No. of Printed Pages : 23

		6023
பதிவு எண் Register Number	5 0	

PART - III கணிதம் / MATHEMATICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Versions)

நேரம் : 3 மணி] Time Allowed : 3 Hours] [மொத்த மதிப்பெண்கள் : 200 [Maximum Marks : 200

- அறிவுரை : (1) அனைத்து வினாக்களும் சரியாக பதிவாகி உள்ளதா என்பதனை சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின் அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.
 - (2) நீலம் அல்லது கருப்பு மையினை மட்டுமே எழுதுவதற்கும், அடிக்கோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.

Instructions : (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.

(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

பகுதி – அ / PART **-** A

- குறிப்பு : (i) அனைத்து வினாக்களுக்கும் விடையளிக்கவும். 40x1=40
 - (ii) கொடுக்கப்பட்ட நான்கு விடைகளில் மிகவும் ஏற்புடைய விடையினை தேர்ந்தெடுத்து குறியீட்டுடன் விடையினையும் சேர்த்து எழுதுக.

Note : (i) All questions are compulsory.

(ii) Choose the most suitable answer from the given **four** alternatives and write the option code and corresponding answer.

[திருப்புக / Turn over

Use Blue or Black ink to wri

6023

 $x^{2/3} + y^{2/3} = 4$ என்ற வளைவரையின் வில்லின் நீளம் : 96 24 (3) 12 (4)(2)(1) 48 The length of the arc of the curve $x^{2/3} + y^{2/3} = 4$ is : 96 (2)24 (3) 12 (4)(1) 48 X என்ற சமவாய்பு மாறியின் 3,4 மற்றும் 12 ஆகிய மதிப்புகள் முறையே 2. 1, 1 மற்றும் 5 ஆகிய நிகழ்தகவுகளைக் கொள்ளுமெனில், E(X) இன் மதிப்பு : (3) 6 (1) 5 (2) 7 (4) 3 X is a random variable taking the values 3, 4 and 12 with probabilities $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{5}{12}$. Then E(X) is : 3 (2) 7 (3) 6 (4)(1) 5 $y^2 - 4x + 4y + 8 = 0$ என்ற பரவளையத்தின் செவ்வகலத்தின் நீளம் : 3. (3) 4 (4)2 (2) 6 (1) 8 The length of the latus rectum of the parabola $y^2 - 4x + 4y + 8 = 0$ is : (4) 2 (3) (1) 8 (2) 6 நாண் AB $\left| \overrightarrow{r} - \left(2\overrightarrow{i} + \overrightarrow{j} - 6\overrightarrow{k} \right) \right| = \sqrt{18}$ என்ற கோணத்தின் விட்டமாகின்றது. A-இன் 4. ஆயத் தொலைகள் (3, 2, – 2) எனில். B இன் ஆயத் தொலைகள் : (4) (1, 0, -10) $(2) \quad (-1, 0, -10) \quad (3) \quad (-1, 0, 10)$ (1) (1, 0, 10)Chord AB is a diameter of the sphere $\left| \overrightarrow{r} - \left(2\overrightarrow{i} + \overrightarrow{j} - 6\overrightarrow{k} \right) \right| = \sqrt{15}$ with co-ordinate of A as (3, 2, -2). The co-ordinates of B is : $(3) \quad (-1, 0, 10) \qquad (4) \quad (1, 0, -10)$ (2) (-1, 0, -10)(1) (1, 0, 10)ஆரம் 5 உள்ள கோளத்தை, தளங்கள் மையத்திலிருந்து 2 மற்றும் 4 தாரத்தில் 5. வெட்டும் இரு இணையான தளங்களுக்கு இடைப்பட்ட பகுதியின் வளைப்பரப்பு (4) 30π (3) 10π (2) 40π 20 TT (1)The curved surface area of a sphere of radius 5, intercepted between two parallel planes of distances 2 and 4 from the centre is :

2

(1) 20π (2) 40π (3) 10π (4) 30π

வெள்ளப் பெருக்கத்தின் போது ஹெலிகாப்டர் மூலம் இடப்பட்ட உணவுப் 6. பொருட்கள் "t" வினாடியில் கடந்த தூரம் $y = \frac{1}{2} \operatorname{gt}^2 (g = 9.8 \, \mathrm{tc}/allown \mu^2)$ எனில், அது போடப்பட்ட "2" வினாடிகளுக்குப் பின் அப்பொருளின் வேகம் : (1) 19.6 மீ/வினாடி (2) 9.8 மீ/வினாடி (3) - 19.6 மீ/வினாடி (4)– 9.8 மீ/வினாடி Food packets were dropped from a helicopter during the flood and distance fallen in "t" seconds is given by $y = \frac{1}{2} \text{gt}^2$ (g = 9.8 m/s²). Then the speed of the food packet after it has fallen for "2" seconds is : (2) 9.8 m/sec (1) 19.6 m/sec (3) -19.6 m/sec (4) -9.8 m/sec7. (8, 0) என்ற புள்ளியிலிருந்து $\frac{x^2}{64} - \frac{y^2}{36} = 1$ என்ற அதிபரவளையத்தின் தொலைத் தொடுகோடுகளுக்கு வரையப்படும் செங்குத்து தூரங்களின் பெருக்கற்பலன் : (3) $\frac{6}{25}$ (1) $\frac{25}{576}$ (2) $\frac{576}{25}$ $(4) \frac{25}{\sqrt{25}}$ The product of the perpendiculars drawn from the point (8, 0) on the hyperbola to its asymptotes is $\frac{x^2}{64} - \frac{y^2}{36} = 1$ is : (1) $\frac{25}{576}$ (2) $\frac{576}{25}$ (3) $\frac{6}{25}$ (4) $\frac{25}{6}$ ஒரு வளைவரையின் சாய்வு "P" க்கு முன் மிகையாக இருந்து "P" க்கு பின் 8. குறையாக இருப்பின் "P" என்பது : (1) மீச்சிறுப் புள்ளி மீப்பெருப் புள்ளி (2) தொடர்ச்சியற்ற புள்ளி (3) வளைவு மாற்றுப்புள்ளி (4)If the Gradient of a curve changes from positive just before "P" to negative just after "P" then "P" is a : (2)Maximum point (1)Minimum point (3)Inflection point (4)Discontinuous point

