HSE FIRST YEAR TOOL KIT IN MATHEMATICS (SCIENCE) 2015

Апоор Китаг М К

If a set has n elements, total number of subsets of A is 2^{n} .

$(AUB)' = A' \cap B'$ and $(A \cap B)' = A'UB'$

$n(AUB) = n(A) + n(B) - n(A \cap B)$

If n(A) = x and n(B) = y then (i) Number of relations from A to B is 2^{xy}

(ii) Number of functions from A to B is y^x .

The domain of the function $\sqrt{a^2 - x^2}$ is [-a,a] and range is [0,a].

π rad = 180 °

- # If in a circle of radius r , an arc of length I subtends an angle of θ radians at the centre then I = $r\theta$
- # Any trigonometric function of $(n.90^{\circ} + \theta)$ is numerically equal to
 - (i) The same function of θ if n is an even integer
 - (ii) The corresponding co-function of θ if n is an odd integer.
 - (iii) The sign depends on the quadrant in which $(n.90^{\circ} + \theta)$ lies.

Product Formula
$$\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$$

$$\cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$$

Maximum value of a sin θ + b cos θ is $\sqrt{a^2 + b^2}$

In any $\triangle ABC \underline{a} = \underline{b} = \underline{c}$ sin A sin B Sin C

- # If $i = \sqrt{-1}$ then $i^{4m} = 1$, $i^{4m+1} = i$, $i^{4m+2} = -1$ and $i^{4m+3} = -i$
- # The conjugate of a + ib is a ib.
- # The polar form of the complex number z = a + i b is $r(\cos \theta + i \sin \theta)$
- # n! = n(n-1)(n-2)(n-3)3.2.1
- # If n C p = n C q then either p = q or p + q = n.

$$nC_r + nC_{r-1} = n+1C_r$$

If n distinct points are given on the circumference of a circle then

Number of straight lines = nC_2 and Number of triangles = nC_3

- # Given n points p of which are collinear then,
 - (a) No. of straight lines = $nC_2 pC_2 + 1$
 - (b) No. of triangles = $nC_3 pC_3$
- # Number of diagonals of an n-sided polygon = nC₂ n
- # In the expansion of $(a+b)^n$ general term is given by $t_{r+1} = nC_r a^{n-r} b^r$.
- # $(1+x)^n = 1 + nC_1x + nC_2x^2 + \dots + x^n$.
- # If the n^{th} term of an A P is p + nq then common difference is q.
- # If a,b,c are in A.P then 2b = a+c
- # If a,b,c are in G.P then b = Vac
- # In an AP if the mth term is n and nth term is m then d = -1 First term is m+n-1, p^{th} term is m+n-p and $m+n^{th}$ term is Zero.
- # Distance formula d = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- # Two lines are parallel if $m_1 = m_2$ Two lines are perpendicular if $m_1m_2 = -1$

If $p \rightarrow q$ is a statement then Converse is $q \rightarrow p$ Inverse is $p \rightarrow \sim q$ Contrapositive is $\sim q \rightarrow \sim p$

- # Coefficient of variation CV = $\underline{S.D} x 100$
 - mean
- # Lim $\underline{x^{n} a^{n}} = na^{n-1}$ $x \rightarrow a \quad x - a$
- # $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ $\theta \to 0 = \theta$ # If $y = \sin x$ then $\frac{dy}{dy} = \cos x$

If y = cos x then
$$\frac{dy}{dx} = -\sin x$$

- # for any two events A and B $P(A \cup B) = P(A) + P(B) - P(A \cap B).$
- # If A and B are mutually exclusive $P(A \cup B) = P(A) + P(B)$.