BOARD QUESTION PAPER : MARCH 2016

Notes:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Answer to every question must be written on a new page.
- iv. L.P.P. problem should be solved on graph paper.
- v. Log table will be provided on request.
- vi. Write answers of Section I and Section II in one answer book.

Section – I

Q.1.	Atte	mpt any SIX of the following:	[12]
	i.	If $y = (\sin x)^x$, find $\frac{dy}{dx}$.	(2)
	ii.	If $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ show that $A^2 - 2A$ is a scalar matrix.	(2)
	iii.	Write the negation of the following statements:	
		(a) $\forall y \in \mathbb{N}, y^2 + 3 \le 7$	
		(b) If the lines are parallel then their slopes are equal.	(2)
	iv.	The total revenue $R = 720x - 3x^2$ where x is number of items sold. Find x for which total revenue R is increasing.	(2)
	v.	Evaluate: $\int \frac{\sec^2 x}{\tan^2 x + 4} dx$	(2)
	vi.	Find $\frac{dy}{dx}$, if $y = \cos^{-1}(\sin 5x)$	(2)
	vii.	Discuss the continuity of function f at $x = 0$	
		Where f (x) = $\frac{\sqrt{4+x}-2}{3x}$, for $x \neq 0$	
		$=\frac{1}{12}$, for $x = 0$	(2)
	viii.	State which of the following sentences are statements. In case of statement, write down the truth value:	
		(a) Every quadratic equation has only real roots.	
		(b) $\sqrt{-4}$ is a rational number.	(2)
Q.2.	(A)	Attempt any TWO of the following:	[6][14]
	i.	Solve the following equations by the inversion method:	
		2x + 3y = -5 and $3x + y = 3$	(3)
	ii.	Find x and y, if $\left\{3\begin{bmatrix}1 & 2 & 0\\ 0 & -1 & 3\end{bmatrix} - \begin{bmatrix}1 & 5 & -2\\ -3 & -4 & 4\end{bmatrix}\right\} \begin{bmatrix}1\\2\\1\end{bmatrix} = \begin{bmatrix}x\\y\end{bmatrix}$	(3)

iii. Evaluate: $\int \tan^{-1} x \, dx$. (3)

Std.	XII : Co	ommerce (Maths - I)	
	(B) i.	 Attempt any TWO of the following: (a) Express the truth of each of the following statements using Venn diagram. (1) All teachers are scholars and scholars are teachers. (2) If a quadrilateral is a rhombus then it is a parallelogram. 	[8]
		(b) Write converse and inverse of the following statement: "If Ravi is good in logic then Ravi is good in Mathematics."	(4)
	ii.	Find the area of the region bounded by the lines $2y + x = 8$, $x = 2$ and $x = 4$.	(4)
	iii.	Evaluate: $\int_{3}^{9} \frac{\sqrt[3]{12-x}}{\sqrt[3]{x+\sqrt[3]{12-x}}} dx$	(4)
Q.3.	(A)	Attempt any TWO of the following:	[6][14]
	i.	If $f(x) = \frac{e^{2x} - 1}{ax}$, for $x < 0$, $a \ne 0$ = 1, for $x = 0$ = $\frac{\log(1+7x)}{bx}$, for $x > 0$, $b \ne 0$	
	ii.	Is continuous at $x = 0$ then find a and b. If the function f is continuous at $x = 0$, then find f(0)	(3)
		where $f(x) = \frac{\cos 3x - \cos x}{x^2}, x \neq 0$	(3)
	iii.	If $f'(x) = 4x^3 - 3x^2 + 2x + k$ and $f(0) = 1$, $f(1) = 4$, find $f(x)$.	(3)
	(B) i.	Attempt any TWO of the following: Find MPC (Marginal Propensity to Consume) and APC (Average Propensity to Consume) if the expenditure E_c of a person with income I is given as $E_c = (0.0003) I^2 + (0.075) I$ when I = 1000.	[8] (4)
	ii.	Cost of assembling x wallclocks is $\left(\frac{x^3}{3} - 40x^2\right)$ and labour charges are 500x. Find the number of wallclocks to be manufactured for which marginal cost is minimum.	(4)
	iii.	If $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = 2k$, show that $y \frac{dy}{dx} = x \tan^2 k$.	(4)