[திருப்புக / Turn over

- 16x² + 25y² = 400 என்ற வளைவரையின் குவியத்திலிருந்து ஒரு தொடுகோட்டுக்கு வரையப்படும் செங்குத்துக் கோடுகளின் அடியின் நியமப்பாதை :
 - (1) $x^2 + y^2 = 4$ (2) $x^2 + y^2 = 25$ (3) $x^2 + y^2 = 16$ (4) $x^2 + y^2 = 9$ The locus of foot of perpendicular from the focus to a tangent of the curve $16x^2 + 25y^2 = 400$ is :
 - (1) $x^2 + y^2 = 4$ (2) $x^2 + y^2 = 25$ (3) $x^2 + y^2 = 16$ (4) $x^2 + y^2 = 9$
- 10. x=f(y) என்ற வளைவரை y-அச்சிற்கு இடப்புறம் y=c மற்றும் y=d ஆகிய கோடுகளுடன் ஏற்படுத்தும் பரப்பு:

(1)
$$\int_{c}^{d} x \, dy$$
 (2) $-\int_{c}^{d} x \, dy$ (3) $\int_{c}^{d} y \, dx$ (4) $-\int_{c}^{d} y \, dx$

The area bounded by the curve x = f(y) to the left of *y*-axis between the lines y = c and y = d is :

(1) $\int_{c}^{d} x \, dy$ (2) $-\int_{c}^{d} x \, dy$ (3) $\int_{c}^{d} y \, dx$ (4) $-\int_{c}^{d} y \, dx$

11.
$$z_n = \cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}$$
 எனில் $z_1 \cdot z_2 \dots z_6$ என்பது :

 (1) 1
 (2) -1
 (3) i
 (4) -i

 If $z_n = \cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}$ then $z_1 \cdot z_2 \dots z_6$ is :
 (4) -i

 (1) 1
 (2) -1
 (3) i
 (4) -i

- 12. $\vec{a} = 3\vec{i} + 2\vec{j} + 9\vec{k}$, $\vec{b} = \vec{i} + m\vec{j} + 3\vec{k}$ என்பன இணை வெக்டர்கள் எனில் m இன் மதிப்பு:
 - (1) $\frac{3}{2}$ (2) $\frac{2}{3}$ (3) $\frac{-3}{2}$ (4) $\frac{-2}{3}$

If the vectors $\vec{a} = 3\vec{i} + 2\vec{j} + 9\vec{k}$ and $\vec{b} = \vec{i} + m\vec{j} + 3\vec{k}$ are parallel then m is :

(1) $\frac{3}{2}$ (2) $\frac{2}{3}$ (3) $\frac{-3}{2}$ (4) $\frac{-2}{3}$

6023

13. $z_1 = 4 + 5i$, $z_2 = -3 + 2i$ எனில் $\frac{z_1}{z_2}$ என்பது : (1) $\frac{2}{13} - \frac{22}{13}i$ (2) $\frac{-2}{13} + \frac{22}{13}i$ (3) $\frac{-2}{13} - \frac{23}{13}i$ (4) $\frac{2}{13} + \frac{22}{13}i$ If $z_1 = 4 + 5i$, $z_2 = -3 + 2i$ then $\frac{z_1}{z_2}$ is : (1) $\frac{2}{13} - \frac{22}{13}i$ (2) $\frac{-2}{13} + \frac{22}{13}i$ (3) $\frac{-2}{13} - \frac{23}{13}i$ (4) $\frac{2}{13} + \frac{22}{13}i$ **14.** $\int_{0}^{\pi} \sin^2 x \cos^3 x \, dx$ @ன் மதிப்ப:

(1)
$$\pi$$
 (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{4}$ (4) 0
The value of $\int_{0}^{\pi} \sin^{2} x \cos^{3} x \, dx$ is:
(1) π (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{4}$ (4) 0

15. p என்கிற கூற்று ''சீதாவுக்கு படிப்பது பிடிக்கும்'' மற்றும் q என்கிற கூற்று ''சீதாவுக்கு விளையாடுவது பிடிக்கும்'' எனில், ''சீதாவுக்கு படிப்பதும் விளையாடுவதும் பிடிக்காது'' என்பது :

(1)
$$\sim p \wedge (\sim q)$$
 (2) $p \wedge (\sim q)$ (3) $\sim p \wedge q$ (4) $p \wedge q$

If p stands for the statement "Sita likes reading" and q for the statement "Sita likes playing". "Sita likes neither reading nor playing" stands for :

(1) $\sim p \wedge (\sim q)$ (2) $p \wedge (\sim q)$ (3) $\sim p \wedge q$ (4) $p \wedge q$

[திருப்புக / Turn over

В

16. X என்ற சமவாய்ப்பு மாறியின் நிகழ்தகவு நிறைச்சார்பு பரவல் பின்வருமாறு :

Х	-2	3	1					
P(X = x)	$\frac{\lambda}{6}$	$\frac{\lambda}{4}$	$\frac{\lambda}{12}$	λ வின் மதிப்பு	1			
(1) 1			(2)	2	(3)	3	(4)	4

A random variable X has the following probability mass function as follows :

