BOARD QUESTION PAPER : OCTOBER 2014

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

Section - I

Q.1. Attempt any SIX of the following:

i. Write the following statements in symbolic forms:
a. Either 49 is a perfect square or 39 is divisible by 11 .
b. It is not true that if ' i ' is a real number, then ' 2 ' is an even prime number.
ii. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & k & 2 \\ 5 & 7 & 3\end{array}\right]$ is a singular matrix, then find the value of ' k '.
iii. If $A=\left[\begin{array}{ll}7 & 1 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$, then verify that $|A B|=|A| \cdot|B|$
iv. Discuss the continuity of the function at the point given. If the function is discontinuous then remove the discontinuity.

$$
\begin{align*}
\mathrm{f}(x) & =\frac{\sin ^{2} 5 x}{x^{2}}, & & \text { for } x \neq 0 \\
& =5, & & \text { for } x=0 ; \text { at } x=0 \tag{2}
\end{align*}
$$

v. Find the value of x for which the function
$\mathrm{f}(x)=x^{3}-3 x^{2}-9 x+25$ is increasing.
vi. Differentiate: $\tan ^{-1}(\cot 2 x)$ w.r.t. .
vii. Discuss the continuity of the function

$$
\begin{align*}
\mathrm{f}(x) & =\frac{(3-\sqrt{2 x+7})}{x-1}, \text { for } x \neq 1 \tag{2}\\
& =-\frac{1}{3}, \tag{2}
\end{align*} \quad \text { for } x=1 ; \text { at } x=1
$$

viii. Evaluate: $\int \mathrm{e}^{x}\left[\frac{x+3}{(x+4)^{2}}\right] \mathrm{d} x$
Q.2. (A) Attempt any TWO of the following:
i. Without using the truth table, show that

$$
\begin{equation*}
\mathrm{p} \wedge[(\sim \mathrm{p} \vee \mathrm{q}) \vee \sim \mathrm{q}] \equiv \mathrm{p} \tag{3}
\end{equation*}
$$

ii. If $y=\tan ^{-1}\left[\frac{\cos 2 x-\sin 2 x}{\sin 2 x+\cos 2 x}\right]$ then find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
iii. Evaluate: $\int \frac{\tan x}{\sec x+\tan x} \cdot \mathrm{~d} x$
(B) Attempt any TWO of the following:
i. If the function

$$
\begin{aligned}
\mathrm{f}(x) & =x^{2}+\mathrm{a} x+\mathrm{b}, & & x<2 \\
& =3 x+2, & & 2 \leq x \leq 4 \\
& =2 \mathrm{a} x+5 \mathrm{~b}, & & 4<x
\end{aligned}
$$

is continuous at $x=2$ and $x=4$, then find the values of a and b .
ii. The total cost function of a firm is $\mathrm{C}=x^{2}+75 x+1600$ for output x. Find the output for which the average cost is minimum. Is $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{m}}$ at this output?
iii. Find the area of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
Q.3. (A) Attempt any TWO of the following:
i. Examine whether the following statement $(p \wedge q) \vee(\sim p \vee \sim q)$ is a tautology or contradiction or neither of them.
ii. Find: $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $x=\mathrm{a} \operatorname{cosec} \theta, y=\mathrm{b} \cot \theta$, at $\theta=\frac{\pi}{4}$
iii. Evaluate: $\int \frac{1}{x^{2}+8 x+20} \mathrm{~d} x$
(B) Attempt any TWO of the following:
i. Express the following equations in matrix form and solve them by the method of inversion. $x+2 y+3 z=8,2 x-y+z=1,3 x+y-4 z=1$
ii. The expenditure E_{c} of a person with income x is given by $\mathrm{E}_{\mathrm{c}}=(0.000035) x^{2}+(0.045) x$. Find the marginal propensity to consume and marginal propensity to save when $x=5000$. Also find the average propensity to consume and average propensity to save.
iii. Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\cot x}} \cdot \mathrm{~d} x$

