BOARD QUESTION PAPER : MARCH 2015

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

Section - I

Q.1. Attempt any SIX of the following:

i. Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3 ."
ii. Find the values of x and y, if
$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
iii. Find the value of ' k ' if the function

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{\tan 7 x}{2 x}, & & \text { for } x \neq 0 \\
& =\mathrm{k}, & & \text { for } x=0
\end{aligned}
$$

is continuous at $x=0$
iv. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\cos ^{-1}(\sqrt{x})$
v. The price P for demand D is given as $P=183+120 D-3 D^{2}$.

Find D for which the price is increasing.
vi. Evaluate: $\int \frac{1}{x(3+\log x)} \mathrm{d} x$
vii. If $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ show that $\mathrm{A}^{2}-3 \mathrm{~A}+\mathrm{I}=0$
viii. Evaluate: $\int x \cos x \mathrm{~d} x$.
Q.2. (A) Attempt any TWO of the following:
i. Prove that the following statement pattern is equivalent:
$(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{r}$ and $(\mathrm{p} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{r})$
ii. Examine the continuity of the following function:

$$
\left.\begin{array}{rlrl}
\mathrm{f}(x) & =x^{2}-x+9, & & \text { for } x \leq 3 \tag{3}\\
& =4 x+3, & & \text { for } x>3
\end{array}\right\} \text { at } x=3
$$

iii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\tan ^{-1}\left(\frac{6 x}{1-5 x^{2}}\right)$
(B) Attempt any TWO of the following:
i. Find the inverse of the following matrix by elementary row transformations if it exists.

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \tag{4}\\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]
$$

ii. Find area of the ellipse $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$
iii. The expenditure E_{c} of a person with income I is given by $E_{c}=(0.000035) I^{2}+(0.045) I$. Find marginal propensity to consume (MPC) and marginal propensity to save (MPS) when $\mathrm{I}=5000$. Also find A (average) PC and A (average) PS.
Q.3. (A) Attempt any TWO of the following:
i. Express the truth of each of the following statements by Venn diagram:
a. Some hardworking students are obedient.
b. No circles are polygons.
c. All teachers are scholars and scholars are teachers.
ii. If ' f ' is continuous at $x=0$, then find $\mathrm{f}(0)$.

$$
\begin{equation*}
\mathrm{f}(x)=\frac{15^{x}-3^{x}-5^{x}+1}{x \tan x}, x \neq 0 \tag{3}
\end{equation*}
$$

iii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $x=\mathrm{e}^{2 \mathrm{t}}, y=\mathrm{e}^{\sqrt{\mathrm{t}}}$
(B) Attempt any TWO of the following:
i. Evaluate: $\int \frac{(1+\log x)}{x(2+\log x)(3+\log x)} \mathrm{d} x$
ii. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{1+\cot x}$
iii. A firm wants to maximize its profit. The total cost function is $C=370 \mathrm{Q}+550$ and revenue is $R=730 \mathrm{Q}-3 \mathrm{Q}^{2}$. Find the output for which profit is maximum and also find the profit amount at this output.