Х	-2	3	1
P(X = x)	$\frac{\lambda}{6}$	$\frac{\lambda}{4}$	$\frac{\lambda}{12}$

Then the value of λ is :

(1) 1 (2) 2 (3) 3 (4) 4

17.
$$\frac{dy}{dx} = \frac{x - y}{x + y} \text{ crost} \dot{\omega}:$$
(1)
$$2xy + y^2 + x^2 = c$$
(2)
$$x^2 + y^2 - x + y = c$$
(3)
$$x^2 + y^2 - 2xy = c$$
(4)
$$x^2 - y^2 - 2xy = c$$
If
$$\frac{dy}{dx} = \frac{x - y}{x + y} \text{ then }:$$
(1)
$$2xy + y^2 + x^2 = c$$
(2)
$$x^2 + y^2 - x + y = c$$
(3)
$$x^2 + y^2 - 2xy = c$$
(4)
$$x^2 - y^2 - 2xy = c$$

18. ஒரு சமவாய்ப்பு மாறி X பாய்ஸான் பரவலைப் பின்பற்றுகிறது. மேலும் E(X²) = 30 எனில் பரவலின் பரவற்படி :

(1) 6 (2) 5 (3) 30 (4) 25

If a random variable X follows poisson distribution such that $E(X^2) = 30$ then the variance of the distribution is :

(1) 6 (2) 5 (3) 30 (4) 25

- **19.** (5, 3) லிருந்து $4x^2 6y^2 = 24$ என்ற அதிபரவளையத்திற்கு வரையப்படும் தொடுகோடுகளின் தொடுநாணின் சமன்பாடு :
 - (1) 9x + 10y + 12 = 0 (2) 10x + 9y 12 = 0
 - $(3) \quad 9x 10y + 12 = 0 \qquad (4) \quad 10x 9y 12 = 0$

The equation of chord of contact of tangents from (5, 3) to the hyperbola $4x^2 - 6y^2 = 24$ is :

- (1) 9x + 10y + 12 = 0 (2) 10x + 9y 12 = 0
- $(3) \quad 9x 10y + 12 = 0 \qquad (4) \quad 10x 9y 12 = 0$

20.
$$\frac{d^2 y}{dx^2} - y + \left(\frac{dy}{dx} + \frac{d^3 y}{dx^3}\right)^3 = 0$$

என்ற வகைக்கெழுச் சமன்பாட்டின் வரிசை மற்றும் படி :

(1) 2, 3 (2) 3, 3 (3) 3, 2 (4) 2, 2

The order and degree of the differential equation $\frac{d^2 y}{dx^2} - y + \left(\frac{dy}{dx} + \frac{d^3 y}{dx^3}\right)^3 = 0$ are :

- (1) 2, 3 (2) 3, 3 (3) 3, 2 (4) 2, 2
- 21. dx+xdy=e^{-y}sec²ydy இன் தொகைக் காரணி :
 - (1) e^x (2) e^{-x} (3) e^y (4) e^{-y}

The integrating factor of $dx + xdy = e^{-y}sec^2ydy$ is :

(1) e^x (2) e^{-x} (3) e^y (4) e^{-y}

தளமும் வெட்டிக் கொள்ளும் புள்ளி : (2) (-8, -6, -22)(1)(8, 6, 22)

(4) (-4, -3, -11)(4, 3, 11)(3)

The point of intersection of the line $\vec{r} = (\vec{i} - \vec{k}) + t(\vec{3}\vec{i} + 2\vec{j} + 7\vec{k})$ and the plane

- \overrightarrow{r} . $(\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}) = 8$ is: (2) (-8, -6, -22)(1) (8, 6, 22) (4) (-4, -3, -11)(3) (4, 3, 11)
- 23. (2m+3)+i(3n−2) என்ற கலப்பெண்ணின் இணையெண் (m−5)+i (n+4) எனில் (n, m) என்பது :
 - (1) $\left(\frac{-1}{2}, -8\right)$ (2) $\left(\frac{-1}{2}, 8\right)$ (3) $\left(\frac{1}{2}, -8\right)$ (4) $\left(\frac{1}{2}, 8\right)$

If (m-5)+i (n+4) is the complex conjugate of (2m+3)+i(3n-2) then (n, m) are :

- (1) $\left(\frac{-1}{2}, -8\right)$ (2) $\left(\frac{-1}{2}, 8\right)$ (3) $\left(\frac{1}{2}, -8\right)$ (4) $\left(\frac{1}{2}, 8\right)$
- 24. ஒரு நேர்க்கோட்டில் நகரும் புள்ளியின் திசை வேகமானது, அக்கோட்டில் ஒரு நிலைப்புள்ளியிலிருந்து நகரும் புள்ளிக்கு இடையில் உள்ள தொலைவின் வர்க்கத்திற்கு நேர் விகிதமாக அமைந்துள்ளது எனில், அதன் முடுக்கம் பின்வரும் ஒன்றினுக்கு விகிதமாக அமைந்துள்ளது (தூரத்தினை S என்க).

(1) If the velocity of a particle moving along a straight line is directly proportional to the square of its distance from a fixed point on the line, then its acceleration is proportional to (distance is S).

(3) S³

 S^4

(4)

54 (1)S (2) S^2 (3) S³ (4)

 S^2

(2)

கீழ்க்கண்டவற்றுள் எது குலம் அல்ல ? 25.

