Class	:	1	2	

Register		,	l
Number		L	

Max. Marks: 200

Higher Secondary Half Yearly Examination 2017-18 Time Allowed: 3 Hours

MATHEMATICS

INS	TRUCT		Check the ques irness, inform	tion paper for the Hall Supe	r fairness (of printing. I	f there i		Marks : 200 of
				Part		nediately.			
Not	e : (i)	Answer All th	he anestions	ı arı	/1				40×1. 40
	(ii)	Choose the co	orrect answer	and muita tha	ontion and	do fo the com			40×1=40
				ind write the	option coc	de & the corr	esponai	ng answer.	
1.If	the rank	Choose the control of the matrix of continuit matrix of control (adj 1)	$\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \end{bmatrix}$	is 2, then	λis				
	(a) 1		L -1 0 3	.]		_			
2.1	Listhe	unit matrix of	(b)	2	(c)	3	(d)	any real _. nu	mber
	(a) k ⁿ	(adi I)	order n. where i	€ ≠ 0 is a cons	tant, then a	idj(k l) is :	4.0		
3.	In a sys	(adj I) stem of 3 linear e system has	non homogene	K (adj 1) ous equation v	(c) vith three u	. k² (aḍj 1) inknowns, if z	(d) 4=0, and	k ⁱ⁻¹ (adj I) IΔ _χ =0, Δ _y ≢	• 0 and ∆ _z 0
			(15)	tara andrain	()			2.15	
4.	Which	of the following	(b)	two solutions	(c)	infinitely ma	ny sóluti	ons (d) no s	solution
	(a) alv	of the following	statement is co	rrect regardin	g nomogen	eous system?	•		
5.	(d) ha If \overrightarrow{a} +	ways inconsister s only trivial sol $\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$. $ \overrightarrow{a} $	ution only if ran -3, = 4,	k of the coeffice.	ii solution cient matrix nole betwe	c) has only) xis equal to the en a and bis	non triv e numbei	al solutions of unknow	ns
	(a) $\frac{\pi}{6}$	ea of the paralle	(b) $\frac{2\pi}{3}$		(c) $\frac{5\pi}{3}$		(d) -	$\frac{\pi}{2}$	
6.	The are	ea of the paralle	logram having	a diagonal 3i.	$\rightarrow \rightarrow$ $+$ i - k and	a side $i \rightarrow 3i +$	→ Akic	2	
	(a) 10	1/3	(h) (1/20)		3	4 side 1-5 j i	T K 15	- A	
	(a) 10	V 3	(b) 6 V30		(c) $\frac{3}{2}$	√30	(d)	$3\sqrt{30}$	
7.	varae ($\sqrt{3}$ nagnitude of moof a is		point j+kofa	force i+a	j-k actingthro	ugh the p	ooint i+j is	$\sqrt{8}$ then the
	(a) 1		(b) 2		(c) 3		(d)	4	
8.	\rightarrow	uation of the p	lane passing the	rough the po	int (2, 1, -	1) and the lin	e of inte	rsection of	the planes
	r. (i + 3		k)= 0 is :	•					are planes
	(a) x+	-4y-z=0	(b) x+9y-	+11z=0	(c) 2x	x+y-z+5=0	(d)	2x-y+z=0	
9.	The fo	llowing two lin	es are $\frac{X-1}{2} = -$	$\frac{y-1}{1} = \frac{z}{1}$ and	$\frac{X-Z}{2} = .$	$\frac{y-1}{z} = \frac{z-1}{z}$			
	(a) pa	rallel	(b) intersec	eting	(c) ske	ew	(d)	perpendicul	ar
10.	The an	gle between the	e line rf≕a′+tb	and the plane	e r̄.n̄= q̄ is	s connected b	y the rela	ation	-
	(a) co	$s \theta = \frac{a \cdot n'}{a}$	(b) cos 0	$=$ $\frac{b}{n}$	(c) sin	$a = \overrightarrow{a} \cdot \overrightarrow{b}$	(1)	\overrightarrow{b}	→ n
	(11)	rallel gle between the $s \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{n}}{q}$ +i and $z = 2-3$ i t	(6) 2000	b n	(0) 3111	n	(a)	$\sin \theta = \frac{1}{ b }$	n
11.			1		anagranni i c	presenting az.	, saza:	zare	11
	(a) Ve	rtices of a right	angled triangle		(b) Verti	ices of an equi	lateral ti	iangle	*
		rtices of an isos		•,)	(a) Colli	inear		8	
12.	If a=co	sα-i sinα, b=c	osß-i sinß, c=co	osγ-i sinγthen	$(a^2c^2-b^2)/a$	ibe is			
	(a) cos	$s 2(\alpha - \beta + \gamma) + i \sin \alpha$	$n 2(\alpha - \beta + \gamma) = 0$	b) -2 cos(α-β+	γ)(c)-2i s	sin(α-β+γ)	(d)2	cos(α-β+γ)	
13.	If $\frac{1}{1+1}$	i is a root of th			vhere a, b.	are real then		7	
	(a) $(1,$		(b) (1, -1		(c) (0,	, 1)	(d)(1	1,0)	
14.	If z _i an	d z ₂ are any two	o complex num	bers then which			s false?		
	(a) Re	$(z_1 + z_2) = \text{Re}(z_1)$)+Re (z ₂)		(b) Im	$(z_1+z_2)=Im(z_1+z_2)$		(,)	
	(c) arg	g(z, +z,)=arg(z	(z_1) + arg (z_1)		(d) $ z_1\rangle$	$Z_1 \mid Z_1 \mid Z_2 \mid$		-	
15.		gle between the		rawn from the	point (-4,	4) to $y^2 = 16x$	is		A
	(a) 45°)	(b) 30°		(c) 60°	u-	(d)	900	AR I
				•				. (G/12/Mat/1

