
5. The smallest positive integer for which $(1+i)^{2 n}=(1-i)^{2 n}$
$[2,4,8,12]$
6. If $z \neq 0$, the value of $\arg z+\arg \bar{z}$ is

$$
\left[\pi, \frac{\pi}{2}, 0,-\pi\right]
$$

7. The value of i^{-50} is [$1,-1, i,-i]$
8. If z is a complex number and \bar{z} is the conjugate of z, then the real part of z is

$$
\left[\frac{z+\bar{z}}{2}, \frac{z-\bar{u}}{2}, \frac{z \bar{u}}{2}, \frac{z^{2}}{2}\right]
$$

9. Multiplicative inverse of $z=1-i$

$$
\left[1+\mathrm{i}, \frac{\sqrt{2}}{1+i}, \frac{1}{1-i}, \frac{1+i}{\sqrt{2}}\right]
$$

10. If z_{1} and z_{2} are two non zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg z_{1}-\arg z_{2}$ is equal to

$$
\left[-\pi, \frac{-\pi}{2}, 0, \frac{\pi}{2}\right]
$$

PERMUTATIONS AND COMBINATIONS

1. The number of possible words that can be formed using the letters of the word "MATHEMATICS" IS

$$
\left[\frac{11!}{2!2!2!}, 11!,{ }^{11} \mathrm{P}_{2},{ }^{11} \mathrm{C}_{2}\right]
$$

2. There are 4 letters and 4 direct envelopes. The number of ways in which every letter be put into a wrong envelope is
[8, 9, 15, 16]
3. If ${ }^{\mathrm{n}} \mathrm{C}_{7}={ }^{\mathrm{n}} \mathrm{C}_{8}$, then $\mathrm{n}=\ldots . .$.
[8, 9, 15, 56]
4. If ${ }^{5} C_{4}+{ }^{5} C_{3}={ }^{n} C_{4}$, then the value of n is [5, 6, 8, 9]
5. ${ }^{n} P_{r}$ can be represented as
[${ }^{n} \mathrm{C}_{\mathrm{r}} \times \mathrm{r}!, \frac{\mathrm{nCr}}{r!}, \frac{\mathrm{nCr}}{n!\mathrm{r}!}, \frac{\mathrm{nCr}}{n!}$]
6. Seven songs are rendered in a programme. In how many different orders could it be rendered?
[7, $\left.2^{7}, 7^{2}, 7!\right]$
7. The number of diagonals in an octagon is [8, 16, 20, 28]
8. The value of ${ }^{n} P_{r}$ and ${ }^{n} C_{r}$ will be equal when

$$
\left[\mathrm{n}=\mathrm{r}, \mathrm{r}=\frac{n}{2}, \mathrm{r}=1 \text { or } \mathrm{n}, \mathrm{r}=0 \text { or } 1\right]
$$

9. It was found at a certain meeting, every member has shaken hand with every other member, 45 handshakes were interchanged. The number of members present in the meeting is
[9, 10, 15, 22]
10. If ${ }^{n} C_{r}=3024,{ }^{n} P_{r}=126$, then the vaue of r is [1, 2, 3, 4]

BINOMIAL THEOREM

1. The number of terms in the expansion of $(x+2 y)^{10}$ is [$9,10,11,12$]
2. The coefficient of x^{8} in the expansion of $\left(1+x^{2}\right)^{10}$ is $\left[{ }^{10} \mathrm{C}_{4},{ }^{10} \mathrm{C}_{5},{ }^{10} \mathrm{C}_{6},{ }^{10} \mathrm{C}_{8}\right]$
3. $4^{\text {th }}$ term in the expansion of $\left(\frac{x}{2}-\frac{2}{x}\right)^{6}$ is $\left[{ }^{6} \mathrm{C}_{3},{ }^{6} \mathrm{C}_{3} 2 \mathrm{x},{ }^{6} \mathrm{C}_{3} 4 \mathrm{x},{ }^{2}, \frac{6 \mathrm{C} 3}{2}\right]$
4. If the coefficients of second, third and the fourth terms in the expansion of $(1+x)^{n}$ are in AP, then the value of n is [4,5,6,7]