S

(3) (Z, .) (4) (R, +)(2) (Z, +)(1) $(Z_n, +_n)$ Which of the following is NOT a group? (1) $(Z_n, +_n)$ (3) (Z, .) (2) (Z, +)(4) (R, +)

- பின்வருவனவற்றுள் சரியான கூற்றுகள் :
 - (i) ஒரு வளைவரை ஆதியைப் பொறுத்து சமச்சீர் பெற்றிருப்பின் அது இரு அச்சுகளைப் பொறுத்தும் சமச்சீர் பெற்றிருக்கும்.
 - ஒரு வளைவரை இரு அச்சுகளைப் பொறுத்து சமச்சீர் பெற்றிருப்பின் அது ஆதியைப் பொறுத்தும் சமச்சீர் பெற்றிருக்கும்.
 - (iii) f(x, y) = 0 என்ற வளைவரை y = x என்ற கோட்டைப் பொறுத்து சமச்சீர் பெற்றுள்ளது எனில், f(x, y) = f(y, x).
 - (iv) f(x, y) = 0 என்ற வளைவரைக்கு f(x, y) = f(-y, -x) உண்மையாயின் அது ஆதியைப் பொறுத்து சமச்சீர் பெற்றிருக்கும்.
 - (1) (ii) മ്ത്വ്യാഥ് (iii) (2) (i) മത്ത്വാഥ് (iv)
 - (3) (i) மற்றும் (iii) (4) (ii) மற்றும் (iv)

Identify the TRUE statements in the following :

- (i) If a curve is symmetrical about the origin, then it is symmetrical about both axes.
- (ii) If a curve is symmetrical about both the axes, then it is symmetrical about the origin.
- (iii) A curve f(x, y) = 0 is symmetrical about the line y = x if f(x, y) = f(y, x).
- (iv) For the curve f(x, y) = 0, if f(x, y) = f(-y, -x), then it is symmetrical about the origin.
- (1) (ii) and (iii) (2) (i) and (iv) (3) (i) and (iii) (4) (ii) and (iv)
- அலகு அணி I இன் வரிசை n, k≠0 ஒரு மாறிலி எனில், adj (kI) =

 kⁿ(adj I)
 k(adj I)
 k(adj I)
 k²(adj I)
 kⁿ(adj I)
 kⁿ(adj I)
 k(adj I)
 k²(adj I)
 kⁿ(adj I)
- 28. a, b, c என்பன a, b, c ஆகியவற்றை மட்டுக்களாகக் கொண்டு வலக்கை அமைப்பில் ஒன்றுக்கொன்று செங்குத்தான கெக்டர்கள் எனில் [a b c] இன் மதிப்பு:
 - (1) $a^2b^2c^2$ (2) 0 (3) $\frac{1}{2}abc$ (4) abc

If a, b, c are a right handed triad of mutually perpendicular vectors of magnitude a, b, c then the value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ is :

(1) $a^2b^2c^2$ (2) 0 (3) $\frac{1}{2}$ abc (4) abc

[திருப்புக / Turn over

29. z₁ = a + ib, z₂ = - a + ib எனில் z₁ - z₂ அமைவது :

(1)	மெய் அச்சில்	(2)	கற்பனை அச்சில்		
(3)	y=x என்ற நேர்க்கோட்டில்	(4)	y = – x என்ற நேர்க்கோட்டில்		
If z ₁	$= a + ib, z_2 = -a + ib$ then $z_1 - z_2$	lies on			
(1)	Real axis	(2)	Imaginary axis		
(3)	The line $y = x$	(4)	The line $y = -x$		

- 30. மூன்று மாறிகளில் அமைந்த மூன்று நேரியச் சமன்பாடுகளின் தொகுப்பில் Δ=0 மற்றும் Δ வின் எல்லா 2×2 சிற்றணிக் கோவைகளின் மதிப்புகள் பூச்சியங்களாகி மற்றும் Δ_x அல்லது Δ_y அல்லது Δ₂-வின் ஏதேனும் ஒரு 2×2 சிற்றணிக் கோவை பூச்சியமற்றதாயின், தொகுப்பானது :
 - (1) ஒருங்கமைவு உடையது
 - (2) ஒருங்கமைவு அற்றது
 - (3) ஒருங்கமைவு உடையது மற்றும் தொகுப்பானது இரு சமன்பாடுகளாக மாறும்.
 - (4) ஒருங்கமைவு உடையது மற்றும் தொகுப்பானது ஒரு சமன்பாடாக மாறும்.

In the system of 3 linear equations with three unknowns, if $\Delta = 0$ and all 2×2 minors of $\Delta = 0$ and atleast one 2×2 minor of Δ_x or Δ_y or Δ_z is non-zero then the system is :

- (1) Consistent
- (2) Inconsistent
- (3) Consistent and the system reduces to two equations
- (4) Consistent and the system reduces to a single equation

В

31. p யின் மெய்மதிப்பு T மற்றும் q இன் மெய்மதிப்பு F எனில், பின்வருவனவற்றில் எவை மெய்மதிப்பு T என இருக்கும் ?

(i)	$\mathbf{p} \lor \mathbf{q}$	(ii)	$\sim p \lor q$	(iii)	p ∨ (~q)	(iv)	p ^ (~q)
(1)	(i), (ii), (iii)	(2)	(i), (ii), (iv)	(3)	(i), (iii), (iv)	(4)	(ii), (iii), (iv)
If p	is T and q is F,	then w	hich of the follo	wing h	ave the truth va	lue T ?	
(i)	$p \lor q$	(ii)	$\sim p \lor q$	(iii)	p ∨ (~q)	(iv)	p∧(~q)
(1)	(i), (ii), (iii)	(2)	(i), (ii), (iv)	(3)	(i), (iii), (iv)	(4)	(ii), (iii), (iv)

32. OQ என்ற அலகு வெக்டர் மீதான OP இன் வீழலானது OPRQ என்ற இணைகரத்தின் பரப்பை போன்று மும்மடங்காயின் POQ ஆனது :

(1)
$$\tan^{-1}\left(\frac{1}{3}\right)$$
 (2) $\cos^{-1}\left(\frac{3}{10}\right)$
(3) $\sin^{-1}\left(\frac{3}{\sqrt{10}}\right)$ (4) $\sin^{-1}\left(\frac{1}{3}\right)$