16.	The difference between the focal distances of any point or	n the l	$yperbola \frac{x^2}{a^2} - \frac{y^2}{b^2} =$	1 is 24 and the	eccentricity is 2.
	2. Then the equation of the hyperbola is			-	
	(a) $\frac{x^2}{144} - \frac{y^2}{432} = 1$ (b) $\frac{x^2}{432} - \frac{y^2}{144} = 1$	(c)	$\frac{x^2}{12} - \frac{y^2}{12\sqrt{3}} = 1$	(d) $\frac{x^2}{12\sqrt{3}}$	$\frac{y^2}{12} = 1$
17.	The normal to the rectangular hyperbola $xy = 9at [6, -\frac{1}{2}]$	$\left[\frac{3}{2}\right]$ m	eets the curve again	at	
	a) $\left[\frac{3}{8}, 24\right]$ (b) $\left[-24, \frac{-3}{8}\right]$				
18.	The locus of the foot of perpendicular from the foucs				$\frac{y^2}{b^2} = 1$ is
	(a) $x^2+y^2=a^2-b^2$ (b) $x^2+y^2=a^2$	(c)	$x^2+v^2=a^2+b^2$	(d) $x=0$	
19.	A spherical snow ball is melting in such a way that its which the diameter is decreasing when the diameter is	volu	me is decreasing at a	a rate of l cm ³ /	min. The rate at
	a) $-\frac{1}{50 \pi}$ cm/min (b) $\frac{1}{50 \pi}$, cm/min	(c)	$\frac{-11}{75}$ cm/min	(d) $\frac{-2}{75}$ c	m/min
<u>2</u> 0.	If the volume of an expanding cube is increasing at the when the volume of the cube is 8 cubic cm is	rate	75π of 4 cm ³ /sec then the	/3 π e rateof change	e of surface area
	() () ()	(0)	2 am2/222	(d) 4 am²/a	00
21.	The curve y=-e-x is	(0)	2 cm ² /sec	(a) 4 cm-7s	ec
		(h)	concave downwar	vd for $v > 0$	
	(a) concave upward for x>0(c) everywhere concave upward	(d)	everywhere concar	ve downward	,
22.	A continuous graph $y = f(x)$ is such that $f'(x) \rightarrow \infty$ as	· (u) s r→	r at (r v) T	hen $\mathbf{v} = \mathbf{f}(\mathbf{r})$ h	1969
	(a) vertical tangent $y = x_1$	(b)	horizontal tangent	x = y	ias a .
	(c) vertical tangent $x = x_1$	(d)	horizontal tangent	$\frac{x-x_1}{x=y}$	
23.	The percentage error in the 11th root of the number 28	8 is ar	proximately	y 1 times t	he nercentage
	error in 28.	u _l	- prominatory	unes	ine percentage
`	a) $\frac{1}{28}$ (b) $\frac{1}{11}$	(c)	11	.(d) 20	
<u>.</u>		(0)	**	(u) 28	
24.	If $u = f(x, y)$ then with usual notations $u_{xy} = u_{yx}$ if				
	(a) u is continuous (b) u is continuous $\pi/2$	(c)	u, is continuous	(d) u, u, u	are continuous
25.	The value of $\int_{-\pi/2}^{\pi/2} \left(\frac{\sin x}{2 + \cos x}\right) dx$ is	•,		• :	
		(c)	log2	(d) log4	
26.	The volume generated by rotating the triangle with vo	ertice	s(0,0)(3,0) and (3.	3) about y-av	icia
	(a) 18π (b) 2π	(c)	36	(4) 0	
27.	from the centre is	cepte	d between two para	illel planes of	distance 2 and 4
	$_{2a}(a) 20 \pi$ (b) 40 π	(c)	10 π	(d) 30 m	1
28.	$\int f(x) dx = 0 if$			(-) 50 %	***
	f(x) dx = 0 if f(x) dx = 0 if	(c)	f(x)=-f(x)	(d) f(-v) = f((v)
29	The integrating factor $\frac{dy}{dx} + \frac{1}{x \log x} y = \frac{2}{x^2}$ is	. 8		(d) 1 (-x)-1 ((X)
	(a) e^x (b) $\log x$	(c)	1/x	(d)x	
30	. The differential equation formed by eliminating A ar	nd R	from the relation v -	(d) e ^{-x}	D.,
	(a) $y''+y'=0$ (b) $y''-y'=0$ If $y'=y'=0$ (c) $y''-y'=0$	(c)	$v^{2} - 2v^{2} + 2v = 0$	$= e [A \cos x +$	B $\sin x$] is:
31	If $f'(x) = \sqrt{x}$ and $f(1) = 2$ then $f'(x)$ is	(0)	y -2y +2y-0	(a) y"-2y'	-2y=0
	If $f(x) = \sqrt{x}$ and $f(1) = 2$ then $f(x)$ is a) $-\frac{2}{3}(x\sqrt{x}+2)$ (b) $-\frac{3}{2}(x\sqrt{x}+2)$	(c)	$\frac{2}{3}$ (x \sqrt{x} +2)	(d) $\frac{2}{x}$ (v	(x +2)
32	The order and degree of the differential equation y'-	+(√"\2	J =(v+v")2 and	3	-,
	(a) 1,1 (b) 1,2	(a)	2, 1		
		(0)	4, 1	(d) 2, 2	G/12/Mat/2
	경영수를 가려면서야 한다는 것이 되어 있습니다. 그런 그리고 있는 것이 있습니다. 그리고 있는 것이다.			2 27 1	

