SHRI VIDHYABHARATHI MATRIC.HR.SEC.SCHOOL
 SAKKARAMPALA YAM , AGARAM (PO) ELACHIPALA YAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cell : 99655-31727, 94432-31727
COMMON HALF YEARLY EXAMINATION - DECEMBER - 2019 TENTATIVE ANSWER KEY

DATE: 23.12.2019
SUBJECT: BIO-BOTANY
MARKS: 35

Q. NO		MARKS
	SECTION -I	8x1=8
1.	a) Mycobacterium	1
2.	c) Avicennia, Rhizophora	1
3.	b) 1-c, 2-a, 3-d, 4-b	1
4.	c) Megnesium	1
5.	d) 15%	1
6.	c) Calcium	1
7.	c) Chlorophyll 'c'	1
8.	b) Soyabean	1
	SECTION -B II. ANSWER ANY FOUR QUESTIONS FROM THE FOLLOWING	$4 \times 2=8$
9.	Ultra structure of Bacteria: (Pg:No.15)	2
10.	Phylloclade : (Pg:No. 73) * This is a green, flattened cylindrical or angled stem or branch of unlimited growth, consisting of a series of nodes and internodes at long or short intervals. * Phylloclade is characteristic adaptation of xerophytes where the leaves often fall off early and modified into spines or scales to reduce transpiration.	2

	Section - C III. Answer any 3 questions:(Question No. 19 is Compulsory)	$3 \times 3=9$
15.	Features of Monera (Pg:No. 13) Cell type: Prokaryotic Level of organization: Unicellular Cell wall: It is made up of Peptidoglycan and Mucopeptides Nutrition: Autotrophic (Phototrophic, Chemoautotrophic); Heterotrophic (parasitic and saprophytic) Motility: Motile or non-motile Organisms: Archaebacteria, Eubacteria, Cyanobacteria, Actinomycetes and Mycoplasma	$\begin{gathered} \text { (Any three) } \\ 3 \end{gathered}$
16.	Plastids: (Pg:No. 187)	3
	Chromoplasts ${ }^{\text {c\|eucoplasts }}$	
	(Coloured Plastids) (Colourless Plastids store food materials)	
	Chloroplast Amyloplast - stores - starch Occurs in green algae and higher plants Pigments chlorophyll a and b Paps	
	Phaeoplast Elaioplast - store - lipids (oils) Seed of monocot and dicots. Pigment fucoxanthin	
	Rhodoplast Aleuroplast (or) Proteoplast Red algae Pigment Phycoerythrin store - Protein	
17.	Significance of Mitotic cell division: (Pg:No. 209) * Genetic stability - daughter cells are genetically identical to parent cells. * Growth - as multicellular organisms grow, the number of cells making up their tissue increases. The new cells must be identical to the existing ones. * Repair of tissues - damaged cells must be replaced by identical new cells by mitosis. * Asexual reproduction - asexual reproduction results in offspring that are identical to the parent. Example Yeast and Amoeba. * In flowering plants, structure such as bulbs, corms, tubers, rhizomes and runners are produced by mitotic division. When they separate from the parent, they form a new individual. The production of large numbers of offsprings in a short period of time, is possible only by mitosis. In genetic engineering and biotechnology, tissues are grown by mitosis (i.e. in tissue culture). * Regeneration - Arms of star fish	

\begin{tabular}{|c|c|c|}
\hline 18. \& \begin{tabular}{l}
Potato Osmoscope Experiment (Pg:No. 67) \\
* Take a peeled potato tuber and make a cavity inside with the help of a knife. \\
* Fill the cavity with concentrated sugar solution and mark the initial level. \\
* Place this setup in a beaker of pure water. \\
* After 10 minutes observe the sugar solution level is rises and coloured. \\
* This proves the entry of water into the sugar solution through the potato tissue which serve as the selectively permeable membrane
\end{tabular} \& 2

1

\hline \multirow[t]{15}{*}{19.} \& Differences between C_{3} and C_{4} plants : (Pg:No. 129) \& \multirow{15}{*}{$$
\begin{gathered}
\text { (Any three) } \\
3
\end{gathered}
$$}

\hline \& C_{3} Plants \mathbf{C}_{4} Plants \&

\hline \& | CO_{2} fixation takes place in mesophyll
 cells only | CO_{2} fixation takes place mesophyll
 and bundle sheath |
| :--- | :--- | \&

\hline \& | CO_{2} acceptor is RUBP only | PEP in mesophyll and RUBP in
 bundle sheath cells |
| :--- | :--- |
| | Pir pat | \&