The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of parallelogram OPRQ. Then $|\underline{POQ}|$ is :

- (1) $\tan^{-1}\left(\frac{1}{3}\right)$ (2) $\cos^{-1}\left(\frac{3}{10}\right)$
- (3) $\sin^{-1}\left(\frac{3}{\sqrt{10}}\right)$ (4) $\sin^{-1}\left(\frac{1}{3}\right)$
- 33. y²(a+x) = x²(3a-x) என்ற வளைவரை பின்வருவனவற்றுள் எந்தப் பகுதியில் அமையாது ?
 - (1) x > 0(2) 0 < x < 3a(3) $x \le -a$ in jugi jugi x > 3a(4) -a < x < 3a

In which region the curve $y^2(a+x) = x^2(3a-x)$ does not lie ?

- (1) x > 0 (2) 0 < x < 3a
- (3) $x \le -a \text{ and } x > 3a$ (4) $-a \le x \le 3a$

[திருப்புக / Turn over

- ஒரு சதுரத்தின் மூலை விட்டத்தின் நீளம் அதிகரிக்கும் வீதம் 0.1 செ.மீ./வினாடி 34. எனில் பக்க அளவு $rac{15}{\sqrt{2}}$ செ.மீ. ஆக இருக்கும்போது அதன் பரப்பளவு அதிகரிக்கும் வீதம் :
 - (1) 1.5 செ.மீ.²/வினாடி (2) 3 செ.மீ.²/வினாடி

3√2 செ.மீ.²/வினாடி (3)(4) 0.15 செ.மீ.²/வினாடி If the length of the diagonal of a square is increasing at the rate of 0.1 cm/sec. then the

rate of increase of its area when the side is $\frac{15}{\sqrt{2}}$ cm, is : (2) $3 \text{ cm}^2/\text{sec}$

- $1.5 \text{ cm}^2/\text{sec}$ (1) $3\sqrt{2}$ cm²/sec (4) 0.15 cm²/sec (3)
- **35.** 0 0 1 0 1 0 என்ற அணியின் நேர்மாறு.
 - (2) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ $(1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $(4) \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $(3) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

The inverse of the matrix $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ is : 0

(2) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ $(1) \quad \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $(3) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $(4) \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6023

 ஒரு பெட்டியில் 6 சிவப்பு மற்றும் 4 வெள்ளைப் பந்துகள் உள்ளன. அவற்றிலிருந்து 3 பந்துகள் சமவாய்ப்பு முறையில் திருப்பி வைக்காமல் எடுக்கப்பட்டால், 2 வெள்ளைப் பந்துகள் கிடைக்க நிகழ்தகவு :

(4) $\frac{3}{10}$ 18 (3) $\frac{4}{25}$ $\frac{1}{20}$ (2) (1)

A box contains 6 red and 4 white balls. If 3 balls are drawn at random, the probability of getting 2 white balls without replacement, is :

(1)
$$\frac{1}{20}$$
 (2) $\frac{18}{125}$ (3) $\frac{4}{25}$ (4) $\frac{3}{10}$

 37.
 0
 2
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 (3) 5 (2)2 3 (4) (1) 0 5 (4)(2)2 (3) 3 (1)0

ஆதிப்புள்ளியை மையமாகக் கொண்ட வட்டங்களின் தொகுப்பின் வகைக்கெழுச் 38. சமன்பாடு :

(2) xdy - ydx = 0(1)xdy + ydx = 0

 $(4) \quad xdx - ydy = 0$ (3)xdx + ydy = 0

The differential equation of all circles with centre at the origin is :

(2) xdy - ydx = 0xdy + ydx = 0(1) (4) xdx - ydy = 0xdx + ydy = 0(3)

[திருப்புக / Turn over

B

39. $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ மற்றும் $\vec{b} = 3\vec{i} + \vec{j} + 2\vec{k}$ எனில் \vec{a} க்கும் \vec{b} க்கும் செங்குத்தாக உள்ள ஒரு ஓரலகு வெக்டர் :

(1)
$$\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{3}}$$
 (2) $\frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{3}}$

(3)
$$\frac{\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}}{\sqrt{3}}$$
 (4) $\frac{\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}}{\sqrt{3}}$

If $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} + \vec{j} + 2\vec{k}$ then a unit vector perpendicular to \vec{a} and \vec{b} is:

(1) $\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{3}}$ (2) $\frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{3}}$

(3)
$$\frac{-\vec{i}+\vec{j}+2\vec{k}}{\sqrt{3}}$$
 (4) $\frac{\vec{i}-\vec{j}-\vec{k}}{\sqrt{3}}$

40. மெய்யெண்களின் கணம் R இல் ∗ என்ற ஈருறுப்புச் செயலி a *b = √a² + b² என வரையறுக்கப்படுகிறது எனில் (3 * 4) * 5 இன் மதிப்பு :

(1) 5 (2) $5\sqrt{2}$ (3) 25 (4) 50

In the set of real numbers R, an operation * is defined by $a*b = \sqrt{a^2 + b^2}$. Then the value of (3 * 4) * 5 is :

(1) 5 (2) $5\sqrt{2}$ (3) 25 (4) 50

15

பகுதி – ஆ / PART - B

- குறிப்பு : (i) எவையேனும் பத்து வினாக்களுக்கு விடையளிக்கவும். 10x6=60
 - (ii) வினா எண் 55 -க்கு கண்டிப்பாக விடையளிக்கவும், பிற வினாக்களிலிருந்து ஏதேனும் ஒன்பது வினாக்களுக்கு விடையளிக்கவும்.
- Note : (i) Answer any ten questions.
 - (ii) Question No. 55 is compulsory and choose any nine from the remaining.
- 41. α -ன் எம்மதிப்புகளுக்கு :

 $\alpha x + y + 3z = 0$

4x + 3y + 8z = 0

4x+2y+4z=0 என்ற தொகுப்பு

- (i) வெளிப்படையான தீர்வு மட்டும் பெற்றிருக்கும்.
- (ii) வெளிப்படையான மற்றும் வெளிப்படையற்ற தீர்வு பெற்றிருக்கும்.