SEQUENCE AND SERIES

1. If the progressions $3,10,17, \ldots \ldots$. and $63,65,67, \ldots \ldots \ldots$ are such that their $n^{\text {th }}$ terms are equal, then the value of ' n ' is [10, 11, 13, 15]
2. If the third term of a GP is ' p ', then the product of its first 5 terms is $\left[p^{2}, p^{3}, p^{4}, p^{5}\right]$
3. If the sum to n terms of the series $2^{3}+4^{3}+6^{3}+\ldots \ldots$. is 3548 , then the value of n is
[5, 6, 7, 8]
4. If $i^{2}=-1$,then $i^{2}+i^{4}+i^{6}+\ldots \ldots \ldots(2 n+1)$ terms is $[-1,0,1,2$]
5. The $10^{\text {th }}$ term of the GP $\frac{7}{2}, \frac{7}{4}, \frac{7}{8}, \ldots \ldots$ Is $\left[\frac{7}{64}, \frac{7}{128}, \frac{7}{256}, \frac{7}{512}\right]$
6. The number of terms required to give a sum of 120 in the GP $3,3^{2}$, 3^{3} is [3,4,5,6]
7. The $n^{\text {th }}$ term of the series $3 \times 8+6 \times 11+9 \times 14+\ldots \ldots \ldots$ is $[n(n+5), n(3 n+5), 3 n(3 n+5), 3 n(n+5)]$
8. The $3^{\text {rd }}$ term of a GP is 24 and $6^{\text {th }}$ term is 192 , then common ratio is [2, 3, 4, 5]
9. The $n^{\text {th }}$ term of the series $1+\frac{1+2}{2}+\frac{1+2+3}{3}+\ldots$. is $\left[\frac{n-1}{2}, \frac{n+1}{2}, \frac{n^{2}-1}{2}, \frac{n^{2}+1}{2}\right]$
10. The next term in the sequence $2,6,12,20, \ldots \ldots$. is [24, 28, 30, 40]

STRAIGHT LINES

1. The slope of the line parallel to x axis is [1, -1, 0, 2]
2. If two lines with slopes m_{1} and m_{2} are perpendicular to each other, then $\mathrm{m}_{1} \mathrm{~m}_{2}=\ldots \ldots$.
[-1, 0, 1, 2]
3. The equation of the line passing through the point $(1,1)$ and parallel to the line $2 x-3 y+5=0$ is $[3 x+2 y+5=0,2 x-3 y+1=0,3 x-2 y-1=0,2 x+3 y-5=0]$
4. The distance between the parallel lines $2 x+3 y-2=0$ and $2 x+3 y-4=0$ is $\left[\sqrt{13}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right]$
5. Slope of the line $5 x+3 y+4=0$ is $\left[\frac{3}{5}, \frac{5}{3}, \frac{-3}{5}, \frac{-5}{3}\right]$
6. The x intercept of the line $3 x+2 y+5=0$ is $\left[\frac{-3}{2}, \frac{-5}{3}, \frac{-5}{2}, \frac{-2}{3}\right]$
7. The length of the perpendicular from the origin to the line $\frac{x}{3}-\frac{y}{4}=1$ is $\left[\frac{11}{5}, \frac{5}{12}, \frac{12}{5}, \frac{-5}{12}\right]$
8. The line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y intercept is $\left[\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}\right]$
9. The slope of the line passing through the points $(1,3)$ and $(3,6)$ is $\left[\frac{3}{2}, \frac{2}{3}, \frac{-3}{2}, \frac{-2}{3}\right]$
10. The distance between the points($-1,2$) and (1,4) is $[2,4,8, \sqrt{8}]$

CONIC SECTIONS

1. The focus of the parabola $x^{2}=8 y$ is $[(2,0),(-2,0),(0,2),(0,-2)]$
2. The centre of the circle $\left(x-\frac{1}{4}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=4$ is $\left[\left(\frac{1}{4}, \frac{1}{3}\right),\left(\frac{-1}{4}, \frac{1}{3}\right),\left(\frac{1}{4}, \frac{-1}{3}\right),\left(\frac{-1}{4}, \frac{-1}{3}\right)\right]$
3. The length of the minor axis of the ellipse $4 x^{2}+y^{2}=4$ is [1,2,4,8]
4. Length of the latus rectum of the hyperbola $9 x^{2}-4 y^{2}=36$ is [9, $\left.\frac{8}{3}, 2,3\right]$
5. Length of the latus rectum of the parabola $y^{2}=6 x$ is [3, 6, 12, 24]

