BOARD QUESTION PAPER : OCTOBER 2014

Notes:

- ii. Figures to the right indicate full marks.
- iii. Answer to every question must be written on a new page.
- iv. L.P.P. problem should be solved on graph paper.
- v. Log table will be provided on request.
- vi. Write answers of Section I and Section II in one answer book.

Section – I

Q.1.	Atter i.	mpt any SIX of the following: Write the following statements in symbolic forms:	[12]
		a. Either 49 is a perfect square or 39 is divisible by 11.	
		b. It is not true that if 'i' is a real number, then '2' is an even prime number.	(2)
		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	
	ii.	If A = $\begin{bmatrix} 2 & k & 2 \\ 5 & 7 & 3 \end{bmatrix}$ is a singular matrix, then find the value of 'k'.	(2)
	iii.	If $A = \begin{bmatrix} 7 & 1 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$, then verify that $ AB = A . B $	(2)
	iv.	Discuss the continuity of the function at the point given. If the function is discontinuous	
		then remove the discontinuity.	
		$f(x) = \frac{\sin^2 5x}{x^2}, \text{for } x \neq 0$	
		= 5, for $x = 0;$ at $x = 0$	(2)
	v.	Find the value of x for which the function	
		$f(x) = x^3 - 3x^2 - 9x + 25$ is increasing.	(2)
	vi.	Differentiate: $\tan^{-1}(\cot 2x)$ w.r.t.x.	(2)
	vii.	Discuss the continuity of the function	
		$f(x) = \frac{(3 - \sqrt{2x + 7})}{x - 1}$, for $x \neq 1$	
		$= -\frac{1}{3}$, for $x = 1$; at $x = 1$	(2)
	viii.	Evaluate: $\int e^x \left[\frac{x+3}{(x+4)^2} \right] dx$	(2)
Q.2.	(A)	Attempt any TWO of the following:	[6][14]
-	i.	Without using the truth table, show that	
		$p \land [(\sim p \lor q) \lor \sim q] \equiv p$	(3)
	ii.	If $y = \tan^{-1} \left[\frac{\cos 2x - \sin 2x}{\sin 2x + \cos 2x} \right]$ then find $\frac{dy}{dx}$.	(3)
	iii.	Evaluate: $\int \frac{\tan x}{\sec x + \tan x} \cdot dx$	(3)
			329

Std. XII : Commerce (Maths - I)					
	(B) i.	Attempt any TWO of the following: If the function $f(x) = x^2 + ax + b, x < 2$ $= 3x + 2, 2 \le x \le 4$	[8]		
		= $2ax + 5b$, $4 < x$ is continuous at $x = 2$ and $x = 4$, then find the values of a and b.	(4)		
	ii.	The total cost function of a firm is $C = x^2 + 75x + 1600$ for output x. Find the output for which the average cost is minimum. Is $C_A = C_m$ at this output?	(4)		
	iii.	Find the area of the ellipse $\frac{x}{4} + \frac{y}{25} = 1$	(4)		
Q.3.	(A)	Attempt any TWO of the following:	[6][14]		
	i.	Examine whether the following statement $(p \land q) \lor (\neg p \lor \neg q)$ is a tautology or contradiction or neither of them.	(3)		
	ii.	Find: $\frac{dy}{dx}$ if $x = a \csc \theta$, $y = b \cot \theta$, at $\theta = \frac{\pi}{4}$	(3)		
	iii.	Evaluate: $\int \frac{1}{x^2 + 8x + 20} dx$	(3)		
	(B)	Attempt any TWO of the following:	[8]		
	i.	Express the following equations in matrix form and solve them by the method of inversion. x + 2y + 3z = 8, $2x - y + z = 1$, $3x + y - 4z = 1$	(4)		
	ii.	The expenditure E_c of a person with income x is given by $E_c = (0.000035)x^2 + (0.045)x$. Find the marginal propensity to consume and marginal propensity to save when $x = 5000$.			
		Also find the average propensity to consume and average propensity to save. $\frac{\pi}{2}$	(4)		
	iii.	Evaluate: $\int_{\frac{\pi}{6}}^{3} \frac{1}{1 + \sqrt{\cot x}} \cdot dx$	(4)		