(அணிக்கோவை முறையினை பயன்படுத்துக.)

Find the values of α for which :

 $\alpha x + y + 3z = 0$

4x + 3y + 8z = 0

В

4x + 2y + 4z = 0 have

- (i) only trivial solution
- (ii) trivial and non-trivial solutions
 - by using determinant method.

[திருப்புக / Turn over

6023

42. x+y+z=7

x + 2y + 3z = 18

y + 2z = 6 என்ற சமன்பாடுகளின் தொகுப்பு ஒருங்கமைவு உடையதா என்பதை தர முறையில் ஆராய்க.

Examine the consistency of the system of equations :

x+y+z=7

x + 2y + 3z = 18

y + 2z = 6 by rank method.

(i) → → என்பன ஏதேனும் 43. இரண்டு வெக்டர்கள் எனில் $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 = \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2.$ (ii) $\vec{r} = (3\vec{i} + 2\vec{j} - \vec{k}) + t(\vec{i} + 2\vec{j} + 2\vec{k})$ is in the second secon $\vec{r} = (5\vec{j} + 2\vec{k}) + s(3\vec{i} + 2\vec{j} + 6\vec{k})$ என்ற இரண்டு கோடுகளின் இடைப்பட்ட கோணத்தைக் காண்க. If \vec{a} , \vec{b} are any two vectors, then prove that $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 = \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$. (i) (ii) Find the angle between the lines $\vec{r} = (\vec{3}\vec{i} + 2\vec{j} - \vec{k}) + t(\vec{i} + 2\vec{j} + 2\vec{k})$ and $\vec{r} = \left(\vec{5} \cdot \vec{j} + 2 \cdot \vec{k}\right) + s\left(\vec{3} \cdot \vec{i} + 2 \cdot \vec{j} + 6 \cdot \vec{k}\right)$

44. $2 + \sqrt{3}i$ ஐ ஒரு தீர்வாகக் கொண்ட $x^4 - 4x^2 + 8x + 35 = 0$ எனும் சமன்பாட்டைத் தீர்க்க.

Solve the equation $x^4 - 4x^2 + 8x + 35 = 0$, if one of its roots is $2 + \sqrt{3}i$.

45. ω³ = 1 எனில் (a + b + c) (a + bω + cω²) (a + bω² + cω) = a³ + b³ + c³ - 3abc என நிரூபிக்க.

If $\omega^3 = 1$, then prove that $(a + b + c) (a + b\omega + c\omega^2) (a + b\omega^2 + c\omega) = a^3 + b^3 + c^3 - 3abc$.

46. xy = c² என்ற செவ்வக அதிபரவளையத்தின் ஏதேனும் ஒரு புள்ளியில் வரையப்படும் தொடுகோடு, x,y அச்சுக்களில் வெட்டும் துண்டுகள் a, b எனவும் இப்புள்ளியில் செங்கோட்டின் வெட்டும் துண்டுகள் p, q எனவும் இருப்பின் ap + bq = 0 எனக் காட்டுக.

The tangent at any point of the rectangular hyperbola $xy = c^2$ makes intercepts a, b and the normal at the point makes intercepts p, q on the axes. Prove that ap + bq = 0.

- 47. (i) எல்லா x > 0-க்கும் e^x > 1 + x என நிரூபிக்கவும்.
 - (ii) y=x⁴ என்ற வளைவரைக்கு வளைவு மாற்றப் புள்ளிகள் இருப்பின் காண்க.
 - (i) Prove that $e^x > 1 + x$ for all x > 0.

B

- (ii) Test the curve $y = x^4$ for points of inflection.
- 48. f(1) = 10 மற்றும் 1 ≤ x ≤ 4 என்ற இடைவெளியில் f '(x) ≥ 2 ஆகவும் இருப்பின்,
 f(4) இன் மதிப்பு எவ்வளவு சிறியதாக இருக்க முடியும்?

If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be ?

[திருப்புக / Turn over

49. u என்பது x, y இல் அமைந்த n -ஆம் படி சமப்படித்தான சார்பாயின்

$$x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y} = (n-1)\frac{\partial u}{\partial x}$$

என்பதை யூலரின் தேற்றத்தைப் பயன்படுத்தி நிறுவுக.

If u is a homogeneous function of x and y of degree n, then prove that $x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y} = (n-1)\frac{\partial u}{\partial x}$ Using Euler's theorem :

50.
$$\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx$$
 -ன் மதிப்பினைக் காண்க.

Evaluate
$$: \int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx$$

51. (3D²+4D+1)y=3e^{-x/3} என்ற வகைக்கெழுச் சமன்பாட்டைத் தீர்க்க.
 Solve : (3D²+4D+1)y=3e^{-x/3}

52. p → q மற்றும் q → p சமானமற்றவை எனக் காட்டுக.

Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.

