JG
 Jain College, Jayanagar
 II PUC Mock Paper II JAN 2020
 Subject: II PUC Mathematics (35)

PART-A

I. Answer all the TEN questions:

1. An operator * on z^{+}is defined as $\mathrm{a}^{*} \mathrm{~b}=|a-b| \forall a, b \in \mathrm{z}^{+}$is $*$ is binary operation $\mathrm{z}^{+ \text {? }}$
2. Find the value of $\sin ^{-1}(\operatorname{Sin} 2 \pi / 3)$.
3. Define skew symmetric matrix.
4. Find x, for which $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
5. If $y=\sin \left(x^{2}+5\right)$. Find $d y / d x$.
6. Evaluate $\int e^{x}\left(\frac{x-1}{x^{2}}\right) d x$.
7. Find unit vector in the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$.
8. Write the direction cosines of $\hat{i}+\hat{j}+\hat{k}$.
9. Define feasible region of a L.P.P.
10. If $\mathrm{P}(\mathrm{A})=\frac{7}{13}, P(B)=\frac{9}{13} \& P(A \cap B)=\frac{4}{13}$, find $P(\mathrm{~A} / \mathrm{B})$.

PART-B

II. Answer any TEN questions:
$10 \times 2=20$
11. Find fog, if $f: R \rightarrow R \& g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$.
12. Prove that $3 \sin ^{-1} x=\operatorname{Sin}^{-1}\left(3 x-4 x^{3}\right) x \varepsilon[-1 / 2,1 / 2]$.
13. $[\mathrm{x}]$ is greater integer function $\mathrm{f}(\mathrm{x})=|x| \& g(x)=[x], \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \& \mathrm{~g}: \mathrm{R} \rightarrow \mathrm{R}$ find fog(-1/2) \& g of $(-$ 1/2)
14. Find the equation of line joining (31) \& $(9,3)$ using determined.
15. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2} . x \neq 2$ at $x=10$
16. Find $\frac{d y}{d x}$ if $a x+b y^{2}=\cos y$.
17. Find the approximate change in the volume of a cube of side x meters caused by increasing the side by 3%.
18. Integrate $\frac{\cot ^{6} \sqrt{x} \operatorname{cosec}^{2} \sqrt{x}}{\sqrt{x}}$ with respect to x.
19. Evaluate $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$.
20. Find the order and degree, of the differential equation $\frac{d^{4} y}{d x^{4}}+\operatorname{Sin}\left(\frac{d^{3} y}{d x^{3}}\right)=0$.
21. If two vectors $\vec{a} \& \vec{b}$ such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$, find $|\vec{a}-\vec{b}|$.
22. Find the area of the parallelogram whose adjacent sides are determined by the vectors.

$$
\vec{a}=\hat{i}-\hat{j}+3 \hat{k} . \& \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k} .
$$

23. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \& \frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
24. Find the probability distribution of number of heads in two tosses of a coin.

PART-C

III. Answer any TEN questions:

10X3=30
25. Let Z be the set of all integers $\& R$ is the relation on z defined as $R=\{(a, b)$: a, bez \& $a-b$ is divisible by 5$\}$ Prove that R is an equivalence relation.
26. Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$.
27. Using elementary transformations, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$.
28. Differentiate $\sin ^{2} \mathrm{x}$ with respect to $\mathrm{e}^{\cos \mathrm{x}}$.
29. Find 2 positive numbers. x and y such that $x+y=60$ and $x y^{3}$ is maximum.
30. Find all the points of local maxima and minima of the function $f(x)=2 x^{3}-6 x^{2}+6 x+5$.
31. Evaluate $\int \sin 3 x \cos 4 x d x$.
32. Evaluate $\int e^{x} \sin \mathrm{x} d \mathrm{x}$.
33. Determine the area of the region bounded by $y^{2}=x$ and the lines $x=1, x=4$ and x-axis.
34. Find the equation of the curve passing through the point $(1,1)$, given that the slope of the tangent to the curve at any point is $\frac{x}{y}$.
35. Find the equation of plane that contains the point $(1,-1,2) \&$ is perpendicular to each of the planes $2 x$ $+3 y-2 z=5 \& x+2 y-3 z=8$.
36. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$.
37. Find the equation of the plane passing through the intersection of the planes $3 x-y+2 z-4=0$ $x+y+z-2=0$ and the point $(2,2,1)$.
38. A bag contains 4 red and 4 block balls another bag contains 2 red and 6 block balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

PART-D

IV. Answer any SIX of the following:
39. Let $\mathrm{A}=\mathrm{R}-\{3\} \& \mathrm{~B}=\mathrm{R}-\{1\}$. consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x-2}{x-3}$ show that f is invertible \& write the inverse of f .
40. If $A=\left[\begin{array}{ccc}1 & +1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right] B=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right] \& C=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right]$ find $A(B C) \&(A B) C$ \& show that $A(B C)=(A B) C$
41. Solve by matrix method.

$$
\begin{aligned}
& x+y+z=6 \\
& y+3 z=11 \\
& x-2 y+z=0
\end{aligned}
$$

42. If $\mathrm{y}=\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}}$. Prove that $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$.
43. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the width y is increasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$. When $\mathrm{x}=10 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$ find the rate of change of permeter and the area of rectangle.
44. Find the integral of $\frac{1}{\sqrt{a^{2}+x^{2}}}$ w.r.to x and hence evaluate $\frac{3 x^{2}}{\sqrt{x^{6}+1}} d x$.
45. Using imtergation find the area of the region bounced by the trinangle whose vertices are $(-1,0)(1,3)$ and $(3,2)$.
46. Solove the differential equations $\mathrm{x} \log \mathrm{x} \frac{d y}{d x}+y=\frac{2}{3} \log x$.
47. Derive the equation of a line in space passing through two given points both in vector and cartesian sorm.
48. If a fair coin is tossed 10 times. Find the probabality of
i) exactly six heads \&
ii) atleast six heads.

PART-E

V. Answer any one of the following:
$1 \mathrm{X10}=10$
49. a) minimize \& maximize $Z=3 x+9 y$. subject to the constraints. $x+3 y \leq 60, x+y \geq 10, x \leq y \&$ $x \geq 0, y \geq 0$, by graphical method.
b) Find the value of k of $f(x)=\frac{1-\cos 2 x}{1+\cos 2 x}$ When $x \neq 0$ and $f(x)=k$ when $x=0$ is a continuous function.
50. a) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(\mathrm{a}-\mathrm{x}) d x$ then evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$.
b) Prove that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.

