BOARD QUESTION PAPER : MARCH 2014

Note:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Graph papers are not necessary for L.P.P. Only rough sketch of the graph is expected.
- iv. Answers to both the sections should be written in the separate answer books.
- v. Answer to every new question must be written on a new page.

Section – I

Q.1.	Atte	mpt any SIX of the following:	[12]
	i.	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 & 3 \\ -2 & 5 & 0 \end{bmatrix}$	
		then find $2A + 3B$.	(2)
	ii.	If the function f is continuous at $x = 1$, then find f(1).	
		Where $f(x) = \frac{x^2 - 3x + 2}{x - 1}$ for $x \neq 1$.	(2)
	iii.	If $x = \tan^{-1}t$ and $y = t^3$, find $\frac{dy}{dx}$.	(2)
	iv.	Evaluate: $\int \sin^2 x dx$.	(2)
	v.	Write negation of the following statements:	
		a. Chetan has black hair and blue eyes.	
		b. $\exists x \in \mathbb{R} \text{ such that } x^2 + 3 > 0.$	(2)
	vi.	If $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then find $ AB $.	(2)
	vii.	Evaluate: $\int \frac{dx}{4-9x^2}$	(2)
	viii.	If the function f is continuous at $x = 2$, then find 'k'	
		where $f(x) = \frac{x^2 + 5}{x - 1}$, for $1 < x \le 2$	
		= kx + 1, for $x > 2$	(2)
Q.2.	(A)	Attempt any TWO of the following:	[6][14]
	i.	If $x^{y} = e^{x-y}$, show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}$	(3)
	ii.	If $\sin y = x \sin (a + y)$	
		prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$	(3)
	iii.	Discuss extreme values of the function $f(x) = x \log x$.	(3)
			327

(B) Attempt any TWO of the following: Discuss the continuity of the function f at x = 0, i. where $f(x) = \frac{5^x + 5^{-x} - 2}{\cos 2x - \cos 6x}$, for $x \neq 0$ = $\frac{1}{8} (\log 5)^2$, for x = 0(4) The expenditure E_C of a person with income I is given by $E_C = (0.000035) I^2 + (0.045) I$ ii. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000. (4) Evaluate: $\int x \cot^{-1} x dx$ iii. (4) Attempt any TWO of the following: Q.3. (A) [6][14] If p: It is a day time. i q : It is warm. Given the verbal statements for the following symbolic statements: a. $p \wedge \sim q$ b. $p \lor q$ (3) c. $p \leftrightarrow q$ Using the truth table, examine whether the statement pattern $(p \rightarrow q) \leftrightarrow (\sim p \lor q)$ is a ii. tautology, a contradiction or a contingency. (3) The cost C of producing x articles is given as iii. $C = x^3 - 16x^2 + 47x$. For what values of x will the average cost be decreasing? (3) Attempt any TWO of the following: **(B)** $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ If $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix}$ then find A^{-1} by using elementary transformation. i. (4) Evaluate: $\int_{0}^{3} \frac{dx}{x + \sqrt{9 - x^2}}$ ii. (4) Find the volume of a solid obtained by the complete revolution of the ellipse $\frac{x^2}{36} + \frac{y^2}{25} = 1$ iii. about X - axis. (4)