HSE FIRST YEAR TOOL KIT IN MATHEMATICS (SCIENCE) 2015

- \quad Anoop \mathcal{K} umar $\mathcal{M} \mathcal{K}$
\# If a set has n elements, total number of subsets of A is 2^{n}.
\# ($A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} U B^{\prime}$
\# $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
\# If $n(A)=x$ and $n(B)=y$ then (i) Number of relations from A to B is $2^{x y}$
(ii) Number of functions from A to B is y^{x}.
\# The domain of the function $\mathrm{Va}^{2}-\mathrm{x}^{2}$ is $[-\mathrm{a}, \mathrm{a}]$ and range is $[0, \mathrm{a}]$.
\# $\pi \mathrm{rad}=180^{\circ}$
\# If in a circle of radius r, an arc of length I subtends an angle of θ radians at the
centre then $\mathrm{I}=\mathrm{r} \theta$
\# Any trigonometric function of $\left(\mathrm{n} .90^{\circ} \pm \theta\right)$ is numerically equal to
(i) The same function of θ if n is an even integer
(ii) The corresponding co-function of θ if n is an odd integer.
(iii) The sign depends on the quadrant in which $\left(\mathrm{n} .90^{\circ} \pm \theta\right)$ lies.
\# Product Formula $\quad \sin \alpha \pm \sin \beta=2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)$

$$
\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)
$$

\# Maximum value of $a \sin \theta+b \cos \theta$ is $\mathrm{Va}^{2}+\mathbf{b}^{\mathbf{2}}$
\# In any $\triangle A B C \underset{\sin A}{\underline{a}}=\frac{b}{\sin B}=\frac{c}{\sin C}$
\# If $i=v-1$ then $i^{4 m}=1, i^{4 m+1}=i, i^{4 m+2}=-1$ and $i^{4 m+3}=-i$
\# The conjugate of $a+i b$ is $a-i b$.
\# The polar form of the complex number $z=a+i b$ is $r(\cos \theta+i \sin \theta)$
\# $n!=n(n-1)(n-2)(n-3) \ldots . .3 \cdot 2 \cdot 1$
\# If $\mathrm{nCp}=\mathrm{nCq}$ then either $\mathrm{p}=\mathrm{q}$ or $\mathrm{p}+\mathrm{q}=\mathrm{n}$.
$\# \mathrm{nC}_{\mathrm{r}}+\mathrm{nC}_{\mathrm{r}-1}=\mathrm{n}+1 \mathrm{C}_{\mathrm{r}}$
\# If n distinct points are given on the circumference of a circle then
Number of straight lines $=\mathrm{nC}_{2}$ and Number of triangles $=\mathrm{nC}_{3}$
\# Given n points p of which are collinear then,
(a) No. of straight lines $=\mathrm{nC}_{2}-\mathrm{pC}_{2}+1$
(b) No. of triangles $=\mathrm{nC}_{3}-\mathrm{pC}_{3}$
\# Number of diagonals of an n-sided polygon $=\mathrm{nC}_{2}-\mathrm{n}$
\# In the expansion of $(a+b)^{n}$ general term is given by $t_{r+1}=n C_{r} a^{n-r} b^{r}$.
$\#(1+x)^{n}=1+n C_{1} x+n C_{2} x^{2}+\ldots .+x^{n}$.
\# If the $n^{\text {th }}$ term of an A P is $p+n q$ then common difference is q.
\# If a, b, c are in A.P then $2 b=a+c$
\# If a, b, c are in G.P then $b=V a c$
\# In an AP if the $\mathrm{m}^{\text {th }}$ term is n and $\mathrm{n}^{\text {th }}$ term is m then $\mathrm{d}=-1$
First term is $m+n-1, p^{\text {th }}$ term is $m+n-p$ and $m+n{ }^{\text {th }}$ term is Zero.
\# Distance formula $d=V\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
\# Two lines are parallel if $m_{1}=m_{2}$
Two lines are perpendicular if $m_{1} m_{2}=-1$
\# If $p \rightarrow q$ is a statement then $\begin{aligned} & \text { Converse is } \quad q \rightarrow p \\ & \quad \text { Inverse is } \quad \sim_{p} \rightarrow \sim_{q} \\ & \text { Contrapositive is } \sim_{q} \rightarrow \sim_{p}\end{aligned}$
\# Coefficient of variation CV = $\underline{\text { S.D }} \times 100$
mean
\# $\quad \operatorname{Lim} \quad \underline{x^{n}--a^{n}}=n a^{n-1}$
$x \rightarrow a \quad x--a$
\# $\lim \sin \theta=1$
$\Theta \rightarrow 0 \quad \theta$
\# If $\mathrm{y}=\sin \mathrm{x}$ then $\frac{d y}{d x}=\cos x$
\# If $y=\cos x$ then $\frac{d y}{d x}=-\sin x$
\# for any two events A and B

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

\# If A and B are mutually exclusive $P(A \cup B)=P(A)+P(B)$.