33.	The conditional statement $p \rightarrow q$ is equivalent to:
24	(a) $p \vee q$ (b) $p \vee (\sim q)$ (c) $(\sim p) \vee q$ (d) $p \wedge q$
34.	as a such from the first the first the group of cube foot of unity, the order of wars
25	(a) 4 (b) 3 (c) 2 (d) 1
35.	the operation waterined by and a volt, the identity elements
26	(a) 0 (b) 1 (c) a (d) b
56.	÷ is a binary operation on:
	(a) N (b) R (c) Z (d) $C-\{0\}$
37.	of the following are correct.
	(i) $E(aX+b)=a E(X)+b$ (ii) $\mu_2 = \mu_2^1 - (\mu_1^1)^2$ (iii) $\mu_2 = Variance$ (iv) $Var(aX+b)=a^2 VarX$ (a) all (b) (i), (ii) only (c) (ii), (iii) only (d) (i), (iv) only
	(a) all (b) (i), (ii), (iii) only (c) (ii), (iii) only (d) (i), (iv) only
38.	
	(a) 2 (b) 4 (c) 6 (d) 8
39.	If a random variable X follows a poison distribution such that E(X2)=30 then the variance of the distribution is
	(a) 6 (b) 5 (c) 30 (d) 25
-10	The marks secured by 400 students in a mathematics test were normally distributed with mean 65. If 120
	students got more marks above 85, the number of students securing marks between 45 and 65 is
	(a) 120 (b) 20 (c) 80 (d) 160
	Down D
NI.	Part - B
INO	te: (i) Answer any 10 questions.
	(ii) Question No. 55 is compulsory and choose any 9 questions from the remaining.
41.	If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$ then verify that $(AB)^{-1} = B^{-1}A^{-1}$
12	
.42.	y y - y
	then solve the system.
43.	Find the meeting point of the line $\overrightarrow{r} = (2i+j-3k)+t(2i-j-k)$ and the plane $x-2y+3z+7=0$.
	(i) If \overrightarrow{x} . $\overrightarrow{a} = 0$, \overrightarrow{x} . $\overrightarrow{b} = 0$, \overrightarrow{x} . $\overrightarrow{c} = 0$ and $\overrightarrow{x} \neq 0$ then show that \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar.
44.	(i) If x , $a = 0$, x , $b = 0$, x , $c = 0$ and $x \ne 0$ then show that a , b and c are coplanar.
	(ii) Find the angle between the line $\vec{r} = (\vec{i}+\vec{2}\vec{j}-\vec{k}) + \vec{\mu} (\vec{2}\vec{i}+\vec{j}+\vec{2}\vec{k})$ and the plane $\vec{r} = (\vec{3}\vec{i}-\vec{2}\vec{j}+\vec{6}\vec{k}) = 0$.
45.	For any two complex numbers $z_1, z_2 \neq 0$ Prove $\left \frac{z_1}{z_2} \right = \frac{ z_1 }{ z_2 }$, and $\arg \left(\frac{z_1}{z_2} \right) = \arg (z_1) - \arg (z_2)$
10	$ Z_1 Z_2 $ $ Z_2 $
46.	Prove that, the points representing the complex numbers $10+8i$, $-2+4i$, $-11+31i$ on the argand plane form a right
	angled triangle.
47.	(i) Evaluate: $\lim_{x \to \infty} \frac{\sin(\frac{2}{x})}{x}$
7/.	$X \to \infty$
	$(\frac{1}{})$
	X
	(ii) Verify Roll's theorem for the function $f(x) = x-1 , 0 \le x \le 2$
48.	Prove that the function $f(x) = \tan x + \cot x$ is not monotonic in the interval $(0,\pi/2)$
49.	Find the approximate value of $\sqrt{36.1}$ to two decimal places using differential.
50.	Solve the differential equation $(D^2+2D+1)y=x^2+2x+1$.
51 .	Show that $\sim (p \land q) = (\sim p) \lor (\sim q)$
52.	State and prove cancellation on groups.
53.	Marks is an aptitude test given to 800 students of a school was found to be normally distributed. 10% of the
	students scored below 40 marks and 10% of the students scored above 90 marks. Find the number of students
	scored between 40 and 90.
	SURF IT HIS

