Class: 1

FIRST REVISION EXAMINATION 2019-20

Time Allowed: 3.00 H	ours] MATHEM	MATHEMATICS		Max. Marks : 90	
INSTRUCTION :	1. Check the question paper for fairness, inform the Hall Super 2. Use Blue or Black ink to writ	visor immediately. e and underline and	•	ams.	
correspondin	the questions. nost suitable answer from the give ng answer.	n four alternatives a			
_ ·	nce X has binomial distribution w	ith n = 25 and p =	0.8 then standard d	eviation of X	
is (a) 6	(b) 4	(c) 3	(d) 2		
2. The operation *	defined by $a*b = \frac{ab}{7}$ is not a bi	nory operation on			
a) Q ⁺		(c) R	(d) C		
3. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two b	oolean matrices of	the same type, the	n AVB =	
$ (a) \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} $	(b) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$ (d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $		
4. If the direction	cosines of a line are $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{6}$	then	•		
 a) C = ± 3 5. The Principal v 	b) $C = \pm \sqrt{3}$ value of (Sin 40° + i cos 40°) ⁵ is	c) C > 0	d) 0 < C < 1		
(a) -110°	(b) $-\frac{2\pi}{3}$	(c) 70°	(d) 110°	•	
	ਟੋ=-cx(ਕੇxb) c,cxਕੇ]=[ਕੇ ਲੇ ਟੇ]²	(b) $[\vec{a} - \vec{b}, \vec{b}]$ (d) $\vec{a} \times \vec{b} = \vec{b}$	x a		
7. If A is a non - s	singular matrix such that $A^{-1} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	5 3 then (A ^T)-1	=		
$(a)\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$	re .ol	(c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$	(d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$		
8. The domain of	the function defined by $f(x) = \sin x$. (4) 1 4 OI		
(a) [1,2] 9. j ²⁰²⁰ + j ⁻²⁰²⁰ =	(b) [-1,1]	(c) [0,1]	(d) [-1,0]		
a) 1	b) -1 + i	c) 2-i	d) 2		
10. A zero of x ³ +		(a) 4;	, (d) -X		
(a) 0	(b) 4	(c) 4i	(d) -4	V/12/ Mat / 1	

11.	The angle between	two curves y² = x and	x² =y at origin is		
	(a) $\tan^{-1}\left(\frac{3}{4}\right)$	(b) $\tan^{-1}\left(\frac{4}{3}\right)$	(c) $\frac{\pi}{2}$	$\cdot (d) \ \frac{\pi}{4}$	
12.	The value of	$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$	is:		
	(a) √e	(b) - √e -	(c) e	(d) -e	
13.	Area of the greates	et rectangle inscribed in	a D		
	(a) 2ab	(b) ab	(c) √ab	(d) $\frac{a}{b}$	
		e^{y}) then value of $\frac{\partial v}{\partial x}$	•		
		b) $\frac{1}{e^x + e^y}$		d)	
		tor of the differential e		<u>· 1</u> I	
	(a) $\frac{1}{x+1}$	(b) x + 1	(c) $\frac{1}{\sqrt{x+1}}$	(d)	
16.	The degree and or	der of the differential e	quation respectively a	ire	
	(a) 3,1	(b) 2,2	(c) 1,3	(d)	
17.	$\text{If } \int_0^a \frac{1}{4+x^2} dx = \frac{1}{2}$	(b) 2,2 $\frac{\pi}{8}$ then the value of a	is		
	(a) 4		(c) 3	(d) 2	
18.	$\int_{0}^{\infty} \left \begin{array}{cc} \cos^{2}x & -1 \\ \sin^{2}x & 1 \end{array} \right dx$	₹			
	a) -π	b) π	c) $\pi/2$	d) $-\pi/2$	
19.		then the order of the s		•	
	• •	(b) 4	(c) 2	(d) 5	
20.	[3] + ₈ [7] =			•	
	(a) [10]	(b) [8]	(c) [5]	(d) [2]	
	_		PART – B		
No	te (i) Answer any	Seven questions.			7X2= 14
	(ii) Question No	.30 is compulsory an	d choose any nine f	from the remaining.	
21.	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is not	on - singular find A ⁻¹ .			
22.	Construct a cubic	eqaution with roots 1,1	I and -2.		
23.	Find $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$				V/12/ Mat / 2