- 53. (i) ஒரு துறைமுகத்தில் சராசரியாக 10 கப்பல்களில் ஒரு கப்பல் பத்திரமாகத் திரும்புவதில்லை. 500 கப்பல்களில், பத்திரமாகத் திரும்பி வரும் கப்பல்களின் சராசரியையும், பரவற்படியையும் காண்க.
 - (ii) ஒரு தொழிற்சாலையில், 200 மின் இணைப்பான் உள்ள ஒரு பெட்டியில் 2% குறையுள்ள மின் இணைப்பான்கள் உள்ளன. சரியாக 4 மின் இணைப்பான்கள் குறையுள்ளவையாக இருக்க நிகழ்தகவு காண்க. [e⁻⁴=0.0183]
 - (i) If on an average 1 ship out of 10 does not arrive safely to ports, find the mean and the standard deviation of ships returning safely out of a total of 500 ships.
 - (ii) If the probability of a defective fuse from a manufacturing unit is 2% in a box of 200 fuses, find the probability that exactly 4 fuses are defective. [e⁻⁴=0.0183]

54.
$$f(x) = \begin{cases} \frac{A}{x} ; & 1 < x < e^3 \\ 0 ; மற்றெங்கிலும்$$

என்பது ஒரு சமவாய்ப்பு மாறி X-ன் நிகழ்தகவு அடர்த்திச் சார்பு எனில் P(X > e)-ஐ காண்க.

If
$$f(x) = \begin{cases} \frac{A}{x} ; 1 < x < e^3 \\ 0 ; elsewhere \end{cases}$$

B

is a probability density function of a continuous random variable X, find P(X > e)

55. (a) ''ஒரு செங்கோண முக்கோணத்தின் காணத்தின் நடுப்புள்ளி அதன் உச்சிகளில் இருந்து சமதொலைவில் இருக்கும்'' என்பதனை வெக்டா் முறையில் நிறுவுக.''

அல்லது

- (b) பூச்சியமற்ற கலப்பெண்களின் கணம், கலப்பெண்களின் வழக்கமான பெருக்கலின் கீழ் ஒரு எபீலியன் குலம் எனக் காட்டுக.
- (a) Prove by vector method that "the mid point of the hypotenuse of a right angled triangle is equidistant from its vertices".

OR

(b) Show that the set of all non-zero complex numbers is an abelian group under the usual multiplication of complex numbers. 20

பகுதி – இ/PART - C

- குறிப்பு : (i) எவையேனும் பத்து வினாக்களுக்கு விடையளிக்கவும். 10x10=100
 - (ii) வினா எண் : 70 -க்கு கண்டிப்பாக விடையளிக்கவும். பிற வினாக்களிலிருந்து **ஏதேனும் ஒன்பது** வினாக்களுக்கு விடையளிக்கவும்.
- Note : (i) Answer any ten questions
 - (ii) Question No. 70 is compulsory and choose any nine from the remaining.
- 56. x + y + z = 9

2x + 5y + 7z = 52

2x+y-z=0, என்ற நேரிய சமன்பாடுகளின் தொகுப்பினை நேர்மாறு அணி காணல் முறையில் தீர்க்க

Solve the system of linear equations

x+y+z=9

2x + 5y + 7z = 52

2x+y-z=0, by matrix inversion method.

57. (2, -1, -3) வழியே செல்லக் கூடியதும். $\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-3}{-4}$ மற்றும்

 $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-2}{2}$ ஆகிய கோடுகளுக்கு இணையாக உள்ளதுமான தளத்தின்

வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக் காண்க. Find the vector and cartesian equations of the plane through the point (2, -1, -3) and

parallel to the lines
$$\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-3}{-4}$$
 and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-2}{2}$.

58.
$$\vec{a} = 2\vec{i}+3\vec{j}-\vec{k}, \vec{b} = -2\vec{i}+5\vec{k}, \vec{c} = \vec{j}-3\vec{k}$$
 similar
 $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ similar
If $\vec{a} = 2\vec{i}+3\vec{j}-\vec{k}, \vec{b} = -2\vec{i}+5\vec{k}, \vec{c} = \vec{j}-3\vec{k}$ then verify that
 $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

59. a மற்றும் b என்பவை x² + 2√3x + 4 = 0 என்ற சமன்பாட்டின் மூலங்களாக இருப்பின் aⁿ + bⁿ -ன் மதிப்பினைக் காண்க. இதிலிருந்து a¹² + b¹² ன் மதிப்பினைத் தருவிக்க. (n – என்பது ஒரு முழு எண்)

If a and b are the roots of $x^2 + 2\sqrt{3}x + 4 = 0$ then find the value of $a^n + b^n$. Also deduce the value of $a^{12} + b^{12}$. (n - is an integer)

В

60. ஒரு ரயில்வே பாலத்தின் மேல் வளைவு பரவளையத்தின் அமைப்பைக் கொண்டுள்ளது. அந்த வளைவின் அகலம் 100 அடியாகவும். அவ்வளைவின் உச்சிப்புள்ளியின் உயரம் பாலத்திலிருந்து 10 அடியாகவும் உள்ளது எனில், பாலத்தின் மத்தியிலிருந்து இடப்புறம் அல்லது வலப்புறம் 10 அடி தூரத்தில் பாலத்தின் மேல் வளைவு எவ்வளவு உயரத்தில் இருக்கும் எனக் காண்க.

The Girder of a railway bridge is in the parabolic form with span 100 ft. and the highest point on the arch is 10 ft. above the bridge. Find the height of the bridge at 10 ft. to the left or right from the midpoint of the bridge.

- 61. 5x + 12y = 9 என்ற நேர்க்கோடு அதிபரவளையம் $x^2 9y^2 = 9$ ஐத் தொடுகிறது என நிரூபிக்க. மேலும் தொடும் புள்ளியையும் காண்க. Prove that the line 5x + 12y = 9 touches the hyperbola $x^2 - 9y^2 = 9$ and find its point of contact.
- 62. 16x²+9y²+32x-36y=92 என்ற நீள்வட்டத்தின் மையத் தொலைத் தகவு, மையம், குவியங்கள், முனைகள் ஆகியவற்றைக் காண்க. மேலும் வரைபடம் வரைக. Find the eccentricity, centre, foci and vertices of the ellipse 16x²+9y²+32x-36y=92 and draw the diagram.
- ஒரு ஏவுகணை, தரையிலிருந்து செங்குத்தாக மேல்நோக்கிச் செலுத்தும்போது 't'

நேரத்தில் செல்லும் உயரம் x என்க. அதன் சமன்பாடு $x = 100t - \frac{25}{2}t^2$.