\hline \& First product is 3C-PGA \quad First product is 4C- OAA \&

\hline \& Kranz anatomy is not present \quad Kranz anatomy is present \&

\hline \& Granum is present in mesophyll cells	Granum present in mesophyll cells
and absent in bundle sheath	\&

\hline \& Normal Chloroplast Dimorphic chloroplast $^{\text {a }}$ \&

\hline \& Optimum temperature 20^{0} to $25^{\circ} \mathrm{C}$ - $⿻$ Optimum temperature 30° to $45^{\circ} \mathrm{C}$ \&

\hline \& \&

\hline \& | Less efficient due to higher
 photorespiration | More efficient due to less
 photorespiration |
| :--- | :--- |
| RUBP | | \&

\hline \& | RUBP carboxylase enzyme used for
 fixation | PEP carboxylase and RUBP
 carboxylase used |
| :--- | :--- |
| 18 ATPs used to | | \&

\hline \& | 18 ATPs used to synthesize one
 glucose | Consumes 30 ATPs to produce one
 glucose. |
| :--- | :--- |
| | gfien | \&

\hline \& Efficient at low $\mathrm{CO}_{2} \quad$ Efficient at higher CO_{2} \&

\hline \& | Example: Paddy, Wheat, Potato | Example: Sugar cane, Maize,
 Sorghum, Amaranthus and so on |
| :--- | :--- | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
SECTION -D \\
IV. Answer the following questions
\end{tabular} \& \(2 \times 5=10\) \\
\hline 20. \& \begin{tabular}{l}
i) Three classes of Bryophytes: (Pg:No. 52) \\
* Hepaticopsida (Riccia, Marchantia, Porella, Riella) \\
* Anthocerotopsida (Anthoceros and Dendroceros) \\
* Bryopsida (Funaria, Polytrichum and Sphagnum). \\
ii) Differences between Gymnosperms and Angiosperms: (Pg:No. 57-58)
\end{tabular} \& 2

3

\hline \& (OR) \&

\hline \& | Clitoria ternatia (Pg:No. 148-150) |
| :--- |
| Habit: Climbers |
| Root: Tap root system |
| Stem: Aerial, herbaceous, twining or climbing |
| Leaf: unipinnate or simple pinnate |
| Inflorescence: Axillary solitary |
| and hypogynous. |
| Calyx: Sepals 5, synsepalous, green showing valvate aestivation. Odd sepal is anterior in position. |
| Corolla: Petals 5, white or blue apopetalous, irregular papilionaceous corolla showing, descendingly imbricate aestivation. |
| Androecium: Stamens 10, diadelphous (9)+1 nine stamens fused to form a bundle and the tenth stamen is free. Anthers are dithecous, basifixed, introse and dechiscing by longitudinal slits. |
| Gynoecium: Monocarpellary, unilocular, with many ovules on mariginal placentation, ovary superior, style simple and incurved with feathery stigma. |
| Fruit: Legume |
| Seed: Non-endospermous, reniform. |
| Floral formula: Br., Brl., \%, ${ }^{?}{ }^{\text {T}} \mathrm{K}_{(5)}, \mathrm{C}_{5}, \mathrm{~A}_{(9)+1}, \underline{\mathrm{G}}_{1}$ | \& 1

\hline
\end{tabular}

Flow chart of Kreb's cycle: (Pg:No. 147)

	Write any three of the following.Question No.19 is compulsory			
15	In the phylum Arthropoda the animal body is covered by chitinous exoskeleton for protection and to prevent water loss, It is shed off periodically by a process called moulting or ecdysis.	3		
16	In Cockroach the entire body is covered by a hard, brown coloured, chitinous exoskeleton. In each segment, exoskeleton has hardened plates called sclerites, which are joined together by a delicate and elastic articular membrane or arthrodial membrane.	1		
17	The sclerites of the dorsal side are called tergites, those on the ventral side are called sternites and those of lateral sides are called pleurites	1		

Arteries	Veins
The blood vessels that carry blood away from the heart are called arteries except pulmonary artery.	The blood vessels that carry blood towards heart are called veins. Except pulmonary vein.
All arteries carry oxygenated blood, except pulmonary artery.	Veins carry deoxygenated blood, except the pulmonary.
The arteries usually lie deep inside the body	They are superficial
The walls of the arteries are thick, non collapsible to with stand high pressure.	The blood pressure is low and the lumen has a wide wall which is collapsible
As blood enters an arteriole it may have a pressure of 85 mm Hg.	Blood samples are usually taken from the veins rather arteries because of low pressure in the veins

MARE ANATTSIS

PART	Book Back Questions	Interior questions	Total No. of Questions	Total Mark
I	3	5	8	8
II	3	3	6	12
III	1	4	5	15
IV	1	3	4	20
Total	8	15	23	55

Department of ZOOLOGY

