## BOARD QUESTION PAPER : MARCH 2016

## Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

## Section - I

## Q.1. Attempt any SIX of the following:

i. If $y=(\sin x)^{x}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
ii. If $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ show that $\mathrm{A}^{2}-2 \mathrm{~A}$ is a scalar matrix.
iii. Write the negation of the following statements:
(a) $\forall y \in \mathrm{~N}, y^{2}+3 \leq 7$
(b) If the lines are parallel then their slopes are equal.
iv. The total revenue $\mathrm{R}=720 x-3 x^{2}$ where $x$ is number of items sold. Find $x$ for which total revenue R is increasing.
v. Evaluate: $\int \frac{\sec ^{2} x}{\tan ^{2} x+4} \mathrm{~d} x$
vi. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, if $y=\cos ^{-1}(\sin 5 x)$
vii. Discuss the continuity of function f at $x=0$

Where $\mathrm{f}(x)=\frac{\sqrt{4+x}-2}{3 x}$, for $x \neq 0$

$$
\begin{equation*}
=\frac{1}{12} \quad \text {, for } x=0 \tag{2}
\end{equation*}
$$

viii. State which of the following sentences are statements. In case of statement, write down the truth value:
(a) Every quadratic equation has only real roots.
(b) $\sqrt{-4}$ is a rational number.
Q.2. (A) Attempt any TWO of the following:
i. Solve the following equations by the inversion method:
$2 x+3 y=-5$ and $3 x+y=3$
ii. Find $x$ and $y$, if $\left\{3\left[\begin{array}{lcl}1 & 2 & 0 \\ 0 & -1 & 3\end{array}\right]-\left[\begin{array}{ccc}1 & 5 & -2 \\ -3 & -4 & 4\end{array}\right]\right\}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$
iii. Evaluate: $\int \tan ^{-1} x \mathrm{~d} x$.
(B) Attempt any TWO of the following:
i. (a) Express the truth of each of the following statements using Venn diagram.
(1) All teachers are scholars and scholars are teachers.
(2) If a quadrilateral is a rhombus then it is a parallelogram.
(b) Write converse and inverse of the following statement:
"If Ravi is good in logic then Ravi is good in Mathematics."
ii. Find the area of the region bounded by the lines $2 y+x=8, x=2$ and $x=4$.
iii. Evaluate: $\int_{3}^{9} \frac{\sqrt[3]{12-x}}{\sqrt[3]{x+\sqrt[3]{12-x}}} \mathrm{~d} x$
Q.3. (A) Attempt any TWO of the following:
i. If $\mathrm{f}(x)=\frac{e^{2 x}-1}{\mathrm{a} x} \quad$, for $x<0, \mathrm{a} \neq 0$

$$
\begin{align*}
& =1 \quad, \text { for } x=0 \\
& =\frac{\log (1+7 x)}{\mathrm{b} x}, \text { for } x>0, \mathrm{~b} \neq 0 \tag{3}
\end{align*}
$$

Is continuous at $x=0$ then find a and b .
ii. If the function f is continuous at $x=0$, then find $\mathrm{f}(0)$
where $\mathrm{f}(x)=\frac{\cos 3 x-\cos x}{x^{2}}, x \neq 0$
iii. If $\mathrm{f}^{\prime}(x)=4 x^{3}-3 x^{2}+2 x+\mathrm{k}$ and $\mathrm{f}(0)=1, \mathrm{f}(1)=4$, find $\mathrm{f}(x)$.
(B) Attempt any TWO of the following:
i. Find MPC (Marginal Propensity to Consume) and APC (Average Propensity to Consume) if the expenditure $E_{c}$ of a person with income $I$ is given as $E_{c}=(0.0003) I^{2}+(0.075)$ I when $\mathrm{I}=1000$.
ii. Cost of assembling $x$ wallclocks is $\left(\frac{x^{3}}{3}-40 x^{2}\right)$ and labour charges are $500 x$. Find the number of wallclocks to be manufactured for which marginal cost is minimum.
iii. If $\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2 \mathrm{k}$,
show that $y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \tan ^{2} \mathrm{k}$.