- எனில் : (i) ஏவுகணையின் தொடக்க திசைவேகம்.
 - (ii) ஏவுகணை உச்ச உயரத்தை அடையும்போது அதன் நேரம்.
 - (iii) ஏவுகணை அடையும் உச்ச உயரம் மற்றும்
 - (iv) ஏவுகணை தரையை அடையும் போது அதன் திசைவேகம் ஆகியவற்றைக் காண்க.

A missile fired from ground level rises x metres vertically upwards in 't' seconds and

$$x = 100t - \frac{25}{2}t^2$$
.

Find :

- (i) The initial velocity of the missile
- (ii) The time when the height of the missile is a maximum.
- (iii) The maximum height reached and
- (iv) The velocity with which the missile strikes the ground.

- 64. $y = x^3 + 1$ என்கிற வளைவரையை வரைக. Trace the curve $y = x^3 + 1$.
- 65. ஆரம் 'r', குத்துயரம் 'h' உடைய கூம்பின் கனஅளவைத் தொகையிடுதலைப் பயன்படுத்தி காண்க. Derive the formula for the volume of a right circular cone with radius 'r' and height 'h' using integration.
- 66. $x^2 + y^2 = 16$ என்ற வட்டத்திற்கும் $y^2 = 6x$ என்ற பரவளைத்திற்கும் பொதுவான பரப்பைக் காண்க. Find the area of the region common to the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 6x$.
- 67. $(x+y)^2 \frac{dy}{dx} = 1$ என்ற சமன்பாட்டைத் தீர்க்க.

Solve: $(x+y)^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 1$.

68. –1 ஐத் தவிர மற்ற எல்லா விகிதமுறு எண்களும் உள்ளடக்கிய கணம் G ஆனது a * b = a + b + ab எனுமாறு வரையறுக்கப்பட்ட செயலி '*' ன் கீழ் ஒரு எபீலியன் குலத்தை அமைக்கும் எனக்காட்டுக. Show that the set G of all rational numbers except –1 forms an abelian group with

respect to the operation * given by a *b=a+b+ab for all a, $b \in G$.

- 69. ஒரு குறிப்பிட்ட கல்லூரியில் 500 மாணவர்களின் எடைகள் ஒரு இயல்நிலைப் பரவலை ஒத்திருப்பதாகக் கொள்ளப்படுகிறது. இதன் சராசரி 151 பவுண்டுகளாகவும், திட்டவிலக்கம் 15 பவுண்டுகளாகவும் உள்ளன, எனில் :
 - (i) 120 பவுண்டுக்கும் 155 பவுண்டுக்கும் இடையேயுள்ள மாணவர்கள் எண்ணிக்கை.
 - (ii) 185 பவுண்டுக்கு மேல் நிறையுள்ள மாணவர்களின் எண்ணிக்கை காண்க.

[P(0 < z < 2.067) = 0.4803]

- P(0 < z < 0.2667) = 0.1026
- P(0 < z < 2.2667) = 0.4881]

The mean weight of 500 male students in a certain college is 151 pounds and the standard deviation is 15 pounds. Assuming the weights are normally distributed, find how many students weigh (i) between 120 and 155 pounds (ii) more than 185 pounds. [P(0 < z < 2.067) = 0.4803]

P(0 < z < 0.2667) = 0.1026

P(0 < z < 2.2667) = 0.4881]

В

70. (a) 0 ≤ x ≤ 2π என்ற இடைவெளியில் f(x) = x − 2sinx என்ற சார்பின் மீச்சிறு சிறுமம் மற்றும் மீப்பெரு பெரும மதிப்புகளைக் காண்க.

அல்லது

(b) ஒரு இறந்தவர் உடலை மருத்துவர் பரிசோதிக்கும் போது, இறந்த நேரத்தை தோராயமாக கணக்கிட வேண்டியுள்ளது. இறந்தவரின் உடலின் வெப்பநிலை காலை 10.00 மணியளவில் 93.4°F என குறித்துக் கொள்கிறார். மேலும் 2 மணி நேரம் கழித்து வெப்பநிலை அளவை 91.4°F எனக் காண்கிறார். அறையின் வெப்பநிலை அளவு (நிலையானது) 72°F எனில், இறந்த நேரத்தைக் கணக்கிடுக. (ஒரு மனித உடலின் சாதாரண உஷ்ண நிலை 98.6°F எனக் கொள்க.)

$$\left[\log_{e}\left(\frac{19.4}{21.4}\right) = -0.0426 \times 2.303$$
 மற்றும் $\log_{e}\left(\frac{26.6}{21.4}\right) = 0.0945 \times 2.303$

(a) Find the absolute minimum and absolute maximum values of the function $f(x) = x - 2\sin x$ in the interval $0 \le x \le 2\pi$

OR

(b) For a postmortem report, a doctor requires to know approximately the time of death of the deceased. He records the first temperature at 10.00 a.m to be 93.4°F. After 2 hours he finds the temperature to be 91.4°F. If the room temperature (which is constant) is 72°F, estimate the time of death. (Assume normal temperature of a human body to be 98.6°F).

$$\log_{e}\left(\frac{19.4}{21.4}\right) = -0.0426 \times 2.303$$
 and

$$\log_{e}\left(\frac{26.6}{21.4}\right) = 0.0945 \times 2.303$$

.000-