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

1. The x coordinate of any point in the $Y Z$ plane is [0,1,2,-1]
2. The coordinate planes divide the space into \qquad Octants [4,6,8,10]
3. The coordinates of the point in x axis is of the form [$(x, 0,0),(x, y, 0),(x, 0, z),(0, y, z)]$
4. The distance between the points $(2,3,5)$ and $(4,3,1)$ is $[20, \sqrt{20}, 10, \sqrt{10}]$
5. The centroid of the triangle formed by the vertices $(5,7,3),(2,2,5)$ and $(-1,0,4)$ is
[(5,3,1), (2,3,4),(0,0,0), (5,3,0)]

LIMITS AND DERIVATIVES

1. $\lim _{x \rightarrow 3} x-5=\ldots \ldots \ldots \ldots$.
[2, -2, 3, -5]
2. The value of $\quad \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$
$\left[3, \frac{1}{3}, 1,0\right]$
3. $\lim _{x \rightarrow 0} \frac{\sin m x}{\sin n x}$ is
[1, 0, $\frac{m}{n}, \mathrm{mn}$]
4. $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\ldots \ldots$
[-1, 0,1 , does not exist]
5. Derivative of $y=a x+b$ is
[a,b,a+b,0]
6. The value of $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}$ is
[1, 2, $\frac{1}{2}, 4$]
7. If $f(x)=3 x^{2}+4 x+1$, then $f^{\prime}(1)+2 f^{\prime}(0)$ is [4, 8, 10,18]
8. $\lim _{x \rightarrow 0} \frac{\log _{e}(1+3 x)}{x}=\ldots \ldots \ldots$.
[0,1,2,3]
9. Derivative of $\cos x$ at $x=0$ is [-1,0,1,2]
10. Consider the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}a+b x, \text { if } x<1 \\ 4, \text { if } x=1 \\ b-a x, \text { if } x>1\end{array}\right.$ If $\lim _{x \rightarrow 0} f(x)=\mathrm{f}(1)$ then the possible values of a and b are $[a=2, b=2 ; a=0, b=4 ; a=4, b=0 ; a=0, b=0]$

STATISTICS

1. The mean of first three terms is 14 and the mean of the next two terms is 18 . the mean of all the five terms is [14.5, 15, 15.2, 15.6]
2. The variance of the first n natural numbers is

$$
\left[\frac{n^{2}-1}{12}, \frac{n^{2}-1}{6}, \frac{n^{2}+1}{12}, \frac{n^{2}+1}{6}\right]
$$

3. Average weight of 35 students in a class is 40 kg . if the weight of the teacher is included, the average increased by half, then the weight of the teacher is [45, 48, 58, 60]
4. The coefficient of variation can be calculated using the formula $\left[\frac{\text { mean }}{S D} \times 100, \frac{S D}{\text { mean }} \times 100, \frac{\text { mean }}{S D}, \frac{S D}{\text { mean }}\right]$
5. The mean of the data $6,7,10,12,13,4,8,12$ is [8,9,10,12]

PROBABILITY

1. If $P(A)=0.4, P\left(A^{\prime}\right)$ is [0.4, 0.5, 0.6.0.8]
2. If a coin is tossed twice, the probability that atleast one tail occurs is $\left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right]$
3. If $P(A)=0.5, P(B)=0.35$ and $P(A \cup B)=0.7$, then $P(A \cap B)$ is [$0.15,0.25,0.85,0.45]$
4. The probability of drawing a diamond card from a well shuffled deck of 52 cards is $\left[\frac{1}{13}, \frac{1}{52}, \frac{1}{4}, \frac{1}{2}\right]$
5. Two dice are drawn. The probability of getting a doublet is $\left[\frac{1}{36}, \frac{1}{6}, \frac{5}{6}, \frac{1}{2}\right]$

Prepared by
NISHA K U