24. Find \vec{a} . (\vec{b} x \vec{c}) if $\vec{a} = \hat{1} - 2\hat{1} + 3\hat{k}$, $\vec{b} = 2\hat{1} + \hat{1} - 2\hat{k}$ and $\vec{c} = 3\hat{1} + 2\hat{1} + \hat{k}$.
25. If $ z = 3$ then show that $7 < z + 6-8i \le 13$.
26. The probability density function of X is given by $f(x) =\begin{cases} k \times e^{-3x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$

27. If $g(x) = x^2 + \sin x$ then find dg

28. Evaluate $\int_{1}^{1} [2x] dx$ where [] is the greatest integer function.

29 Find the integrating factor of
$$\frac{dy}{dx} + \frac{y}{x} = \sin x$$

PART - C

(i) Answer any seven questions. Note

7X3 = 21

(ii) Question No.40 is compulsory and choose any nine from the remaining

31. Find the asymptotes of the curve
$$f(x) = \frac{2x^2 - 8}{x^2 - 16}$$

32. Find the vertices, foci for the hyperbola $9x^2 - 16y^2 = 144$

33. Find the inverse of
$$\begin{bmatrix} 2 & -1 \\ 5 & -2 \end{bmatrix}$$
 by Gauss - Jordan method.

34. Find the square root of -5-12i

35. If the two lines
$$\frac{x-5}{5m+2} = \frac{2-y}{5} = \frac{1-z}{-1}$$
 and $x = \frac{2y+1}{4m} = \frac{1-z}{-3}$

then find the value of m.

36.

37.

38.

39.

40. Prove that $p \rightarrow q \equiv \neg pvq$ by truth table.

PART - D

(i) Answer All the questions. Note

7X5 = 35

41. (a) Find the paramatric form of vector quation and cortesian equation of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9

(Or)

(b) The region enclosed by the circle $x^2 + y^2 = a^2$ is divided into two segments by the line x = h, find the area of the smaller segment.

V/12/ Mat / 3

(a) Solve by Gaussian - Elimination method. 2x + 3y + 3z = 5, x - 2y + z = -4 and 3x - y - 2z = 3.

(Or)

- (b) Prove that $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\left[\frac{x + y + z xyz}{1 xy yz zx}\right]$
- 43. (a) Prove that the values of $4\sqrt{-1}$ are $\pm \frac{1}{\sqrt{2}}(1\pm i)$

(Or)

(b) For the ellipse $4x^2+y^2+24x-2y+21=0$, find the centre, vertices and the foci. Also prove that the length of the latus rectum is 2.

from the starting point. Find the angle of projection.

(Or)

- (b) At 10.00 A.M a woman took a cup of hot instant coffee from her microwave oven and placed it on a nearby kitchen counter to cool. At this instant the tempeature of the coffee was 180°F and 10 minutes later it was 160°F. Assume that constant temperature of the kitchen was 70°F.
 - (i) What was the temperature of the coffee at 10.15 A.M?
 - (ii) The woman likes to drinks coffee when its temperature is between 130°F and 140°F between what times should she have drunk the coffee?
- 46. (a) The mean and standard deviation of a binomial variate X are respectively 6 and 2. Find (i) the probability mass function. (ii) P (X=3) (iii) P(X≥2)

(Or

- (b) Verify: $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}] \vec{b} [\vec{b} \vec{c} \vec{d}] \vec{a} \text{ if } \vec{a} = \vec{i} + \vec{j} \vec{k}, \vec{b} = i + 2\vec{j} 3\vec{k}, \vec{c} = 2\vec{i} 3\vec{i}, \vec{d} = 3\vec{i} + 4\vec{k}$
- 47. (a) Find the acute angle between the curves $y = x^2$ and $x = y^2$ at their points of intersection (0,0),(1,1)

(Or)

(b) If
$$u = \sin^{-1}\left[\frac{x + y}{\sqrt{x} + \sqrt{y}}\right]$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$.