- If on an average 1 ship out of 10 do not arrive safely to ports, find the mean and standard deviation of 54. (i) ships returning safely out of a total of 500 ships.
 - If the probability of a defective fuse from a manufacturing unit is 2% in a box of 200 fuses find the probability that more than 3 fuses are defective. [e-4=0.0183]
- **55**. (a) The tangent at any point of the rectangular hyperbola xy=c2 makes intercepts a, b and the normal at the point makes intercepts p, q on the axes. Prove that ap+bq 0. (OR)
 - $\int_{0}^{\infty} \sin^4 x \cos^2 x \, dx.$ (b) Evaluate:

Part - C

(i) Answer any 10 questions.

10x10=100

- (ii) Question No. 70 is compulsory and choose any 9 questions from the remaining.
- 56. A bag contains 3 types of coins namely ₹1, ₹2 and ₹5. There are 30 coins amounting to ₹100 in total. Find
- the number of coins in each category.

 57. Verify $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}] \vec{c} [\vec{a} \ \vec{b} \ \vec{c}] \vec{d}$ for $\vec{a} \vec{i} + \vec{j} + \vec{k}$; $\vec{b} = 2\vec{i} + \vec{k}$; $\vec{c} 2\vec{i} + \vec{j} + \vec{k}$; $\vec{d} \vec{i} + \vec{j} + 2\vec{k}$
- 58. Find the vector and CArtesian equation fo the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{3}$ and parallel to the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z+1}{1}$
- 59. If α and β are the roots of the equation $x^2 2px + (p^2 + q^2) = 0$ and $\tan \theta = \frac{q}{\alpha}$, show that $\frac{(y + \alpha)^n (y + \beta)^n}{\alpha \beta}$
- 60. Assume that water issuing from the end of a horizontal pipe, 7.5 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?
- The orbit of the planet mercury around the sun is in elliptical shape with sun at a focus. The semi major axis is of length 36 million miles and the eccentricity of the orbit is 0.206. Find (i) how close the mercury gets to sun? the greatest possible distance between mercury and sun.
- Find the equation of the director circle of the hyperbola if:
 - The centre of the hyperbola is same as the centre of the ellipse $\frac{(x-1)^2}{Q} + \frac{(y+1)^2}{16} = 1$.
 - The length of the latus rectum is $\frac{9}{2}$ and the eccentricity $\frac{5}{4}$
 - (iii) The equation of the conjugate axis is x=1
- 63. Show that the equation of the normal to the curve $x=a\cos^3\theta$, $y=a\sin^3\theta$, at θ is $x\cos\theta$ -ysin θ -acos 2θ .
- 64. The top and bottom margins of a poster are each 6 cms and the side margins are each 4 cms. If the area of the printed material on the poster is fixed at 384 cm², find the dimension of the poster with the smallest area.
- 65. $u = tan^{-1} \left[\frac{x^3 + y^3}{x y} \right]$ Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = sin2u$.
- 66. Find the surface area of the solid generated by revolving the cycloid x=a(t+sint),y=a(1+cost) about its
- 67. Find the common area enclosed by the parabolas $4y^2=9x$ and $3x^2=16y$.
- A cup of coffee at temperature 100°C is placed in a room whose temperature is 15°C and it cools to 60°C in
- 69. An urn contains 4 white and 3 red balls. Find the probability distribution of number of red balls in three draws (ii) without replacement
- 70. (a) Find the cubic polynomial in x which attains its maximum value 4 and minimum value 0 at x 1 and 1
 - (b) Show that the set M of complex numbers Z with the condition |z|=1 forms a group with respect to the